Properties

Label 161.4.a.b.1.7
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-3.02588\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.02588 q^{2} -9.11775 q^{3} +1.15594 q^{4} +18.5973 q^{5} -27.5892 q^{6} -7.00000 q^{7} -20.7093 q^{8} +56.1334 q^{9} +56.2732 q^{10} -33.2549 q^{11} -10.5396 q^{12} -64.4205 q^{13} -21.1812 q^{14} -169.566 q^{15} -71.9113 q^{16} -52.2394 q^{17} +169.853 q^{18} -88.3614 q^{19} +21.4974 q^{20} +63.8243 q^{21} -100.625 q^{22} +23.0000 q^{23} +188.822 q^{24} +220.859 q^{25} -194.928 q^{26} -265.631 q^{27} -8.09159 q^{28} +118.211 q^{29} -513.085 q^{30} -255.347 q^{31} -51.9206 q^{32} +303.210 q^{33} -158.070 q^{34} -130.181 q^{35} +64.8870 q^{36} +57.9031 q^{37} -267.371 q^{38} +587.370 q^{39} -385.137 q^{40} -347.026 q^{41} +193.125 q^{42} +477.979 q^{43} -38.4407 q^{44} +1043.93 q^{45} +69.5952 q^{46} +239.666 q^{47} +655.670 q^{48} +49.0000 q^{49} +668.294 q^{50} +476.306 q^{51} -74.4663 q^{52} -402.094 q^{53} -803.769 q^{54} -618.452 q^{55} +144.965 q^{56} +805.657 q^{57} +357.691 q^{58} -587.617 q^{59} -196.008 q^{60} +698.764 q^{61} -772.649 q^{62} -392.934 q^{63} +418.185 q^{64} -1198.05 q^{65} +917.477 q^{66} +126.625 q^{67} -60.3857 q^{68} -209.708 q^{69} -393.912 q^{70} -844.084 q^{71} -1162.48 q^{72} +712.052 q^{73} +175.208 q^{74} -2013.74 q^{75} -102.141 q^{76} +232.784 q^{77} +1777.31 q^{78} -589.839 q^{79} -1337.36 q^{80} +906.360 q^{81} -1050.06 q^{82} +1009.86 q^{83} +73.7771 q^{84} -971.511 q^{85} +1446.31 q^{86} -1077.81 q^{87} +688.686 q^{88} +35.6685 q^{89} +3158.81 q^{90} +450.943 q^{91} +26.5866 q^{92} +2328.19 q^{93} +725.201 q^{94} -1643.28 q^{95} +473.400 q^{96} -127.177 q^{97} +148.268 q^{98} -1866.71 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} + 24 q^{4} - 24 q^{5} - 41 q^{6} - 56 q^{7} - 69 q^{8} + 95 q^{9} - 30 q^{10} - 98 q^{11} - 131 q^{12} - 145 q^{13} - 232 q^{15} - 76 q^{16} - 96 q^{17} - 69 q^{18} - 226 q^{19} - 22 q^{20}+ \cdots - 1676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.02588 1.06981 0.534905 0.844912i \(-0.320347\pi\)
0.534905 + 0.844912i \(0.320347\pi\)
\(3\) −9.11775 −1.75471 −0.877356 0.479840i \(-0.840695\pi\)
−0.877356 + 0.479840i \(0.840695\pi\)
\(4\) 1.15594 0.144493
\(5\) 18.5973 1.66339 0.831696 0.555231i \(-0.187370\pi\)
0.831696 + 0.555231i \(0.187370\pi\)
\(6\) −27.5892 −1.87721
\(7\) −7.00000 −0.377964
\(8\) −20.7093 −0.915230
\(9\) 56.1334 2.07902
\(10\) 56.2732 1.77951
\(11\) −33.2549 −0.911522 −0.455761 0.890102i \(-0.650633\pi\)
−0.455761 + 0.890102i \(0.650633\pi\)
\(12\) −10.5396 −0.253543
\(13\) −64.4205 −1.37439 −0.687193 0.726475i \(-0.741157\pi\)
−0.687193 + 0.726475i \(0.741157\pi\)
\(14\) −21.1812 −0.404350
\(15\) −169.566 −2.91878
\(16\) −71.9113 −1.12361
\(17\) −52.2394 −0.745289 −0.372644 0.927974i \(-0.621549\pi\)
−0.372644 + 0.927974i \(0.621549\pi\)
\(18\) 169.853 2.22415
\(19\) −88.3614 −1.06692 −0.533460 0.845825i \(-0.679109\pi\)
−0.533460 + 0.845825i \(0.679109\pi\)
\(20\) 21.4974 0.240348
\(21\) 63.8243 0.663219
\(22\) −100.625 −0.975155
\(23\) 23.0000 0.208514
\(24\) 188.822 1.60597
\(25\) 220.859 1.76687
\(26\) −194.928 −1.47033
\(27\) −265.631 −1.89336
\(28\) −8.09159 −0.0546131
\(29\) 118.211 0.756936 0.378468 0.925614i \(-0.376451\pi\)
0.378468 + 0.925614i \(0.376451\pi\)
\(30\) −513.085 −3.12253
\(31\) −255.347 −1.47941 −0.739704 0.672932i \(-0.765035\pi\)
−0.739704 + 0.672932i \(0.765035\pi\)
\(32\) −51.9206 −0.286824
\(33\) 303.210 1.59946
\(34\) −158.070 −0.797317
\(35\) −130.181 −0.628703
\(36\) 64.8870 0.300403
\(37\) 57.9031 0.257276 0.128638 0.991692i \(-0.458939\pi\)
0.128638 + 0.991692i \(0.458939\pi\)
\(38\) −267.371 −1.14140
\(39\) 587.370 2.41165
\(40\) −385.137 −1.52239
\(41\) −347.026 −1.32186 −0.660931 0.750446i \(-0.729839\pi\)
−0.660931 + 0.750446i \(0.729839\pi\)
\(42\) 193.125 0.709518
\(43\) 477.979 1.69514 0.847571 0.530682i \(-0.178064\pi\)
0.847571 + 0.530682i \(0.178064\pi\)
\(44\) −38.4407 −0.131708
\(45\) 1043.93 3.45822
\(46\) 69.5952 0.223071
\(47\) 239.666 0.743807 0.371903 0.928271i \(-0.378705\pi\)
0.371903 + 0.928271i \(0.378705\pi\)
\(48\) 655.670 1.97162
\(49\) 49.0000 0.142857
\(50\) 668.294 1.89022
\(51\) 476.306 1.30777
\(52\) −74.4663 −0.198589
\(53\) −402.094 −1.04211 −0.521056 0.853523i \(-0.674462\pi\)
−0.521056 + 0.853523i \(0.674462\pi\)
\(54\) −803.769 −2.02554
\(55\) −618.452 −1.51622
\(56\) 144.965 0.345924
\(57\) 805.657 1.87214
\(58\) 357.691 0.809777
\(59\) −587.617 −1.29663 −0.648315 0.761372i \(-0.724526\pi\)
−0.648315 + 0.761372i \(0.724526\pi\)
\(60\) −196.008 −0.421742
\(61\) 698.764 1.46668 0.733341 0.679861i \(-0.237960\pi\)
0.733341 + 0.679861i \(0.237960\pi\)
\(62\) −772.649 −1.58269
\(63\) −392.934 −0.785794
\(64\) 418.185 0.816768
\(65\) −1198.05 −2.28614
\(66\) 917.477 1.71112
\(67\) 126.625 0.230890 0.115445 0.993314i \(-0.463171\pi\)
0.115445 + 0.993314i \(0.463171\pi\)
\(68\) −60.3857 −0.107689
\(69\) −209.708 −0.365883
\(70\) −393.912 −0.672593
\(71\) −844.084 −1.41091 −0.705453 0.708757i \(-0.749256\pi\)
−0.705453 + 0.708757i \(0.749256\pi\)
\(72\) −1162.48 −1.90278
\(73\) 712.052 1.14164 0.570818 0.821077i \(-0.306626\pi\)
0.570818 + 0.821077i \(0.306626\pi\)
\(74\) 175.208 0.275236
\(75\) −2013.74 −3.10036
\(76\) −102.141 −0.154162
\(77\) 232.784 0.344523
\(78\) 1777.31 2.58001
\(79\) −589.839 −0.840026 −0.420013 0.907518i \(-0.637974\pi\)
−0.420013 + 0.907518i \(0.637974\pi\)
\(80\) −1337.36 −1.86901
\(81\) 906.360 1.24329
\(82\) −1050.06 −1.41414
\(83\) 1009.86 1.33550 0.667752 0.744384i \(-0.267257\pi\)
0.667752 + 0.744384i \(0.267257\pi\)
\(84\) 73.7771 0.0958303
\(85\) −971.511 −1.23971
\(86\) 1446.31 1.81348
\(87\) −1077.81 −1.32820
\(88\) 688.686 0.834252
\(89\) 35.6685 0.0424814 0.0212407 0.999774i \(-0.493238\pi\)
0.0212407 + 0.999774i \(0.493238\pi\)
\(90\) 3158.81 3.69964
\(91\) 450.943 0.519469
\(92\) 26.5866 0.0301288
\(93\) 2328.19 2.59594
\(94\) 725.201 0.795731
\(95\) −1643.28 −1.77471
\(96\) 473.400 0.503293
\(97\) −127.177 −0.133123 −0.0665613 0.997782i \(-0.521203\pi\)
−0.0665613 + 0.997782i \(0.521203\pi\)
\(98\) 148.268 0.152830
\(99\) −1866.71 −1.89507
\(100\) 255.300 0.255300
\(101\) −1376.80 −1.35641 −0.678203 0.734875i \(-0.737241\pi\)
−0.678203 + 0.734875i \(0.737241\pi\)
\(102\) 1441.24 1.39906
\(103\) −508.618 −0.486559 −0.243280 0.969956i \(-0.578223\pi\)
−0.243280 + 0.969956i \(0.578223\pi\)
\(104\) 1334.10 1.25788
\(105\) 1186.96 1.10319
\(106\) −1216.69 −1.11486
\(107\) 435.724 0.393673 0.196837 0.980436i \(-0.436933\pi\)
0.196837 + 0.980436i \(0.436933\pi\)
\(108\) −307.054 −0.273577
\(109\) 426.303 0.374610 0.187305 0.982302i \(-0.440025\pi\)
0.187305 + 0.982302i \(0.440025\pi\)
\(110\) −1871.36 −1.62206
\(111\) −527.947 −0.451446
\(112\) 503.379 0.424686
\(113\) 692.534 0.576532 0.288266 0.957550i \(-0.406921\pi\)
0.288266 + 0.957550i \(0.406921\pi\)
\(114\) 2437.82 2.00283
\(115\) 427.738 0.346841
\(116\) 136.644 0.109372
\(117\) −3616.14 −2.85737
\(118\) −1778.06 −1.38715
\(119\) 365.676 0.281693
\(120\) 3511.58 2.67135
\(121\) −225.110 −0.169128
\(122\) 2114.38 1.56907
\(123\) 3164.10 2.31949
\(124\) −295.166 −0.213764
\(125\) 1782.72 1.27561
\(126\) −1188.97 −0.840650
\(127\) −656.335 −0.458585 −0.229293 0.973358i \(-0.573641\pi\)
−0.229293 + 0.973358i \(0.573641\pi\)
\(128\) 1680.74 1.16061
\(129\) −4358.09 −2.97449
\(130\) −3625.14 −2.44574
\(131\) 1575.99 1.05111 0.525553 0.850761i \(-0.323858\pi\)
0.525553 + 0.850761i \(0.323858\pi\)
\(132\) 350.493 0.231110
\(133\) 618.530 0.403258
\(134\) 383.151 0.247009
\(135\) −4940.03 −3.14941
\(136\) 1081.84 0.682111
\(137\) 792.294 0.494089 0.247045 0.969004i \(-0.420541\pi\)
0.247045 + 0.969004i \(0.420541\pi\)
\(138\) −634.552 −0.391425
\(139\) −2675.35 −1.63252 −0.816261 0.577684i \(-0.803957\pi\)
−0.816261 + 0.577684i \(0.803957\pi\)
\(140\) −150.482 −0.0908430
\(141\) −2185.22 −1.30517
\(142\) −2554.10 −1.50940
\(143\) 2142.30 1.25278
\(144\) −4036.63 −2.33601
\(145\) 2198.40 1.25908
\(146\) 2154.58 1.22133
\(147\) −446.770 −0.250673
\(148\) 66.9326 0.0371745
\(149\) 291.225 0.160121 0.0800607 0.996790i \(-0.474489\pi\)
0.0800607 + 0.996790i \(0.474489\pi\)
\(150\) −6093.34 −3.31679
\(151\) 2204.34 1.18799 0.593995 0.804469i \(-0.297550\pi\)
0.593995 + 0.804469i \(0.297550\pi\)
\(152\) 1829.90 0.976478
\(153\) −2932.38 −1.54947
\(154\) 704.378 0.368574
\(155\) −4748.76 −2.46084
\(156\) 678.965 0.348466
\(157\) −1615.90 −0.821422 −0.410711 0.911766i \(-0.634719\pi\)
−0.410711 + 0.911766i \(0.634719\pi\)
\(158\) −1784.78 −0.898668
\(159\) 3666.20 1.82861
\(160\) −965.583 −0.477100
\(161\) −161.000 −0.0788110
\(162\) 2742.53 1.33009
\(163\) 336.417 0.161658 0.0808288 0.996728i \(-0.474243\pi\)
0.0808288 + 0.996728i \(0.474243\pi\)
\(164\) −401.142 −0.190999
\(165\) 5638.89 2.66053
\(166\) 3055.72 1.42874
\(167\) −27.3144 −0.0126566 −0.00632831 0.999980i \(-0.502014\pi\)
−0.00632831 + 0.999980i \(0.502014\pi\)
\(168\) −1321.76 −0.606998
\(169\) 1953.00 0.888938
\(170\) −2939.68 −1.32625
\(171\) −4960.03 −2.21815
\(172\) 552.516 0.244936
\(173\) −2690.54 −1.18242 −0.591208 0.806519i \(-0.701349\pi\)
−0.591208 + 0.806519i \(0.701349\pi\)
\(174\) −3261.34 −1.42093
\(175\) −1546.02 −0.667816
\(176\) 2391.41 1.02420
\(177\) 5357.75 2.27521
\(178\) 107.928 0.0454471
\(179\) −1251.42 −0.522546 −0.261273 0.965265i \(-0.584142\pi\)
−0.261273 + 0.965265i \(0.584142\pi\)
\(180\) 1206.72 0.499687
\(181\) 193.457 0.0794449 0.0397224 0.999211i \(-0.487353\pi\)
0.0397224 + 0.999211i \(0.487353\pi\)
\(182\) 1364.50 0.555733
\(183\) −6371.16 −2.57361
\(184\) −476.314 −0.190839
\(185\) 1076.84 0.427951
\(186\) 7044.82 2.77716
\(187\) 1737.22 0.679347
\(188\) 277.040 0.107475
\(189\) 1859.42 0.715624
\(190\) −4972.37 −1.89860
\(191\) −1795.26 −0.680107 −0.340054 0.940406i \(-0.610445\pi\)
−0.340054 + 0.940406i \(0.610445\pi\)
\(192\) −3812.91 −1.43319
\(193\) −861.357 −0.321253 −0.160626 0.987015i \(-0.551351\pi\)
−0.160626 + 0.987015i \(0.551351\pi\)
\(194\) −384.823 −0.142416
\(195\) 10923.5 4.01153
\(196\) 56.6411 0.0206418
\(197\) 225.099 0.0814092 0.0407046 0.999171i \(-0.487040\pi\)
0.0407046 + 0.999171i \(0.487040\pi\)
\(198\) −5648.45 −2.02736
\(199\) −223.345 −0.0795603 −0.0397801 0.999208i \(-0.512666\pi\)
−0.0397801 + 0.999208i \(0.512666\pi\)
\(200\) −4573.84 −1.61710
\(201\) −1154.53 −0.405146
\(202\) −4166.04 −1.45110
\(203\) −827.474 −0.286095
\(204\) 550.582 0.188963
\(205\) −6453.75 −2.19878
\(206\) −1539.02 −0.520526
\(207\) 1291.07 0.433505
\(208\) 4632.56 1.54428
\(209\) 2938.45 0.972521
\(210\) 3591.59 1.18021
\(211\) 1347.64 0.439694 0.219847 0.975534i \(-0.429444\pi\)
0.219847 + 0.975534i \(0.429444\pi\)
\(212\) −464.797 −0.150577
\(213\) 7696.15 2.47573
\(214\) 1318.45 0.421155
\(215\) 8889.11 2.81969
\(216\) 5501.04 1.73286
\(217\) 1787.43 0.559164
\(218\) 1289.94 0.400761
\(219\) −6492.32 −2.00324
\(220\) −714.894 −0.219082
\(221\) 3365.29 1.02431
\(222\) −1597.50 −0.482961
\(223\) 1209.59 0.363228 0.181614 0.983370i \(-0.441868\pi\)
0.181614 + 0.983370i \(0.441868\pi\)
\(224\) 363.444 0.108409
\(225\) 12397.6 3.67336
\(226\) 2095.52 0.616780
\(227\) −3411.17 −0.997390 −0.498695 0.866777i \(-0.666187\pi\)
−0.498695 + 0.866777i \(0.666187\pi\)
\(228\) 931.293 0.270510
\(229\) 512.486 0.147886 0.0739432 0.997262i \(-0.476442\pi\)
0.0739432 + 0.997262i \(0.476442\pi\)
\(230\) 1294.28 0.371054
\(231\) −2122.47 −0.604538
\(232\) −2448.06 −0.692770
\(233\) −3903.84 −1.09763 −0.548817 0.835942i \(-0.684922\pi\)
−0.548817 + 0.835942i \(0.684922\pi\)
\(234\) −10942.0 −3.05684
\(235\) 4457.14 1.23724
\(236\) −679.251 −0.187354
\(237\) 5378.01 1.47400
\(238\) 1106.49 0.301358
\(239\) 1424.61 0.385567 0.192784 0.981241i \(-0.438248\pi\)
0.192784 + 0.981241i \(0.438248\pi\)
\(240\) 12193.7 3.27958
\(241\) −6444.69 −1.72257 −0.861285 0.508123i \(-0.830340\pi\)
−0.861285 + 0.508123i \(0.830340\pi\)
\(242\) −681.155 −0.180935
\(243\) −1091.92 −0.288257
\(244\) 807.731 0.211925
\(245\) 911.267 0.237628
\(246\) 9574.18 2.48141
\(247\) 5692.28 1.46636
\(248\) 5288.05 1.35400
\(249\) −9207.68 −2.34343
\(250\) 5394.31 1.36466
\(251\) 7062.49 1.77602 0.888008 0.459827i \(-0.152089\pi\)
0.888008 + 0.459827i \(0.152089\pi\)
\(252\) −454.209 −0.113541
\(253\) −764.863 −0.190065
\(254\) −1985.99 −0.490599
\(255\) 8858.00 2.17533
\(256\) 1740.24 0.424864
\(257\) −5900.90 −1.43225 −0.716125 0.697972i \(-0.754086\pi\)
−0.716125 + 0.697972i \(0.754086\pi\)
\(258\) −13187.1 −3.18213
\(259\) −405.322 −0.0972412
\(260\) −1384.87 −0.330331
\(261\) 6635.56 1.57368
\(262\) 4768.75 1.12448
\(263\) −1634.09 −0.383127 −0.191564 0.981480i \(-0.561356\pi\)
−0.191564 + 0.981480i \(0.561356\pi\)
\(264\) −6279.27 −1.46387
\(265\) −7477.86 −1.73344
\(266\) 1871.60 0.431409
\(267\) −325.216 −0.0745427
\(268\) 146.371 0.0333620
\(269\) −2747.85 −0.622824 −0.311412 0.950275i \(-0.600802\pi\)
−0.311412 + 0.950275i \(0.600802\pi\)
\(270\) −14947.9 −3.36927
\(271\) −7298.61 −1.63601 −0.818005 0.575211i \(-0.804920\pi\)
−0.818005 + 0.575211i \(0.804920\pi\)
\(272\) 3756.60 0.837418
\(273\) −4111.59 −0.911519
\(274\) 2397.39 0.528582
\(275\) −7344.66 −1.61054
\(276\) −242.411 −0.0528674
\(277\) −6341.50 −1.37554 −0.687769 0.725930i \(-0.741410\pi\)
−0.687769 + 0.725930i \(0.741410\pi\)
\(278\) −8095.29 −1.74649
\(279\) −14333.5 −3.07571
\(280\) 2695.96 0.575408
\(281\) −5340.75 −1.13382 −0.566908 0.823781i \(-0.691861\pi\)
−0.566908 + 0.823781i \(0.691861\pi\)
\(282\) −6612.20 −1.39628
\(283\) −4744.66 −0.996611 −0.498305 0.867002i \(-0.666044\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(284\) −975.711 −0.203866
\(285\) 14983.0 3.11410
\(286\) 6482.33 1.34024
\(287\) 2429.18 0.499617
\(288\) −2914.48 −0.596311
\(289\) −2184.05 −0.444544
\(290\) 6652.08 1.34698
\(291\) 1159.57 0.233592
\(292\) 823.090 0.164958
\(293\) 7990.45 1.59320 0.796599 0.604508i \(-0.206630\pi\)
0.796599 + 0.604508i \(0.206630\pi\)
\(294\) −1351.87 −0.268173
\(295\) −10928.1 −2.15681
\(296\) −1199.13 −0.235467
\(297\) 8833.56 1.72584
\(298\) 881.212 0.171300
\(299\) −1481.67 −0.286579
\(300\) −2327.77 −0.447979
\(301\) −3345.85 −0.640703
\(302\) 6670.06 1.27092
\(303\) 12553.3 2.38010
\(304\) 6354.18 1.19881
\(305\) 12995.1 2.43967
\(306\) −8873.01 −1.65764
\(307\) 4925.41 0.915662 0.457831 0.889039i \(-0.348627\pi\)
0.457831 + 0.889039i \(0.348627\pi\)
\(308\) 269.085 0.0497810
\(309\) 4637.45 0.853771
\(310\) −14369.2 −2.63263
\(311\) 2905.57 0.529774 0.264887 0.964279i \(-0.414665\pi\)
0.264887 + 0.964279i \(0.414665\pi\)
\(312\) −12164.0 −2.20722
\(313\) −2970.69 −0.536464 −0.268232 0.963354i \(-0.586439\pi\)
−0.268232 + 0.963354i \(0.586439\pi\)
\(314\) −4889.53 −0.878765
\(315\) −7307.51 −1.30708
\(316\) −681.819 −0.121378
\(317\) −799.754 −0.141699 −0.0708497 0.997487i \(-0.522571\pi\)
−0.0708497 + 0.997487i \(0.522571\pi\)
\(318\) 11093.5 1.95626
\(319\) −3931.08 −0.689963
\(320\) 7777.11 1.35861
\(321\) −3972.83 −0.690783
\(322\) −487.166 −0.0843128
\(323\) 4615.94 0.795164
\(324\) 1047.70 0.179647
\(325\) −14227.9 −2.42837
\(326\) 1017.96 0.172943
\(327\) −3886.93 −0.657332
\(328\) 7186.67 1.20981
\(329\) −1677.66 −0.281132
\(330\) 17062.6 2.84626
\(331\) 7735.22 1.28449 0.642245 0.766500i \(-0.278003\pi\)
0.642245 + 0.766500i \(0.278003\pi\)
\(332\) 1167.34 0.192971
\(333\) 3250.30 0.534881
\(334\) −82.6502 −0.0135402
\(335\) 2354.88 0.384061
\(336\) −4589.69 −0.745203
\(337\) 11779.0 1.90398 0.951990 0.306128i \(-0.0990337\pi\)
0.951990 + 0.306128i \(0.0990337\pi\)
\(338\) 5909.53 0.950994
\(339\) −6314.36 −1.01165
\(340\) −1123.01 −0.179129
\(341\) 8491.54 1.34851
\(342\) −15008.4 −2.37299
\(343\) −343.000 −0.0539949
\(344\) −9898.60 −1.55144
\(345\) −3900.01 −0.608607
\(346\) −8141.25 −1.26496
\(347\) 5624.50 0.870141 0.435071 0.900396i \(-0.356723\pi\)
0.435071 + 0.900396i \(0.356723\pi\)
\(348\) −1245.89 −0.191916
\(349\) −3023.16 −0.463684 −0.231842 0.972753i \(-0.574475\pi\)
−0.231842 + 0.972753i \(0.574475\pi\)
\(350\) −4678.05 −0.714436
\(351\) 17112.1 2.60221
\(352\) 1726.62 0.261446
\(353\) 404.183 0.0609419 0.0304709 0.999536i \(-0.490299\pi\)
0.0304709 + 0.999536i \(0.490299\pi\)
\(354\) 16211.9 2.43405
\(355\) −15697.7 −2.34689
\(356\) 41.2306 0.00613826
\(357\) −3334.14 −0.494290
\(358\) −3786.65 −0.559024
\(359\) 2268.39 0.333485 0.166742 0.986001i \(-0.446675\pi\)
0.166742 + 0.986001i \(0.446675\pi\)
\(360\) −21619.0 −3.16507
\(361\) 948.734 0.138320
\(362\) 585.377 0.0849909
\(363\) 2052.50 0.296772
\(364\) 521.264 0.0750595
\(365\) 13242.2 1.89899
\(366\) −19278.4 −2.75327
\(367\) −129.076 −0.0183589 −0.00917945 0.999958i \(-0.502922\pi\)
−0.00917945 + 0.999958i \(0.502922\pi\)
\(368\) −1653.96 −0.234290
\(369\) −19479.8 −2.74817
\(370\) 3258.39 0.457826
\(371\) 2814.66 0.393881
\(372\) 2691.25 0.375094
\(373\) 1354.27 0.187994 0.0939969 0.995572i \(-0.470036\pi\)
0.0939969 + 0.995572i \(0.470036\pi\)
\(374\) 5256.61 0.726772
\(375\) −16254.4 −2.23834
\(376\) −4963.32 −0.680754
\(377\) −7615.18 −1.04032
\(378\) 5626.38 0.765581
\(379\) −10233.1 −1.38691 −0.693455 0.720500i \(-0.743912\pi\)
−0.693455 + 0.720500i \(0.743912\pi\)
\(380\) −1899.54 −0.256432
\(381\) 5984.30 0.804685
\(382\) −5432.24 −0.727585
\(383\) 5780.40 0.771188 0.385594 0.922669i \(-0.373997\pi\)
0.385594 + 0.922669i \(0.373997\pi\)
\(384\) −15324.6 −2.03654
\(385\) 4329.16 0.573077
\(386\) −2606.36 −0.343679
\(387\) 26830.6 3.52423
\(388\) −147.009 −0.0192352
\(389\) 11762.5 1.53311 0.766556 0.642177i \(-0.221969\pi\)
0.766556 + 0.642177i \(0.221969\pi\)
\(390\) 33053.2 4.29157
\(391\) −1201.51 −0.155403
\(392\) −1014.76 −0.130747
\(393\) −14369.5 −1.84439
\(394\) 681.121 0.0870924
\(395\) −10969.4 −1.39729
\(396\) −2157.81 −0.273823
\(397\) −454.539 −0.0574626 −0.0287313 0.999587i \(-0.509147\pi\)
−0.0287313 + 0.999587i \(0.509147\pi\)
\(398\) −675.814 −0.0851144
\(399\) −5639.60 −0.707602
\(400\) −15882.3 −1.98529
\(401\) −11330.2 −1.41098 −0.705491 0.708719i \(-0.749273\pi\)
−0.705491 + 0.708719i \(0.749273\pi\)
\(402\) −3493.47 −0.433429
\(403\) 16449.6 2.03328
\(404\) −1591.50 −0.195991
\(405\) 16855.8 2.06808
\(406\) −2503.83 −0.306067
\(407\) −1925.56 −0.234513
\(408\) −9863.96 −1.19691
\(409\) −1009.32 −0.122024 −0.0610121 0.998137i \(-0.519433\pi\)
−0.0610121 + 0.998137i \(0.519433\pi\)
\(410\) −19528.3 −2.35227
\(411\) −7223.94 −0.866985
\(412\) −587.932 −0.0703042
\(413\) 4113.32 0.490080
\(414\) 3906.62 0.463768
\(415\) 18780.7 2.22147
\(416\) 3344.75 0.394206
\(417\) 24393.2 2.86461
\(418\) 8891.40 1.04041
\(419\) −14056.5 −1.63891 −0.819455 0.573143i \(-0.805724\pi\)
−0.819455 + 0.573143i \(0.805724\pi\)
\(420\) 1372.05 0.159403
\(421\) −3217.99 −0.372531 −0.186265 0.982499i \(-0.559638\pi\)
−0.186265 + 0.982499i \(0.559638\pi\)
\(422\) 4077.80 0.470389
\(423\) 13453.3 1.54639
\(424\) 8327.09 0.953771
\(425\) −11537.6 −1.31683
\(426\) 23287.6 2.64856
\(427\) −4891.35 −0.554354
\(428\) 503.671 0.0568829
\(429\) −19532.9 −2.19827
\(430\) 26897.4 3.01653
\(431\) 872.562 0.0975170 0.0487585 0.998811i \(-0.484474\pi\)
0.0487585 + 0.998811i \(0.484474\pi\)
\(432\) 19101.9 2.12741
\(433\) −9665.82 −1.07277 −0.536385 0.843973i \(-0.680211\pi\)
−0.536385 + 0.843973i \(0.680211\pi\)
\(434\) 5408.54 0.598199
\(435\) −20044.4 −2.20933
\(436\) 492.782 0.0541284
\(437\) −2032.31 −0.222468
\(438\) −19645.0 −2.14309
\(439\) 15457.9 1.68055 0.840277 0.542158i \(-0.182392\pi\)
0.840277 + 0.542158i \(0.182392\pi\)
\(440\) 12807.7 1.38769
\(441\) 2750.54 0.297002
\(442\) 10182.9 1.09582
\(443\) −10487.1 −1.12473 −0.562365 0.826889i \(-0.690108\pi\)
−0.562365 + 0.826889i \(0.690108\pi\)
\(444\) −610.275 −0.0652306
\(445\) 663.337 0.0706633
\(446\) 3660.06 0.388585
\(447\) −2655.32 −0.280967
\(448\) −2927.30 −0.308709
\(449\) 6169.92 0.648500 0.324250 0.945971i \(-0.394888\pi\)
0.324250 + 0.945971i \(0.394888\pi\)
\(450\) 37513.6 3.92980
\(451\) 11540.3 1.20491
\(452\) 800.529 0.0833047
\(453\) −20098.6 −2.08458
\(454\) −10321.8 −1.06702
\(455\) 8386.32 0.864081
\(456\) −16684.6 −1.71344
\(457\) −16296.4 −1.66808 −0.834039 0.551706i \(-0.813977\pi\)
−0.834039 + 0.551706i \(0.813977\pi\)
\(458\) 1550.72 0.158210
\(459\) 13876.4 1.41110
\(460\) 494.440 0.0501160
\(461\) 18404.0 1.85935 0.929673 0.368386i \(-0.120089\pi\)
0.929673 + 0.368386i \(0.120089\pi\)
\(462\) −6422.34 −0.646741
\(463\) −13024.1 −1.30730 −0.653650 0.756797i \(-0.726763\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(464\) −8500.68 −0.850504
\(465\) 43298.0 4.31806
\(466\) −11812.5 −1.17426
\(467\) −2332.68 −0.231142 −0.115571 0.993299i \(-0.536870\pi\)
−0.115571 + 0.993299i \(0.536870\pi\)
\(468\) −4180.05 −0.412869
\(469\) −886.372 −0.0872684
\(470\) 13486.8 1.32361
\(471\) 14733.4 1.44136
\(472\) 12169.1 1.18672
\(473\) −15895.2 −1.54516
\(474\) 16273.2 1.57690
\(475\) −19515.4 −1.88512
\(476\) 422.700 0.0407025
\(477\) −22570.9 −2.16657
\(478\) 4310.71 0.412484
\(479\) 16019.5 1.52808 0.764040 0.645169i \(-0.223213\pi\)
0.764040 + 0.645169i \(0.223213\pi\)
\(480\) 8803.95 0.837174
\(481\) −3730.15 −0.353597
\(482\) −19500.9 −1.84282
\(483\) 1467.96 0.138291
\(484\) −260.214 −0.0244378
\(485\) −2365.15 −0.221435
\(486\) −3304.00 −0.308380
\(487\) −1579.85 −0.147002 −0.0735010 0.997295i \(-0.523417\pi\)
−0.0735010 + 0.997295i \(0.523417\pi\)
\(488\) −14470.9 −1.34235
\(489\) −3067.36 −0.283663
\(490\) 2757.38 0.254216
\(491\) −20545.3 −1.88838 −0.944191 0.329399i \(-0.893154\pi\)
−0.944191 + 0.329399i \(0.893154\pi\)
\(492\) 3657.51 0.335149
\(493\) −6175.24 −0.564136
\(494\) 17224.2 1.56873
\(495\) −34715.8 −3.15224
\(496\) 18362.3 1.66228
\(497\) 5908.59 0.533272
\(498\) −27861.3 −2.50702
\(499\) −1331.47 −0.119448 −0.0597242 0.998215i \(-0.519022\pi\)
−0.0597242 + 0.998215i \(0.519022\pi\)
\(500\) 2060.72 0.184317
\(501\) 249.046 0.0222087
\(502\) 21370.2 1.90000
\(503\) −927.686 −0.0822335 −0.0411168 0.999154i \(-0.513092\pi\)
−0.0411168 + 0.999154i \(0.513092\pi\)
\(504\) 8137.39 0.719182
\(505\) −25604.8 −2.25624
\(506\) −2314.38 −0.203334
\(507\) −17806.9 −1.55983
\(508\) −758.685 −0.0662622
\(509\) 6991.85 0.608857 0.304429 0.952535i \(-0.401534\pi\)
0.304429 + 0.952535i \(0.401534\pi\)
\(510\) 26803.2 2.32719
\(511\) −4984.36 −0.431498
\(512\) −8180.18 −0.706086
\(513\) 23471.6 2.02007
\(514\) −17855.4 −1.53223
\(515\) −9458.91 −0.809339
\(516\) −5037.70 −0.429792
\(517\) −7970.08 −0.677996
\(518\) −1226.45 −0.104030
\(519\) 24531.7 2.07480
\(520\) 24810.7 2.09235
\(521\) 15300.3 1.28660 0.643302 0.765613i \(-0.277564\pi\)
0.643302 + 0.765613i \(0.277564\pi\)
\(522\) 20078.4 1.68354
\(523\) 13089.8 1.09441 0.547206 0.836998i \(-0.315691\pi\)
0.547206 + 0.836998i \(0.315691\pi\)
\(524\) 1821.75 0.151877
\(525\) 14096.2 1.17182
\(526\) −4944.57 −0.409873
\(527\) 13339.2 1.10259
\(528\) −21804.3 −1.79717
\(529\) 529.000 0.0434783
\(530\) −22627.1 −1.85445
\(531\) −32985.0 −2.69572
\(532\) 714.984 0.0582678
\(533\) 22355.6 1.81675
\(534\) −984.065 −0.0797465
\(535\) 8103.29 0.654833
\(536\) −2622.31 −0.211318
\(537\) 11410.2 0.916917
\(538\) −8314.68 −0.666303
\(539\) −1629.49 −0.130217
\(540\) −5710.38 −0.455066
\(541\) 1599.69 0.127128 0.0635638 0.997978i \(-0.479753\pi\)
0.0635638 + 0.997978i \(0.479753\pi\)
\(542\) −22084.7 −1.75022
\(543\) −1763.89 −0.139403
\(544\) 2712.30 0.213767
\(545\) 7928.09 0.623123
\(546\) −12441.2 −0.975152
\(547\) 18730.5 1.46409 0.732045 0.681256i \(-0.238566\pi\)
0.732045 + 0.681256i \(0.238566\pi\)
\(548\) 915.845 0.0713923
\(549\) 39224.0 3.04926
\(550\) −22224.1 −1.72298
\(551\) −10445.2 −0.807591
\(552\) 4342.91 0.334867
\(553\) 4128.87 0.317500
\(554\) −19188.6 −1.47156
\(555\) −9818.38 −0.750931
\(556\) −3092.55 −0.235887
\(557\) −5488.44 −0.417509 −0.208755 0.977968i \(-0.566941\pi\)
−0.208755 + 0.977968i \(0.566941\pi\)
\(558\) −43371.4 −3.29043
\(559\) −30791.6 −2.32978
\(560\) 9361.49 0.706420
\(561\) −15839.5 −1.19206
\(562\) −16160.5 −1.21297
\(563\) −8122.20 −0.608010 −0.304005 0.952670i \(-0.598324\pi\)
−0.304005 + 0.952670i \(0.598324\pi\)
\(564\) −2525.98 −0.188587
\(565\) 12879.3 0.958999
\(566\) −14356.8 −1.06618
\(567\) −6344.52 −0.469920
\(568\) 17480.4 1.29130
\(569\) −15394.8 −1.13424 −0.567120 0.823635i \(-0.691943\pi\)
−0.567120 + 0.823635i \(0.691943\pi\)
\(570\) 45336.9 3.33150
\(571\) 1704.64 0.124934 0.0624668 0.998047i \(-0.480103\pi\)
0.0624668 + 0.998047i \(0.480103\pi\)
\(572\) 2476.37 0.181018
\(573\) 16368.7 1.19339
\(574\) 7350.41 0.534495
\(575\) 5079.76 0.368419
\(576\) 23474.2 1.69807
\(577\) −2603.58 −0.187848 −0.0939241 0.995579i \(-0.529941\pi\)
−0.0939241 + 0.995579i \(0.529941\pi\)
\(578\) −6608.66 −0.475578
\(579\) 7853.64 0.563706
\(580\) 2541.22 0.181928
\(581\) −7069.04 −0.504773
\(582\) 3508.72 0.249899
\(583\) 13371.6 0.949907
\(584\) −14746.1 −1.04486
\(585\) −67250.5 −4.75293
\(586\) 24178.1 1.70442
\(587\) 8901.60 0.625909 0.312954 0.949768i \(-0.398681\pi\)
0.312954 + 0.949768i \(0.398681\pi\)
\(588\) −516.440 −0.0362204
\(589\) 22562.8 1.57841
\(590\) −33067.1 −2.30737
\(591\) −2052.39 −0.142850
\(592\) −4163.89 −0.289079
\(593\) −642.837 −0.0445163 −0.0222581 0.999752i \(-0.507086\pi\)
−0.0222581 + 0.999752i \(0.507086\pi\)
\(594\) 26729.3 1.84632
\(595\) 6800.58 0.468566
\(596\) 336.639 0.0231364
\(597\) 2036.40 0.139605
\(598\) −4483.36 −0.306585
\(599\) −14923.7 −1.01797 −0.508987 0.860774i \(-0.669980\pi\)
−0.508987 + 0.860774i \(0.669980\pi\)
\(600\) 41703.1 2.83754
\(601\) −9190.75 −0.623791 −0.311896 0.950116i \(-0.600964\pi\)
−0.311896 + 0.950116i \(0.600964\pi\)
\(602\) −10124.1 −0.685431
\(603\) 7107.88 0.480025
\(604\) 2548.09 0.171656
\(605\) −4186.43 −0.281327
\(606\) 37984.9 2.54626
\(607\) −16137.4 −1.07907 −0.539535 0.841963i \(-0.681400\pi\)
−0.539535 + 0.841963i \(0.681400\pi\)
\(608\) 4587.78 0.306018
\(609\) 7544.70 0.502014
\(610\) 39321.7 2.60998
\(611\) −15439.4 −1.02228
\(612\) −3389.65 −0.223887
\(613\) −12316.5 −0.811516 −0.405758 0.913981i \(-0.632992\pi\)
−0.405758 + 0.913981i \(0.632992\pi\)
\(614\) 14903.7 0.979584
\(615\) 58843.7 3.85822
\(616\) −4820.80 −0.315318
\(617\) −11398.5 −0.743735 −0.371868 0.928286i \(-0.621282\pi\)
−0.371868 + 0.928286i \(0.621282\pi\)
\(618\) 14032.4 0.913373
\(619\) 7815.13 0.507458 0.253729 0.967275i \(-0.418343\pi\)
0.253729 + 0.967275i \(0.418343\pi\)
\(620\) −5489.29 −0.355573
\(621\) −6109.52 −0.394794
\(622\) 8791.90 0.566758
\(623\) −249.679 −0.0160565
\(624\) −42238.6 −2.70977
\(625\) 5546.43 0.354971
\(626\) −8988.94 −0.573914
\(627\) −26792.1 −1.70650
\(628\) −1867.89 −0.118689
\(629\) −3024.82 −0.191745
\(630\) −22111.6 −1.39833
\(631\) −30593.9 −1.93015 −0.965073 0.261982i \(-0.915624\pi\)
−0.965073 + 0.261982i \(0.915624\pi\)
\(632\) 12215.1 0.768817
\(633\) −12287.5 −0.771536
\(634\) −2419.96 −0.151591
\(635\) −12206.1 −0.762807
\(636\) 4237.91 0.264220
\(637\) −3156.60 −0.196341
\(638\) −11895.0 −0.738130
\(639\) −47381.3 −2.93330
\(640\) 31257.3 1.93055
\(641\) 22556.1 1.38988 0.694938 0.719069i \(-0.255432\pi\)
0.694938 + 0.719069i \(0.255432\pi\)
\(642\) −12021.3 −0.739007
\(643\) 17917.3 1.09890 0.549448 0.835528i \(-0.314838\pi\)
0.549448 + 0.835528i \(0.314838\pi\)
\(644\) −186.107 −0.0113876
\(645\) −81048.8 −4.94774
\(646\) 13967.3 0.850674
\(647\) −13444.1 −0.816911 −0.408455 0.912778i \(-0.633932\pi\)
−0.408455 + 0.912778i \(0.633932\pi\)
\(648\) −18770.1 −1.13790
\(649\) 19541.2 1.18191
\(650\) −43051.8 −2.59789
\(651\) −16297.3 −0.981172
\(652\) 388.878 0.0233583
\(653\) 14177.3 0.849616 0.424808 0.905283i \(-0.360342\pi\)
0.424808 + 0.905283i \(0.360342\pi\)
\(654\) −11761.4 −0.703221
\(655\) 29309.1 1.74840
\(656\) 24955.1 1.48526
\(657\) 39969.9 2.37348
\(658\) −5076.41 −0.300758
\(659\) 12726.7 0.752292 0.376146 0.926560i \(-0.377249\pi\)
0.376146 + 0.926560i \(0.377249\pi\)
\(660\) 6518.23 0.384427
\(661\) 18860.6 1.10982 0.554911 0.831909i \(-0.312752\pi\)
0.554911 + 0.831909i \(0.312752\pi\)
\(662\) 23405.8 1.37416
\(663\) −30683.8 −1.79738
\(664\) −20913.5 −1.22229
\(665\) 11503.0 0.670776
\(666\) 9835.02 0.572221
\(667\) 2718.84 0.157832
\(668\) −31.5739 −0.00182879
\(669\) −11028.7 −0.637361
\(670\) 7125.57 0.410873
\(671\) −23237.4 −1.33691
\(672\) −3313.80 −0.190227
\(673\) 22067.4 1.26395 0.631974 0.774989i \(-0.282245\pi\)
0.631974 + 0.774989i \(0.282245\pi\)
\(674\) 35641.7 2.03690
\(675\) −58667.2 −3.34534
\(676\) 2257.55 0.128445
\(677\) 19136.3 1.08636 0.543181 0.839616i \(-0.317220\pi\)
0.543181 + 0.839616i \(0.317220\pi\)
\(678\) −19106.5 −1.08227
\(679\) 890.240 0.0503156
\(680\) 20119.3 1.13462
\(681\) 31102.2 1.75013
\(682\) 25694.4 1.44265
\(683\) 27945.8 1.56562 0.782808 0.622263i \(-0.213787\pi\)
0.782808 + 0.622263i \(0.213787\pi\)
\(684\) −5733.50 −0.320506
\(685\) 14734.5 0.821865
\(686\) −1037.88 −0.0577643
\(687\) −4672.72 −0.259498
\(688\) −34372.1 −1.90469
\(689\) 25903.1 1.43226
\(690\) −11800.9 −0.651093
\(691\) −28123.0 −1.54826 −0.774131 0.633025i \(-0.781813\pi\)
−0.774131 + 0.633025i \(0.781813\pi\)
\(692\) −3110.11 −0.170850
\(693\) 13067.0 0.716268
\(694\) 17019.1 0.930885
\(695\) −49754.3 −2.71552
\(696\) 22320.8 1.21561
\(697\) 18128.4 0.985170
\(698\) −9147.70 −0.496054
\(699\) 35594.2 1.92603
\(700\) −1787.10 −0.0964945
\(701\) 3602.16 0.194082 0.0970410 0.995280i \(-0.469062\pi\)
0.0970410 + 0.995280i \(0.469062\pi\)
\(702\) 51779.1 2.78387
\(703\) −5116.40 −0.274493
\(704\) −13906.7 −0.744502
\(705\) −40639.1 −2.17100
\(706\) 1223.01 0.0651962
\(707\) 9637.62 0.512673
\(708\) 6193.24 0.328752
\(709\) −2994.24 −0.158605 −0.0793025 0.996851i \(-0.525269\pi\)
−0.0793025 + 0.996851i \(0.525269\pi\)
\(710\) −47499.3 −2.51073
\(711\) −33109.7 −1.74643
\(712\) −738.668 −0.0388803
\(713\) −5872.98 −0.308478
\(714\) −10088.7 −0.528796
\(715\) 39840.9 2.08387
\(716\) −1446.57 −0.0755040
\(717\) −12989.3 −0.676560
\(718\) 6863.87 0.356765
\(719\) 29085.7 1.50864 0.754321 0.656506i \(-0.227966\pi\)
0.754321 + 0.656506i \(0.227966\pi\)
\(720\) −75070.4 −3.88571
\(721\) 3560.32 0.183902
\(722\) 2870.75 0.147976
\(723\) 58761.1 3.02261
\(724\) 223.625 0.0114792
\(725\) 26107.9 1.33741
\(726\) 6210.60 0.317489
\(727\) −15224.7 −0.776691 −0.388346 0.921514i \(-0.626953\pi\)
−0.388346 + 0.921514i \(0.626953\pi\)
\(728\) −9338.71 −0.475434
\(729\) −14515.9 −0.737484
\(730\) 40069.4 2.03156
\(731\) −24969.3 −1.26337
\(732\) −7364.69 −0.371867
\(733\) 26889.5 1.35496 0.677480 0.735542i \(-0.263072\pi\)
0.677480 + 0.735542i \(0.263072\pi\)
\(734\) −390.569 −0.0196405
\(735\) −8308.71 −0.416968
\(736\) −1194.17 −0.0598069
\(737\) −4210.89 −0.210462
\(738\) −58943.4 −2.94002
\(739\) −26240.9 −1.30621 −0.653104 0.757269i \(-0.726533\pi\)
−0.653104 + 0.757269i \(0.726533\pi\)
\(740\) 1244.77 0.0618358
\(741\) −51900.8 −2.57304
\(742\) 8516.82 0.421378
\(743\) 16294.7 0.804571 0.402285 0.915514i \(-0.368216\pi\)
0.402285 + 0.915514i \(0.368216\pi\)
\(744\) −48215.2 −2.37588
\(745\) 5416.00 0.266345
\(746\) 4097.87 0.201118
\(747\) 56687.1 2.77653
\(748\) 2008.12 0.0981607
\(749\) −3050.07 −0.148795
\(750\) −49184.0 −2.39459
\(751\) 10383.4 0.504522 0.252261 0.967659i \(-0.418826\pi\)
0.252261 + 0.967659i \(0.418826\pi\)
\(752\) −17234.7 −0.835752
\(753\) −64394.0 −3.11640
\(754\) −23042.6 −1.11295
\(755\) 40994.7 1.97609
\(756\) 2149.38 0.103402
\(757\) 7102.44 0.341008 0.170504 0.985357i \(-0.445460\pi\)
0.170504 + 0.985357i \(0.445460\pi\)
\(758\) −30964.1 −1.48373
\(759\) 6973.84 0.333510
\(760\) 34031.2 1.62427
\(761\) −7096.71 −0.338049 −0.169025 0.985612i \(-0.554062\pi\)
−0.169025 + 0.985612i \(0.554062\pi\)
\(762\) 18107.8 0.860860
\(763\) −2984.12 −0.141589
\(764\) −2075.22 −0.0982705
\(765\) −54534.3 −2.57737
\(766\) 17490.8 0.825024
\(767\) 37854.5 1.78207
\(768\) −15867.1 −0.745514
\(769\) 17765.5 0.833080 0.416540 0.909117i \(-0.363243\pi\)
0.416540 + 0.909117i \(0.363243\pi\)
\(770\) 13099.5 0.613083
\(771\) 53803.0 2.51319
\(772\) −995.678 −0.0464187
\(773\) −22105.9 −1.02858 −0.514291 0.857616i \(-0.671945\pi\)
−0.514291 + 0.857616i \(0.671945\pi\)
\(774\) 81186.1 3.77025
\(775\) −56395.7 −2.61393
\(776\) 2633.75 0.121838
\(777\) 3695.63 0.170630
\(778\) 35591.8 1.64014
\(779\) 30663.7 1.41032
\(780\) 12626.9 0.579636
\(781\) 28069.9 1.28607
\(782\) −3635.61 −0.166252
\(783\) −31400.4 −1.43315
\(784\) −3523.66 −0.160516
\(785\) −30051.5 −1.36635
\(786\) −43480.3 −1.97314
\(787\) 42605.5 1.92976 0.964881 0.262686i \(-0.0846085\pi\)
0.964881 + 0.262686i \(0.0846085\pi\)
\(788\) 260.201 0.0117630
\(789\) 14899.3 0.672278
\(790\) −33192.1 −1.49484
\(791\) −4847.74 −0.217909
\(792\) 38658.3 1.73442
\(793\) −45014.7 −2.01579
\(794\) −1375.38 −0.0614741
\(795\) 68181.3 3.04169
\(796\) −258.174 −0.0114959
\(797\) −24457.1 −1.08697 −0.543485 0.839419i \(-0.682895\pi\)
−0.543485 + 0.839419i \(0.682895\pi\)
\(798\) −17064.7 −0.756999
\(799\) −12520.0 −0.554351
\(800\) −11467.2 −0.506781
\(801\) 2002.19 0.0883196
\(802\) −34283.8 −1.50948
\(803\) −23679.2 −1.04063
\(804\) −1334.57 −0.0585407
\(805\) −2994.16 −0.131094
\(806\) 49774.4 2.17522
\(807\) 25054.3 1.09288
\(808\) 28512.6 1.24142
\(809\) 15019.4 0.652725 0.326362 0.945245i \(-0.394177\pi\)
0.326362 + 0.945245i \(0.394177\pi\)
\(810\) 51003.7 2.21245
\(811\) −4964.25 −0.214943 −0.107471 0.994208i \(-0.534275\pi\)
−0.107471 + 0.994208i \(0.534275\pi\)
\(812\) −956.511 −0.0413386
\(813\) 66546.9 2.87073
\(814\) −5826.52 −0.250884
\(815\) 6256.44 0.268900
\(816\) −34251.8 −1.46943
\(817\) −42234.9 −1.80858
\(818\) −3054.09 −0.130543
\(819\) 25313.0 1.07998
\(820\) −7460.15 −0.317707
\(821\) −40616.6 −1.72659 −0.863293 0.504703i \(-0.831602\pi\)
−0.863293 + 0.504703i \(0.831602\pi\)
\(822\) −21858.8 −0.927509
\(823\) 1222.42 0.0517752 0.0258876 0.999665i \(-0.491759\pi\)
0.0258876 + 0.999665i \(0.491759\pi\)
\(824\) 10533.1 0.445313
\(825\) 66966.8 2.82604
\(826\) 12446.4 0.524293
\(827\) 726.223 0.0305360 0.0152680 0.999883i \(-0.495140\pi\)
0.0152680 + 0.999883i \(0.495140\pi\)
\(828\) 1492.40 0.0626383
\(829\) 36946.4 1.54789 0.773945 0.633253i \(-0.218281\pi\)
0.773945 + 0.633253i \(0.218281\pi\)
\(830\) 56828.2 2.37655
\(831\) 57820.2 2.41367
\(832\) −26939.7 −1.12255
\(833\) −2559.73 −0.106470
\(834\) 73810.9 3.06458
\(835\) −507.975 −0.0210529
\(836\) 3396.68 0.140522
\(837\) 67828.2 2.80106
\(838\) −42533.2 −1.75332
\(839\) −3592.55 −0.147829 −0.0739145 0.997265i \(-0.523549\pi\)
−0.0739145 + 0.997265i \(0.523549\pi\)
\(840\) −24581.1 −1.00968
\(841\) −10415.3 −0.427048
\(842\) −9737.26 −0.398537
\(843\) 48695.6 1.98952
\(844\) 1557.79 0.0635325
\(845\) 36320.4 1.47865
\(846\) 40708.0 1.65434
\(847\) 1575.77 0.0639245
\(848\) 28915.1 1.17093
\(849\) 43260.6 1.74877
\(850\) −34911.2 −1.40876
\(851\) 1331.77 0.0536458
\(852\) 8896.30 0.357725
\(853\) 18955.7 0.760880 0.380440 0.924806i \(-0.375773\pi\)
0.380440 + 0.924806i \(0.375773\pi\)
\(854\) −14800.6 −0.593053
\(855\) −92243.1 −3.68965
\(856\) −9023.54 −0.360302
\(857\) 26150.7 1.04235 0.521174 0.853451i \(-0.325494\pi\)
0.521174 + 0.853451i \(0.325494\pi\)
\(858\) −59104.3 −2.35173
\(859\) 18422.9 0.731757 0.365879 0.930663i \(-0.380768\pi\)
0.365879 + 0.930663i \(0.380768\pi\)
\(860\) 10275.3 0.407424
\(861\) −22148.7 −0.876685
\(862\) 2640.27 0.104325
\(863\) 23731.6 0.936077 0.468038 0.883708i \(-0.344961\pi\)
0.468038 + 0.883708i \(0.344961\pi\)
\(864\) 13791.8 0.543061
\(865\) −50036.8 −1.96682
\(866\) −29247.6 −1.14766
\(867\) 19913.6 0.780048
\(868\) 2066.16 0.0807951
\(869\) 19615.0 0.765702
\(870\) −60652.0 −2.36356
\(871\) −8157.22 −0.317333
\(872\) −8828.44 −0.342854
\(873\) −7138.89 −0.276764
\(874\) −6149.53 −0.237999
\(875\) −12479.1 −0.482137
\(876\) −7504.74 −0.289454
\(877\) −27340.9 −1.05272 −0.526360 0.850262i \(-0.676444\pi\)
−0.526360 + 0.850262i \(0.676444\pi\)
\(878\) 46773.6 1.79787
\(879\) −72855.0 −2.79561
\(880\) 44473.7 1.70364
\(881\) −29829.5 −1.14073 −0.570363 0.821393i \(-0.693198\pi\)
−0.570363 + 0.821393i \(0.693198\pi\)
\(882\) 8322.80 0.317736
\(883\) 28971.8 1.10417 0.552084 0.833789i \(-0.313833\pi\)
0.552084 + 0.833789i \(0.313833\pi\)
\(884\) 3890.07 0.148006
\(885\) 99639.6 3.78457
\(886\) −31732.6 −1.20325
\(887\) 13412.2 0.507708 0.253854 0.967243i \(-0.418302\pi\)
0.253854 + 0.967243i \(0.418302\pi\)
\(888\) 10933.4 0.413177
\(889\) 4594.34 0.173329
\(890\) 2007.18 0.0755963
\(891\) −30140.9 −1.13329
\(892\) 1398.21 0.0524838
\(893\) −21177.2 −0.793583
\(894\) −8034.68 −0.300581
\(895\) −23273.1 −0.869198
\(896\) −11765.2 −0.438669
\(897\) 13509.5 0.502864
\(898\) 18669.4 0.693772
\(899\) −30184.7 −1.11982
\(900\) 14330.9 0.530774
\(901\) 21005.2 0.776674
\(902\) 34919.6 1.28902
\(903\) 30506.7 1.12425
\(904\) −14341.9 −0.527660
\(905\) 3597.77 0.132148
\(906\) −60816.0 −2.23010
\(907\) −21692.1 −0.794129 −0.397064 0.917791i \(-0.629971\pi\)
−0.397064 + 0.917791i \(0.629971\pi\)
\(908\) −3943.12 −0.144116
\(909\) −77284.7 −2.81999
\(910\) 25376.0 0.924402
\(911\) −6922.04 −0.251742 −0.125871 0.992047i \(-0.540173\pi\)
−0.125871 + 0.992047i \(0.540173\pi\)
\(912\) −57935.9 −2.10356
\(913\) −33582.9 −1.21734
\(914\) −49310.8 −1.78453
\(915\) −118486. −4.28092
\(916\) 592.403 0.0213685
\(917\) −11031.9 −0.397281
\(918\) 41988.4 1.50961
\(919\) −32716.2 −1.17433 −0.587164 0.809468i \(-0.699755\pi\)
−0.587164 + 0.809468i \(0.699755\pi\)
\(920\) −8858.15 −0.317440
\(921\) −44908.7 −1.60672
\(922\) 55688.2 1.98915
\(923\) 54376.3 1.93913
\(924\) −2453.45 −0.0873514
\(925\) 12788.4 0.454575
\(926\) −39409.2 −1.39856
\(927\) −28550.5 −1.01156
\(928\) −6137.56 −0.217107
\(929\) 9370.01 0.330915 0.165458 0.986217i \(-0.447090\pi\)
0.165458 + 0.986217i \(0.447090\pi\)
\(930\) 131015. 4.61950
\(931\) −4329.71 −0.152417
\(932\) −4512.60 −0.158600
\(933\) −26492.3 −0.929602
\(934\) −7058.40 −0.247278
\(935\) 32307.5 1.13002
\(936\) 74887.7 2.61515
\(937\) −50755.5 −1.76960 −0.884798 0.465975i \(-0.845704\pi\)
−0.884798 + 0.465975i \(0.845704\pi\)
\(938\) −2682.06 −0.0933606
\(939\) 27086.0 0.941340
\(940\) 5152.20 0.178772
\(941\) 1528.30 0.0529449 0.0264724 0.999650i \(-0.491573\pi\)
0.0264724 + 0.999650i \(0.491573\pi\)
\(942\) 44581.5 1.54198
\(943\) −7981.60 −0.275627
\(944\) 42256.3 1.45691
\(945\) 34580.2 1.19036
\(946\) −48096.8 −1.65303
\(947\) 14564.9 0.499786 0.249893 0.968274i \(-0.419605\pi\)
0.249893 + 0.968274i \(0.419605\pi\)
\(948\) 6216.66 0.212983
\(949\) −45870.7 −1.56905
\(950\) −59051.3 −2.01671
\(951\) 7291.96 0.248642
\(952\) −7572.88 −0.257814
\(953\) −26605.3 −0.904334 −0.452167 0.891933i \(-0.649349\pi\)
−0.452167 + 0.891933i \(0.649349\pi\)
\(954\) −68296.9 −2.31781
\(955\) −33387.0 −1.13129
\(956\) 1646.77 0.0557117
\(957\) 35842.6 1.21069
\(958\) 48473.1 1.63475
\(959\) −5546.06 −0.186748
\(960\) −70909.8 −2.38396
\(961\) 35411.0 1.18865
\(962\) −11287.0 −0.378281
\(963\) 24458.7 0.818453
\(964\) −7449.69 −0.248899
\(965\) −16018.9 −0.534370
\(966\) 4441.86 0.147945
\(967\) −13268.4 −0.441244 −0.220622 0.975359i \(-0.570809\pi\)
−0.220622 + 0.975359i \(0.570809\pi\)
\(968\) 4661.86 0.154791
\(969\) −42087.0 −1.39528
\(970\) −7156.66 −0.236893
\(971\) −40126.2 −1.32617 −0.663085 0.748544i \(-0.730753\pi\)
−0.663085 + 0.748544i \(0.730753\pi\)
\(972\) −1262.19 −0.0416510
\(973\) 18727.5 0.617035
\(974\) −4780.44 −0.157264
\(975\) 129726. 4.26109
\(976\) −50249.1 −1.64799
\(977\) 997.072 0.0326501 0.0163251 0.999867i \(-0.494803\pi\)
0.0163251 + 0.999867i \(0.494803\pi\)
\(978\) −9281.47 −0.303465
\(979\) −1186.15 −0.0387228
\(980\) 1053.37 0.0343354
\(981\) 23929.9 0.778820
\(982\) −62167.5 −2.02021
\(983\) −20022.9 −0.649677 −0.324838 0.945770i \(-0.605310\pi\)
−0.324838 + 0.945770i \(0.605310\pi\)
\(984\) −65526.2 −2.12287
\(985\) 4186.23 0.135415
\(986\) −18685.5 −0.603518
\(987\) 15296.5 0.493307
\(988\) 6579.94 0.211878
\(989\) 10993.5 0.353462
\(990\) −105046. −3.37230
\(991\) 1277.26 0.0409419 0.0204710 0.999790i \(-0.493483\pi\)
0.0204710 + 0.999790i \(0.493483\pi\)
\(992\) 13257.8 0.424329
\(993\) −70527.8 −2.25391
\(994\) 17878.7 0.570500
\(995\) −4153.61 −0.132340
\(996\) −10643.5 −0.338608
\(997\) 59113.7 1.87778 0.938891 0.344215i \(-0.111855\pi\)
0.938891 + 0.344215i \(0.111855\pi\)
\(998\) −4028.87 −0.127787
\(999\) −15380.9 −0.487117
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.b.1.7 8
3.2 odd 2 1449.4.a.i.1.2 8
7.6 odd 2 1127.4.a.e.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.b.1.7 8 1.1 even 1 trivial
1127.4.a.e.1.7 8 7.6 odd 2
1449.4.a.i.1.2 8 3.2 odd 2