Properties

Label 1449.2.h.b.1126.1
Level $1449$
Weight $2$
Character 1449.1126
Analytic conductor $11.570$
Analytic rank $0$
Dimension $4$
CM discriminant -483
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1449,2,Mod(1126,1449)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1449.1126"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1449, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1449.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5703232529\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{7}, \sqrt{-23})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - x^{2} + 2x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1126.1
Root \(-2.14575 + 2.39792i\) of defining polynomial
Character \(\chi\) \(=\) 1449.1126
Dual form 1449.2.h.b.1126.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -2.64575 q^{7} -4.79583i q^{11} +4.00000 q^{16} +2.64575 q^{19} +4.79583i q^{23} -5.00000 q^{25} +5.29150 q^{28} +12.6886i q^{41} +9.59166i q^{44} +12.6886i q^{47} +7.00000 q^{49} -4.79583i q^{53} +12.6886i q^{59} -13.2288 q^{61} -8.00000 q^{64} -5.29150 q^{76} +12.6886i q^{77} -9.59166i q^{92} +10.5830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 16 q^{16} - 20 q^{25} + 28 q^{49} - 32 q^{64}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1449\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(829\) \(1289\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −2.64575 −1.00000
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.79583i − 1.44600i −0.690849 0.722999i \(-0.742763\pi\)
0.690849 0.722999i \(-0.257237\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.64575 0.606977 0.303488 0.952835i \(-0.401849\pi\)
0.303488 + 0.952835i \(0.401849\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583i 1.00000i
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 5.29150 1.00000
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.6886i 1.98162i 0.135250 + 0.990811i \(0.456816\pi\)
−0.135250 + 0.990811i \(0.543184\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 9.59166i 1.44600i
\(45\) 0 0
\(46\) 0 0
\(47\) 12.6886i 1.85082i 0.378968 + 0.925410i \(0.376279\pi\)
−0.378968 + 0.925410i \(0.623721\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 4.79583i − 0.658758i −0.944198 0.329379i \(-0.893161\pi\)
0.944198 0.329379i \(-0.106839\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.6886i 1.65191i 0.563735 + 0.825956i \(0.309364\pi\)
−0.563735 + 0.825956i \(0.690636\pi\)
\(60\) 0 0
\(61\) −13.2288 −1.69377 −0.846884 0.531777i \(-0.821524\pi\)
−0.846884 + 0.531777i \(0.821524\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −5.29150 −0.606977
\(77\) 12.6886i 1.44600i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 9.59166i − 1.00000i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5830 1.07454 0.537271 0.843410i \(-0.319455\pi\)
0.537271 + 0.843410i \(0.319455\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 12.6886i 1.26256i 0.775555 + 0.631280i \(0.217470\pi\)
−0.775555 + 0.631280i \(0.782530\pi\)
\(102\) 0 0
\(103\) 18.5203 1.82486 0.912428 0.409238i \(-0.134205\pi\)
0.912428 + 0.409238i \(0.134205\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.59166i 0.927261i 0.886029 + 0.463631i \(0.153453\pi\)
−0.886029 + 0.463631i \(0.846547\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −10.5830 −1.00000
\(113\) − 19.1833i − 1.80462i −0.431092 0.902308i \(-0.641872\pi\)
0.431092 0.902308i \(-0.358128\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.0000 −1.09091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.6886i 1.10861i 0.832315 + 0.554303i \(0.187015\pi\)
−0.832315 + 0.554303i \(0.812985\pi\)
\(132\) 0 0
\(133\) −7.00000 −0.606977
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4.79583i − 0.409736i −0.978790 0.204868i \(-0.934324\pi\)
0.978790 0.204868i \(-0.0656764\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 23.9792i 1.96445i 0.187710 + 0.982225i \(0.439894\pi\)
−0.187710 + 0.982225i \(0.560106\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.64575 0.211154 0.105577 0.994411i \(-0.466331\pi\)
0.105577 + 0.994411i \(0.466331\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 12.6886i − 1.00000i
\(162\) 0 0
\(163\) −13.0000 −1.01824 −0.509119 0.860696i \(-0.670029\pi\)
−0.509119 + 0.860696i \(0.670029\pi\)
\(164\) − 25.3772i − 1.98162i
\(165\) 0 0
\(166\) 0 0
\(167\) 12.6886i 0.981872i 0.871196 + 0.490936i \(0.163345\pi\)
−0.871196 + 0.490936i \(0.836655\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 25.3772i − 1.92939i −0.263371 0.964695i \(-0.584834\pi\)
0.263371 0.964695i \(-0.415166\pi\)
\(174\) 0 0
\(175\) 13.2288 1.00000
\(176\) − 19.1833i − 1.44600i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −21.1660 −1.57326 −0.786629 0.617426i \(-0.788175\pi\)
−0.786629 + 0.617426i \(0.788175\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) − 25.3772i − 1.85082i
\(189\) 0 0
\(190\) 0 0
\(191\) 23.9792i 1.73507i 0.497375 + 0.867535i \(0.334297\pi\)
−0.497375 + 0.867535i \(0.665703\pi\)
\(192\) 0 0
\(193\) 17.0000 1.22369 0.611843 0.790979i \(-0.290428\pi\)
0.611843 + 0.790979i \(0.290428\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −13.2288 −0.937762 −0.468881 0.883261i \(-0.655343\pi\)
−0.468881 + 0.883261i \(0.655343\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 12.6886i − 0.877687i
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 9.59166i 0.658758i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.1033 −1.92320 −0.961599 0.274459i \(-0.911501\pi\)
−0.961599 + 0.274459i \(0.911501\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 25.3772i − 1.65191i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 18.5203 1.19299 0.596497 0.802615i \(-0.296559\pi\)
0.596497 + 0.802615i \(0.296559\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 26.4575 1.69377
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 23.0000 1.44600
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 12.6886i 0.791492i 0.918360 + 0.395746i \(0.129514\pi\)
−0.918360 + 0.395746i \(0.870486\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 4.79583i − 0.295724i −0.989008 0.147862i \(-0.952761\pi\)
0.989008 0.147862i \(-0.0472391\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 25.3772i − 1.54727i −0.633630 0.773636i \(-0.718436\pi\)
0.633630 0.773636i \(-0.281564\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.9792i 1.44600i
\(276\) 0 0
\(277\) −25.0000 −1.50210 −0.751052 0.660243i \(-0.770453\pi\)
−0.751052 + 0.660243i \(0.770453\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 19.1833i − 1.14438i −0.820121 0.572191i \(-0.806094\pi\)
0.820121 0.572191i \(-0.193906\pi\)
\(282\) 0 0
\(283\) −5.29150 −0.314547 −0.157274 0.987555i \(-0.550270\pi\)
−0.157274 + 0.987555i \(0.550270\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 33.5708i − 1.98162i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 10.5830 0.606977
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) − 25.3772i − 1.44600i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.6886i 0.719503i 0.933048 + 0.359752i \(0.117139\pi\)
−0.933048 + 0.359752i \(0.882861\pi\)
\(312\) 0 0
\(313\) 34.3948 1.94411 0.972054 0.234759i \(-0.0754301\pi\)
0.972054 + 0.234759i \(0.0754301\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 33.5708i − 1.85082i
\(330\) 0 0
\(331\) 29.0000 1.59398 0.796992 0.603990i \(-0.206423\pi\)
0.796992 + 0.603990i \(0.206423\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 25.3772i − 1.35069i −0.737502 0.675345i \(-0.763995\pi\)
0.737502 0.675345i \(-0.236005\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.59166i 0.506229i 0.967436 + 0.253114i \(0.0814549\pi\)
−0.967436 + 0.253114i \(0.918545\pi\)
\(360\) 0 0
\(361\) −12.0000 −0.631579
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.1033 −1.51918 −0.759589 0.650403i \(-0.774600\pi\)
−0.759589 + 0.650403i \(0.774600\pi\)
\(368\) 19.1833i 1.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 12.6886i 0.658758i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −21.1660 −1.07454
\(389\) 38.3667i 1.94527i 0.232346 + 0.972633i \(0.425360\pi\)
−0.232346 + 0.972633i \(0.574640\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 23.9792i 1.19746i 0.800950 + 0.598731i \(0.204328\pi\)
−0.800950 + 0.598731i \(0.795672\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) − 25.3772i − 1.26256i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −37.0405 −1.82486
\(413\) − 33.5708i − 1.65191i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 35.0000 1.69377
\(428\) − 19.1833i − 0.927261i
\(429\) 0 0
\(430\) 0 0
\(431\) − 4.79583i − 0.231007i −0.993307 0.115504i \(-0.963152\pi\)
0.993307 0.115504i \(-0.0368482\pi\)
\(432\) 0 0
\(433\) 2.64575 0.127147 0.0635733 0.997977i \(-0.479750\pi\)
0.0635733 + 0.997977i \(0.479750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.6886i 0.606977i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 21.1660 1.00000
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 60.8523 2.86542
\(452\) 38.3667i 1.80462i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 25.3772i − 1.18193i −0.806696 0.590966i \(-0.798747\pi\)
0.806696 0.590966i \(-0.201253\pi\)
\(462\) 0 0
\(463\) −37.0000 −1.71954 −0.859768 0.510685i \(-0.829392\pi\)
−0.859768 + 0.510685i \(0.829392\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −13.2288 −0.606977
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 24.0000 1.09091
\(485\) 0 0
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −10.0000 −0.443678
\(509\) 12.6886i 0.562411i 0.959648 + 0.281206i \(0.0907343\pi\)
−0.959648 + 0.281206i \(0.909266\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 60.8523 2.67628
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −44.9778 −1.96674 −0.983370 0.181612i \(-0.941869\pi\)
−0.983370 + 0.181612i \(0.941869\pi\)
\(524\) − 25.3772i − 1.10861i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 14.0000 0.606977
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 33.5708i − 1.44600i
\(540\) 0 0
\(541\) 41.0000 1.76273 0.881364 0.472438i \(-0.156626\pi\)
0.881364 + 0.472438i \(0.156626\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 9.59166i 0.409736i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.3667i 1.62565i 0.582510 + 0.812824i \(0.302071\pi\)
−0.582510 + 0.812824i \(0.697929\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.9792i 1.00526i 0.864502 + 0.502629i \(0.167634\pi\)
−0.864502 + 0.502629i \(0.832366\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 23.9792i − 1.00000i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −23.0000 −0.952563
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.6886i 0.523714i 0.965107 + 0.261857i \(0.0843348\pi\)
−0.965107 + 0.261857i \(0.915665\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 25.3772i − 1.04211i −0.853522 0.521057i \(-0.825538\pi\)
0.853522 0.521057i \(-0.174462\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 47.9583i − 1.96445i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −22.0000 −0.895167
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.1833i − 0.772292i −0.922438 0.386146i \(-0.873806\pi\)
0.922438 0.386146i \(-0.126194\pi\)
\(618\) 0 0
\(619\) −37.0405 −1.48878 −0.744392 0.667743i \(-0.767261\pi\)
−0.744392 + 0.667743i \(0.767261\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −5.29150 −0.211154
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 4.79583i − 0.189424i −0.995505 0.0947120i \(-0.969807\pi\)
0.995505 0.0947120i \(-0.0301930\pi\)
\(642\) 0 0
\(643\) −29.1033 −1.14772 −0.573860 0.818953i \(-0.694555\pi\)
−0.573860 + 0.818953i \(0.694555\pi\)
\(644\) 25.3772i 1.00000i
\(645\) 0 0
\(646\) 0 0
\(647\) 50.7543i 1.99536i 0.0680939 + 0.997679i \(0.478308\pi\)
−0.0680939 + 0.997679i \(0.521692\pi\)
\(648\) 0 0
\(649\) 60.8523 2.38866
\(650\) 0 0
\(651\) 0 0
\(652\) 26.0000 1.01824
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 50.7543i 1.98162i
\(657\) 0 0
\(658\) 0 0
\(659\) − 47.9583i − 1.86819i −0.357024 0.934095i \(-0.616208\pi\)
0.357024 0.934095i \(-0.383792\pi\)
\(660\) 0 0
\(661\) −44.9778 −1.74943 −0.874716 0.484635i \(-0.838952\pi\)
−0.874716 + 0.484635i \(0.838952\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) − 25.3772i − 0.981872i
\(669\) 0 0
\(670\) 0 0
\(671\) 63.4429i 2.44919i
\(672\) 0 0
\(673\) 47.0000 1.81172 0.905858 0.423581i \(-0.139227\pi\)
0.905858 + 0.423581i \(0.139227\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −28.0000 −1.07454
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 50.7543i 1.92939i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −26.4575 −1.00000
\(701\) 52.7541i 1.99250i 0.0865407 + 0.996248i \(0.472419\pi\)
−0.0865407 + 0.996248i \(0.527581\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 38.3667i 1.44600i
\(705\) 0 0
\(706\) 0 0
\(707\) − 33.5708i − 1.26256i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.7543i 1.89282i 0.322973 + 0.946408i \(0.395318\pi\)
−0.322973 + 0.946408i \(0.604682\pi\)
\(720\) 0 0
\(721\) −49.0000 −1.82486
\(722\) 0 0
\(723\) 0 0
\(724\) 42.3320 1.57326
\(725\) 0 0
\(726\) 0 0
\(727\) 34.3948 1.27563 0.637816 0.770189i \(-0.279838\pi\)
0.637816 + 0.770189i \(0.279838\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −21.1660 −0.781784 −0.390892 0.920436i \(-0.627833\pi\)
−0.390892 + 0.920436i \(0.627833\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 32.0000 1.17714 0.588570 0.808447i \(-0.299691\pi\)
0.588570 + 0.808447i \(0.299691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 52.7541i 1.93536i 0.252178 + 0.967681i \(0.418853\pi\)
−0.252178 + 0.967681i \(0.581147\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 25.3772i − 0.927261i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 50.7543i 1.85082i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.6886i 0.459961i 0.973195 + 0.229980i \(0.0738662\pi\)
−0.973195 + 0.229980i \(0.926134\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 47.9583i − 1.73507i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −52.9150 −1.90816 −0.954082 0.299545i \(-0.903165\pi\)
−0.954082 + 0.299545i \(0.903165\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −34.0000 −1.22369
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 33.5708i 1.20280i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 50.2693 1.79191 0.895953 0.444149i \(-0.146494\pi\)
0.895953 + 0.444149i \(0.146494\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 50.7543i 1.80462i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 26.4575 0.937762
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 53.0000 1.84746 0.923732 0.383040i \(-0.125123\pi\)
0.923732 + 0.383040i \(0.125123\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.7541i 1.83444i 0.398379 + 0.917221i \(0.369573\pi\)
−0.398379 + 0.917221i \(0.630427\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 25.3772i 0.877687i
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 38.0000 1.30801
\(845\) 0 0
\(846\) 0 0
\(847\) 31.7490 1.09091
\(848\) − 19.1833i − 0.658758i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.6886i 0.433434i 0.976235 + 0.216717i \(0.0695348\pi\)
−0.976235 + 0.216717i \(0.930465\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −55.0000 −1.85722 −0.928609 0.371060i \(-0.878995\pi\)
−0.928609 + 0.371060i \(0.878995\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 50.7543i 1.70416i 0.523409 + 0.852081i \(0.324660\pi\)
−0.523409 + 0.852081i \(0.675340\pi\)
\(888\) 0 0
\(889\) −13.2288 −0.443678
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.5708i 1.12340i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 47.9583i − 1.58893i −0.607310 0.794465i \(-0.707751\pi\)
0.607310 0.794465i \(-0.292249\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 58.2065 1.92320
\(917\) − 33.5708i − 1.10861i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 25.3772i − 0.832597i −0.909228 0.416299i \(-0.863327\pi\)
0.909228 0.416299i \(-0.136673\pi\)
\(930\) 0 0
\(931\) 18.5203 0.606977
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −44.9778 −1.46936 −0.734680 0.678414i \(-0.762668\pi\)
−0.734680 + 0.678414i \(0.762668\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −60.8523 −1.98162
\(944\) 50.7543i 1.65191i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.7541i 1.70887i 0.519555 + 0.854437i \(0.326098\pi\)
−0.519555 + 0.854437i \(0.673902\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.6886i 0.409736i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −37.0405 −1.19299
\(965\) 0 0
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −52.9150 −1.69377
\(977\) − 62.3458i − 1.99462i −0.0733048 0.997310i \(-0.523355\pi\)
0.0733048 0.997310i \(-0.476645\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.0000 1.87420 0.937098 0.349065i \(-0.113501\pi\)
0.937098 + 0.349065i \(0.113501\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1449.2.h.b.1126.1 4
3.2 odd 2 inner 1449.2.h.b.1126.2 yes 4
7.6 odd 2 inner 1449.2.h.b.1126.3 yes 4
21.20 even 2 inner 1449.2.h.b.1126.4 yes 4
23.22 odd 2 inner 1449.2.h.b.1126.4 yes 4
69.68 even 2 inner 1449.2.h.b.1126.3 yes 4
161.160 even 2 inner 1449.2.h.b.1126.2 yes 4
483.482 odd 2 CM 1449.2.h.b.1126.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1449.2.h.b.1126.1 4 1.1 even 1 trivial
1449.2.h.b.1126.1 4 483.482 odd 2 CM
1449.2.h.b.1126.2 yes 4 3.2 odd 2 inner
1449.2.h.b.1126.2 yes 4 161.160 even 2 inner
1449.2.h.b.1126.3 yes 4 7.6 odd 2 inner
1449.2.h.b.1126.3 yes 4 69.68 even 2 inner
1449.2.h.b.1126.4 yes 4 21.20 even 2 inner
1449.2.h.b.1126.4 yes 4 23.22 odd 2 inner