Properties

Label 1449.2
Level 1449
Weight 2
Dimension 56520
Nonzero newspaces 40
Sturm bound 304128
Trace bound 22

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(304128\)
Trace bound: \(22\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1449))\).

Total New Old
Modular forms 78144 58412 19732
Cusp forms 73921 56520 17401
Eisenstein series 4223 1892 2331

Trace form

\( 56520 q - 114 q^{2} - 152 q^{3} - 106 q^{4} - 108 q^{5} - 152 q^{6} - 139 q^{7} - 276 q^{8} - 152 q^{9} - 312 q^{10} - 96 q^{11} - 176 q^{12} - 100 q^{13} - 159 q^{14} - 416 q^{15} - 94 q^{16} - 134 q^{17}+ \cdots - 584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1449))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1449.2.a \(\chi_{1449}(1, \cdot)\) 1449.2.a.a 1 1
1449.2.a.b 1
1449.2.a.c 1
1449.2.a.d 1
1449.2.a.e 1
1449.2.a.f 2
1449.2.a.g 2
1449.2.a.h 2
1449.2.a.i 2
1449.2.a.j 2
1449.2.a.k 2
1449.2.a.l 3
1449.2.a.m 3
1449.2.a.n 4
1449.2.a.o 4
1449.2.a.p 4
1449.2.a.q 4
1449.2.a.r 5
1449.2.a.s 5
1449.2.a.t 5
1449.2.d \(\chi_{1449}(944, \cdot)\) 1449.2.d.a 56 1
1449.2.e \(\chi_{1449}(827, \cdot)\) 1449.2.e.a 48 1
1449.2.h \(\chi_{1449}(1126, \cdot)\) 1449.2.h.a 2 1
1449.2.h.b 4
1449.2.h.c 4
1449.2.h.d 8
1449.2.h.e 12
1449.2.h.f 12
1449.2.h.g 12
1449.2.h.h 12
1449.2.h.i 12
1449.2.i \(\chi_{1449}(415, \cdot)\) n/a 148 2
1449.2.j \(\chi_{1449}(484, \cdot)\) n/a 264 2
1449.2.k \(\chi_{1449}(760, \cdot)\) n/a 352 2
1449.2.l \(\chi_{1449}(277, \cdot)\) n/a 352 2
1449.2.m \(\chi_{1449}(137, \cdot)\) n/a 376 2
1449.2.n \(\chi_{1449}(668, \cdot)\) n/a 352 2
1449.2.s \(\chi_{1449}(712, \cdot)\) n/a 156 2
1449.2.t \(\chi_{1449}(160, \cdot)\) n/a 376 2
1449.2.y \(\chi_{1449}(850, \cdot)\) n/a 376 2
1449.2.bb \(\chi_{1449}(344, \cdot)\) n/a 288 2
1449.2.bc \(\chi_{1449}(461, \cdot)\) n/a 352 2
1449.2.bd \(\chi_{1449}(620, \cdot)\) n/a 128 2
1449.2.be \(\chi_{1449}(530, \cdot)\) n/a 120 2
1449.2.bj \(\chi_{1449}(47, \cdot)\) n/a 352 2
1449.2.bk \(\chi_{1449}(758, \cdot)\) n/a 376 2
1449.2.bl \(\chi_{1449}(229, \cdot)\) n/a 376 2
1449.2.bo \(\chi_{1449}(64, \cdot)\) n/a 600 10
1449.2.bp \(\chi_{1449}(181, \cdot)\) n/a 780 10
1449.2.bs \(\chi_{1449}(134, \cdot)\) n/a 480 10
1449.2.bt \(\chi_{1449}(62, \cdot)\) n/a 640 10
1449.2.bw \(\chi_{1449}(25, \cdot)\) n/a 3760 20
1449.2.bx \(\chi_{1449}(4, \cdot)\) n/a 3760 20
1449.2.by \(\chi_{1449}(85, \cdot)\) n/a 2880 20
1449.2.bz \(\chi_{1449}(100, \cdot)\) n/a 1560 20
1449.2.cc \(\chi_{1449}(40, \cdot)\) n/a 3760 20
1449.2.cd \(\chi_{1449}(65, \cdot)\) n/a 3760 20
1449.2.ce \(\chi_{1449}(59, \cdot)\) n/a 3760 20
1449.2.cj \(\chi_{1449}(26, \cdot)\) n/a 1280 20
1449.2.ck \(\chi_{1449}(44, \cdot)\) n/a 1280 20
1449.2.cl \(\chi_{1449}(41, \cdot)\) n/a 3760 20
1449.2.cm \(\chi_{1449}(113, \cdot)\) n/a 2880 20
1449.2.cp \(\chi_{1449}(61, \cdot)\) n/a 3760 20
1449.2.cu \(\chi_{1449}(34, \cdot)\) n/a 3760 20
1449.2.cv \(\chi_{1449}(10, \cdot)\) n/a 1560 20
1449.2.da \(\chi_{1449}(101, \cdot)\) n/a 3760 20
1449.2.db \(\chi_{1449}(11, \cdot)\) n/a 3760 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1449))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1449)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 2}\)