Properties

Label 1445.2.a.q.1.10
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,8,12,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-1.43840\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43840 q^{2} -0.109907 q^{3} +0.0689897 q^{4} -1.00000 q^{5} -0.158090 q^{6} +0.695085 q^{7} -2.77756 q^{8} -2.98792 q^{9} -1.43840 q^{10} +4.85089 q^{11} -0.00758244 q^{12} +5.63906 q^{13} +0.999809 q^{14} +0.109907 q^{15} -4.13322 q^{16} -4.29782 q^{18} -2.32272 q^{19} -0.0689897 q^{20} -0.0763945 q^{21} +6.97750 q^{22} +4.63686 q^{23} +0.305273 q^{24} +1.00000 q^{25} +8.11121 q^{26} +0.658113 q^{27} +0.0479537 q^{28} +6.50618 q^{29} +0.158090 q^{30} +6.63194 q^{31} -0.390093 q^{32} -0.533145 q^{33} -0.695085 q^{35} -0.206136 q^{36} +0.118625 q^{37} -3.34100 q^{38} -0.619770 q^{39} +2.77756 q^{40} +1.07877 q^{41} -0.109886 q^{42} -0.641108 q^{43} +0.334661 q^{44} +2.98792 q^{45} +6.66965 q^{46} +4.93703 q^{47} +0.454269 q^{48} -6.51686 q^{49} +1.43840 q^{50} +0.389037 q^{52} +11.9864 q^{53} +0.946629 q^{54} -4.85089 q^{55} -1.93064 q^{56} +0.255283 q^{57} +9.35848 q^{58} -9.91829 q^{59} +0.00758244 q^{60} +1.60292 q^{61} +9.53937 q^{62} -2.07686 q^{63} +7.70533 q^{64} -5.63906 q^{65} -0.766875 q^{66} -2.99411 q^{67} -0.509622 q^{69} -0.999809 q^{70} -4.68852 q^{71} +8.29913 q^{72} +5.49911 q^{73} +0.170630 q^{74} -0.109907 q^{75} -0.160244 q^{76} +3.37178 q^{77} -0.891477 q^{78} +14.8439 q^{79} +4.13322 q^{80} +8.89143 q^{81} +1.55170 q^{82} +5.03506 q^{83} -0.00527044 q^{84} -0.922169 q^{86} -0.715073 q^{87} -13.4736 q^{88} -2.35657 q^{89} +4.29782 q^{90} +3.91962 q^{91} +0.319896 q^{92} -0.728895 q^{93} +7.10141 q^{94} +2.32272 q^{95} +0.0428738 q^{96} -2.70080 q^{97} -9.37384 q^{98} -14.4941 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43840 1.01710 0.508551 0.861032i \(-0.330181\pi\)
0.508551 + 0.861032i \(0.330181\pi\)
\(3\) −0.109907 −0.0634547 −0.0317274 0.999497i \(-0.510101\pi\)
−0.0317274 + 0.999497i \(0.510101\pi\)
\(4\) 0.0689897 0.0344949
\(5\) −1.00000 −0.447214
\(6\) −0.158090 −0.0645399
\(7\) 0.695085 0.262717 0.131359 0.991335i \(-0.458066\pi\)
0.131359 + 0.991335i \(0.458066\pi\)
\(8\) −2.77756 −0.982016
\(9\) −2.98792 −0.995974
\(10\) −1.43840 −0.454861
\(11\) 4.85089 1.46260 0.731298 0.682058i \(-0.238915\pi\)
0.731298 + 0.682058i \(0.238915\pi\)
\(12\) −0.00758244 −0.00218886
\(13\) 5.63906 1.56399 0.781996 0.623283i \(-0.214202\pi\)
0.781996 + 0.623283i \(0.214202\pi\)
\(14\) 0.999809 0.267210
\(15\) 0.109907 0.0283778
\(16\) −4.13322 −1.03330
\(17\) 0 0
\(18\) −4.29782 −1.01301
\(19\) −2.32272 −0.532869 −0.266434 0.963853i \(-0.585846\pi\)
−0.266434 + 0.963853i \(0.585846\pi\)
\(20\) −0.0689897 −0.0154266
\(21\) −0.0763945 −0.0166706
\(22\) 6.97750 1.48761
\(23\) 4.63686 0.966852 0.483426 0.875385i \(-0.339392\pi\)
0.483426 + 0.875385i \(0.339392\pi\)
\(24\) 0.305273 0.0623136
\(25\) 1.00000 0.200000
\(26\) 8.11121 1.59074
\(27\) 0.658113 0.126654
\(28\) 0.0479537 0.00906240
\(29\) 6.50618 1.20817 0.604084 0.796921i \(-0.293539\pi\)
0.604084 + 0.796921i \(0.293539\pi\)
\(30\) 0.158090 0.0288631
\(31\) 6.63194 1.19113 0.595565 0.803307i \(-0.296928\pi\)
0.595565 + 0.803307i \(0.296928\pi\)
\(32\) −0.390093 −0.0689593
\(33\) −0.533145 −0.0928087
\(34\) 0 0
\(35\) −0.695085 −0.117491
\(36\) −0.206136 −0.0343560
\(37\) 0.118625 0.0195018 0.00975091 0.999952i \(-0.496896\pi\)
0.00975091 + 0.999952i \(0.496896\pi\)
\(38\) −3.34100 −0.541981
\(39\) −0.619770 −0.0992427
\(40\) 2.77756 0.439171
\(41\) 1.07877 0.168475 0.0842375 0.996446i \(-0.473155\pi\)
0.0842375 + 0.996446i \(0.473155\pi\)
\(42\) −0.109886 −0.0169557
\(43\) −0.641108 −0.0977681 −0.0488840 0.998804i \(-0.515566\pi\)
−0.0488840 + 0.998804i \(0.515566\pi\)
\(44\) 0.334661 0.0504521
\(45\) 2.98792 0.445413
\(46\) 6.66965 0.983386
\(47\) 4.93703 0.720139 0.360070 0.932925i \(-0.382753\pi\)
0.360070 + 0.932925i \(0.382753\pi\)
\(48\) 0.454269 0.0655681
\(49\) −6.51686 −0.930980
\(50\) 1.43840 0.203420
\(51\) 0 0
\(52\) 0.389037 0.0539497
\(53\) 11.9864 1.64646 0.823228 0.567711i \(-0.192171\pi\)
0.823228 + 0.567711i \(0.192171\pi\)
\(54\) 0.946629 0.128820
\(55\) −4.85089 −0.654093
\(56\) −1.93064 −0.257993
\(57\) 0.255283 0.0338130
\(58\) 9.35848 1.22883
\(59\) −9.91829 −1.29125 −0.645626 0.763654i \(-0.723403\pi\)
−0.645626 + 0.763654i \(0.723403\pi\)
\(60\) 0.00758244 0.000978888 0
\(61\) 1.60292 0.205233 0.102617 0.994721i \(-0.467278\pi\)
0.102617 + 0.994721i \(0.467278\pi\)
\(62\) 9.53937 1.21150
\(63\) −2.07686 −0.261659
\(64\) 7.70533 0.963166
\(65\) −5.63906 −0.699439
\(66\) −0.766875 −0.0943958
\(67\) −2.99411 −0.365789 −0.182894 0.983133i \(-0.558547\pi\)
−0.182894 + 0.983133i \(0.558547\pi\)
\(68\) 0 0
\(69\) −0.509622 −0.0613513
\(70\) −0.999809 −0.119500
\(71\) −4.68852 −0.556425 −0.278213 0.960520i \(-0.589742\pi\)
−0.278213 + 0.960520i \(0.589742\pi\)
\(72\) 8.29913 0.978062
\(73\) 5.49911 0.643622 0.321811 0.946804i \(-0.395708\pi\)
0.321811 + 0.946804i \(0.395708\pi\)
\(74\) 0.170630 0.0198353
\(75\) −0.109907 −0.0126909
\(76\) −0.160244 −0.0183812
\(77\) 3.37178 0.384250
\(78\) −0.891477 −0.100940
\(79\) 14.8439 1.67007 0.835037 0.550193i \(-0.185446\pi\)
0.835037 + 0.550193i \(0.185446\pi\)
\(80\) 4.13322 0.462108
\(81\) 8.89143 0.987937
\(82\) 1.55170 0.171356
\(83\) 5.03506 0.552670 0.276335 0.961061i \(-0.410880\pi\)
0.276335 + 0.961061i \(0.410880\pi\)
\(84\) −0.00527044 −0.000575052 0
\(85\) 0 0
\(86\) −0.922169 −0.0994400
\(87\) −0.715073 −0.0766639
\(88\) −13.4736 −1.43629
\(89\) −2.35657 −0.249796 −0.124898 0.992170i \(-0.539860\pi\)
−0.124898 + 0.992170i \(0.539860\pi\)
\(90\) 4.29782 0.453030
\(91\) 3.91962 0.410888
\(92\) 0.319896 0.0333514
\(93\) −0.728895 −0.0755829
\(94\) 7.10141 0.732454
\(95\) 2.32272 0.238306
\(96\) 0.0428738 0.00437579
\(97\) −2.70080 −0.274225 −0.137113 0.990555i \(-0.543782\pi\)
−0.137113 + 0.990555i \(0.543782\pi\)
\(98\) −9.37384 −0.946900
\(99\) −14.4941 −1.45671
\(100\) 0.0689897 0.00689897
\(101\) 14.3025 1.42315 0.711575 0.702610i \(-0.247982\pi\)
0.711575 + 0.702610i \(0.247982\pi\)
\(102\) 0 0
\(103\) −10.8963 −1.07365 −0.536824 0.843694i \(-0.680376\pi\)
−0.536824 + 0.843694i \(0.680376\pi\)
\(104\) −15.6628 −1.53587
\(105\) 0.0763945 0.00745534
\(106\) 17.2412 1.67461
\(107\) −16.6273 −1.60742 −0.803712 0.595019i \(-0.797145\pi\)
−0.803712 + 0.595019i \(0.797145\pi\)
\(108\) 0.0454030 0.00436891
\(109\) −10.5999 −1.01529 −0.507643 0.861568i \(-0.669483\pi\)
−0.507643 + 0.861568i \(0.669483\pi\)
\(110\) −6.97750 −0.665279
\(111\) −0.0130377 −0.00123748
\(112\) −2.87294 −0.271467
\(113\) −11.5397 −1.08556 −0.542780 0.839875i \(-0.682628\pi\)
−0.542780 + 0.839875i \(0.682628\pi\)
\(114\) 0.367198 0.0343913
\(115\) −4.63686 −0.432389
\(116\) 0.448860 0.0416756
\(117\) −16.8490 −1.55770
\(118\) −14.2665 −1.31333
\(119\) 0 0
\(120\) −0.305273 −0.0278675
\(121\) 12.5311 1.13919
\(122\) 2.30564 0.208743
\(123\) −0.118564 −0.0106905
\(124\) 0.457535 0.0410879
\(125\) −1.00000 −0.0894427
\(126\) −2.98735 −0.266134
\(127\) −0.498539 −0.0442381 −0.0221191 0.999755i \(-0.507041\pi\)
−0.0221191 + 0.999755i \(0.507041\pi\)
\(128\) 11.8635 1.04860
\(129\) 0.0704621 0.00620384
\(130\) −8.11121 −0.711400
\(131\) −19.5341 −1.70670 −0.853350 0.521338i \(-0.825433\pi\)
−0.853350 + 0.521338i \(0.825433\pi\)
\(132\) −0.0367815 −0.00320142
\(133\) −1.61449 −0.139994
\(134\) −4.30672 −0.372044
\(135\) −0.658113 −0.0566414
\(136\) 0 0
\(137\) −3.81724 −0.326129 −0.163065 0.986615i \(-0.552138\pi\)
−0.163065 + 0.986615i \(0.552138\pi\)
\(138\) −0.733040 −0.0624005
\(139\) 13.2525 1.12406 0.562030 0.827117i \(-0.310020\pi\)
0.562030 + 0.827117i \(0.310020\pi\)
\(140\) −0.0479537 −0.00405283
\(141\) −0.542613 −0.0456962
\(142\) −6.74396 −0.565941
\(143\) 27.3544 2.28749
\(144\) 12.3497 1.02914
\(145\) −6.50618 −0.540309
\(146\) 7.90991 0.654629
\(147\) 0.716247 0.0590750
\(148\) 0.00818390 0.000672712 0
\(149\) −17.4543 −1.42991 −0.714955 0.699171i \(-0.753553\pi\)
−0.714955 + 0.699171i \(0.753553\pi\)
\(150\) −0.158090 −0.0129080
\(151\) −11.2715 −0.917262 −0.458631 0.888627i \(-0.651660\pi\)
−0.458631 + 0.888627i \(0.651660\pi\)
\(152\) 6.45150 0.523286
\(153\) 0 0
\(154\) 4.84996 0.390821
\(155\) −6.63194 −0.532690
\(156\) −0.0427578 −0.00342336
\(157\) −6.14541 −0.490457 −0.245229 0.969465i \(-0.578863\pi\)
−0.245229 + 0.969465i \(0.578863\pi\)
\(158\) 21.3515 1.69863
\(159\) −1.31738 −0.104475
\(160\) 0.390093 0.0308395
\(161\) 3.22301 0.254009
\(162\) 12.7894 1.00483
\(163\) 11.2012 0.877344 0.438672 0.898647i \(-0.355449\pi\)
0.438672 + 0.898647i \(0.355449\pi\)
\(164\) 0.0744238 0.00581152
\(165\) 0.533145 0.0415053
\(166\) 7.24243 0.562121
\(167\) 5.70603 0.441546 0.220773 0.975325i \(-0.429142\pi\)
0.220773 + 0.975325i \(0.429142\pi\)
\(168\) 0.212190 0.0163709
\(169\) 18.7989 1.44607
\(170\) 0 0
\(171\) 6.94010 0.530723
\(172\) −0.0442299 −0.00337250
\(173\) −4.53754 −0.344983 −0.172491 0.985011i \(-0.555182\pi\)
−0.172491 + 0.985011i \(0.555182\pi\)
\(174\) −1.02856 −0.0779750
\(175\) 0.695085 0.0525435
\(176\) −20.0498 −1.51131
\(177\) 1.09009 0.0819360
\(178\) −3.38969 −0.254068
\(179\) −18.3756 −1.37345 −0.686727 0.726915i \(-0.740953\pi\)
−0.686727 + 0.726915i \(0.740953\pi\)
\(180\) 0.206136 0.0153645
\(181\) 10.7182 0.796679 0.398339 0.917238i \(-0.369587\pi\)
0.398339 + 0.917238i \(0.369587\pi\)
\(182\) 5.63798 0.417915
\(183\) −0.176172 −0.0130230
\(184\) −12.8792 −0.949465
\(185\) −0.118625 −0.00872148
\(186\) −1.04844 −0.0768754
\(187\) 0 0
\(188\) 0.340604 0.0248411
\(189\) 0.457444 0.0332742
\(190\) 3.34100 0.242381
\(191\) 18.5397 1.34149 0.670743 0.741690i \(-0.265976\pi\)
0.670743 + 0.741690i \(0.265976\pi\)
\(192\) −0.846868 −0.0611174
\(193\) 9.88591 0.711603 0.355802 0.934562i \(-0.384208\pi\)
0.355802 + 0.934562i \(0.384208\pi\)
\(194\) −3.88483 −0.278915
\(195\) 0.619770 0.0443827
\(196\) −0.449596 −0.0321140
\(197\) 13.9534 0.994138 0.497069 0.867711i \(-0.334410\pi\)
0.497069 + 0.867711i \(0.334410\pi\)
\(198\) −20.8482 −1.48162
\(199\) 12.7366 0.902876 0.451438 0.892303i \(-0.350911\pi\)
0.451438 + 0.892303i \(0.350911\pi\)
\(200\) −2.77756 −0.196403
\(201\) 0.329073 0.0232110
\(202\) 20.5727 1.44749
\(203\) 4.52235 0.317407
\(204\) 0 0
\(205\) −1.07877 −0.0753443
\(206\) −15.6733 −1.09201
\(207\) −13.8546 −0.962959
\(208\) −23.3075 −1.61608
\(209\) −11.2672 −0.779372
\(210\) 0.109886 0.00758284
\(211\) −12.8778 −0.886545 −0.443273 0.896387i \(-0.646183\pi\)
−0.443273 + 0.896387i \(0.646183\pi\)
\(212\) 0.826937 0.0567943
\(213\) 0.515300 0.0353078
\(214\) −23.9167 −1.63491
\(215\) 0.641108 0.0437232
\(216\) −1.82795 −0.124376
\(217\) 4.60976 0.312931
\(218\) −15.2469 −1.03265
\(219\) −0.604389 −0.0408409
\(220\) −0.334661 −0.0225629
\(221\) 0 0
\(222\) −0.0187534 −0.00125864
\(223\) 20.4208 1.36748 0.683738 0.729728i \(-0.260353\pi\)
0.683738 + 0.729728i \(0.260353\pi\)
\(224\) −0.271147 −0.0181168
\(225\) −2.98792 −0.199195
\(226\) −16.5986 −1.10412
\(227\) 1.22029 0.0809935 0.0404968 0.999180i \(-0.487106\pi\)
0.0404968 + 0.999180i \(0.487106\pi\)
\(228\) 0.0176119 0.00116638
\(229\) 3.51944 0.232571 0.116286 0.993216i \(-0.462901\pi\)
0.116286 + 0.993216i \(0.462901\pi\)
\(230\) −6.66965 −0.439784
\(231\) −0.370581 −0.0243824
\(232\) −18.0713 −1.18644
\(233\) −29.0026 −1.90002 −0.950011 0.312218i \(-0.898928\pi\)
−0.950011 + 0.312218i \(0.898928\pi\)
\(234\) −24.2356 −1.58433
\(235\) −4.93703 −0.322056
\(236\) −0.684260 −0.0445415
\(237\) −1.63145 −0.105974
\(238\) 0 0
\(239\) 7.87133 0.509154 0.254577 0.967053i \(-0.418064\pi\)
0.254577 + 0.967053i \(0.418064\pi\)
\(240\) −0.454269 −0.0293229
\(241\) 11.6270 0.748959 0.374479 0.927235i \(-0.377821\pi\)
0.374479 + 0.927235i \(0.377821\pi\)
\(242\) 18.0247 1.15867
\(243\) −2.95157 −0.189343
\(244\) 0.110585 0.00707950
\(245\) 6.51686 0.416347
\(246\) −0.170542 −0.0108734
\(247\) −13.0979 −0.833403
\(248\) −18.4206 −1.16971
\(249\) −0.553388 −0.0350695
\(250\) −1.43840 −0.0909723
\(251\) −7.94692 −0.501605 −0.250803 0.968038i \(-0.580694\pi\)
−0.250803 + 0.968038i \(0.580694\pi\)
\(252\) −0.143282 −0.00902591
\(253\) 22.4929 1.41411
\(254\) −0.717097 −0.0449947
\(255\) 0 0
\(256\) 1.65381 0.103363
\(257\) −7.92727 −0.494489 −0.247245 0.968953i \(-0.579525\pi\)
−0.247245 + 0.968953i \(0.579525\pi\)
\(258\) 0.101353 0.00630994
\(259\) 0.0824544 0.00512347
\(260\) −0.389037 −0.0241270
\(261\) −19.4400 −1.20330
\(262\) −28.0978 −1.73589
\(263\) 8.53622 0.526366 0.263183 0.964746i \(-0.415228\pi\)
0.263183 + 0.964746i \(0.415228\pi\)
\(264\) 1.48084 0.0911396
\(265\) −11.9864 −0.736318
\(266\) −2.32228 −0.142388
\(267\) 0.259003 0.0158507
\(268\) −0.206563 −0.0126178
\(269\) 15.9828 0.974490 0.487245 0.873265i \(-0.338002\pi\)
0.487245 + 0.873265i \(0.338002\pi\)
\(270\) −0.946629 −0.0576100
\(271\) −22.5289 −1.36853 −0.684266 0.729232i \(-0.739877\pi\)
−0.684266 + 0.729232i \(0.739877\pi\)
\(272\) 0 0
\(273\) −0.430793 −0.0260728
\(274\) −5.49072 −0.331706
\(275\) 4.85089 0.292519
\(276\) −0.0351587 −0.00211630
\(277\) −6.90211 −0.414708 −0.207354 0.978266i \(-0.566485\pi\)
−0.207354 + 0.978266i \(0.566485\pi\)
\(278\) 19.0623 1.14328
\(279\) −19.8157 −1.18633
\(280\) 1.93064 0.115378
\(281\) 9.38062 0.559601 0.279801 0.960058i \(-0.409732\pi\)
0.279801 + 0.960058i \(0.409732\pi\)
\(282\) −0.780493 −0.0464777
\(283\) −20.5769 −1.22317 −0.611584 0.791179i \(-0.709468\pi\)
−0.611584 + 0.791179i \(0.709468\pi\)
\(284\) −0.323460 −0.0191938
\(285\) −0.255283 −0.0151216
\(286\) 39.3465 2.32661
\(287\) 0.749834 0.0442613
\(288\) 1.16557 0.0686816
\(289\) 0 0
\(290\) −9.35848 −0.549549
\(291\) 0.296837 0.0174009
\(292\) 0.379382 0.0222017
\(293\) −23.4539 −1.37019 −0.685097 0.728452i \(-0.740240\pi\)
−0.685097 + 0.728452i \(0.740240\pi\)
\(294\) 1.03025 0.0600853
\(295\) 9.91829 0.577465
\(296\) −0.329488 −0.0191511
\(297\) 3.19243 0.185244
\(298\) −25.1062 −1.45436
\(299\) 26.1475 1.51215
\(300\) −0.00758244 −0.000437772 0
\(301\) −0.445624 −0.0256854
\(302\) −16.2129 −0.932948
\(303\) −1.57194 −0.0903056
\(304\) 9.60031 0.550616
\(305\) −1.60292 −0.0917832
\(306\) 0 0
\(307\) 30.4260 1.73650 0.868251 0.496126i \(-0.165244\pi\)
0.868251 + 0.496126i \(0.165244\pi\)
\(308\) 0.232618 0.0132546
\(309\) 1.19758 0.0681280
\(310\) −9.53937 −0.541800
\(311\) −1.07989 −0.0612348 −0.0306174 0.999531i \(-0.509747\pi\)
−0.0306174 + 0.999531i \(0.509747\pi\)
\(312\) 1.72145 0.0974580
\(313\) −3.62554 −0.204928 −0.102464 0.994737i \(-0.532673\pi\)
−0.102464 + 0.994737i \(0.532673\pi\)
\(314\) −8.83955 −0.498845
\(315\) 2.07686 0.117018
\(316\) 1.02408 0.0576090
\(317\) 8.79483 0.493967 0.246984 0.969020i \(-0.420561\pi\)
0.246984 + 0.969020i \(0.420561\pi\)
\(318\) −1.89492 −0.106262
\(319\) 31.5607 1.76706
\(320\) −7.70533 −0.430741
\(321\) 1.82746 0.101999
\(322\) 4.63597 0.258353
\(323\) 0 0
\(324\) 0.613417 0.0340787
\(325\) 5.63906 0.312799
\(326\) 16.1117 0.892347
\(327\) 1.16500 0.0644246
\(328\) −2.99634 −0.165445
\(329\) 3.43165 0.189193
\(330\) 0.766875 0.0422151
\(331\) 35.1634 1.93275 0.966377 0.257128i \(-0.0827760\pi\)
0.966377 + 0.257128i \(0.0827760\pi\)
\(332\) 0.347368 0.0190643
\(333\) −0.354442 −0.0194233
\(334\) 8.20754 0.449097
\(335\) 2.99411 0.163586
\(336\) 0.315755 0.0172259
\(337\) 31.5152 1.71674 0.858370 0.513031i \(-0.171477\pi\)
0.858370 + 0.513031i \(0.171477\pi\)
\(338\) 27.0404 1.47080
\(339\) 1.26829 0.0688839
\(340\) 0 0
\(341\) 32.1708 1.74214
\(342\) 9.98263 0.539799
\(343\) −9.39536 −0.507302
\(344\) 1.78072 0.0960098
\(345\) 0.509622 0.0274371
\(346\) −6.52679 −0.350882
\(347\) 0.440312 0.0236372 0.0118186 0.999930i \(-0.496238\pi\)
0.0118186 + 0.999930i \(0.496238\pi\)
\(348\) −0.0493327 −0.00264451
\(349\) −12.4222 −0.664944 −0.332472 0.943113i \(-0.607883\pi\)
−0.332472 + 0.943113i \(0.607883\pi\)
\(350\) 0.999809 0.0534420
\(351\) 3.71114 0.198086
\(352\) −1.89229 −0.100860
\(353\) −7.38055 −0.392827 −0.196414 0.980521i \(-0.562929\pi\)
−0.196414 + 0.980521i \(0.562929\pi\)
\(354\) 1.56798 0.0833372
\(355\) 4.68852 0.248841
\(356\) −0.162579 −0.00861668
\(357\) 0 0
\(358\) −26.4314 −1.39694
\(359\) −7.05177 −0.372178 −0.186089 0.982533i \(-0.559581\pi\)
−0.186089 + 0.982533i \(0.559581\pi\)
\(360\) −8.29913 −0.437403
\(361\) −13.6050 −0.716051
\(362\) 15.4171 0.810303
\(363\) −1.37725 −0.0722869
\(364\) 0.270414 0.0141735
\(365\) −5.49911 −0.287837
\(366\) −0.253406 −0.0132457
\(367\) −16.3167 −0.851725 −0.425862 0.904788i \(-0.640029\pi\)
−0.425862 + 0.904788i \(0.640029\pi\)
\(368\) −19.1652 −0.999053
\(369\) −3.22327 −0.167797
\(370\) −0.170630 −0.00887063
\(371\) 8.33155 0.432552
\(372\) −0.0502862 −0.00260722
\(373\) −18.3821 −0.951787 −0.475893 0.879503i \(-0.657875\pi\)
−0.475893 + 0.879503i \(0.657875\pi\)
\(374\) 0 0
\(375\) 0.109907 0.00567556
\(376\) −13.7129 −0.707189
\(377\) 36.6887 1.88957
\(378\) 0.657987 0.0338432
\(379\) 16.4955 0.847315 0.423657 0.905822i \(-0.360746\pi\)
0.423657 + 0.905822i \(0.360746\pi\)
\(380\) 0.160244 0.00822033
\(381\) 0.0547928 0.00280712
\(382\) 26.6675 1.36443
\(383\) −36.3426 −1.85702 −0.928510 0.371307i \(-0.878910\pi\)
−0.928510 + 0.371307i \(0.878910\pi\)
\(384\) −1.30388 −0.0665384
\(385\) −3.37178 −0.171842
\(386\) 14.2199 0.723772
\(387\) 1.91558 0.0973744
\(388\) −0.186328 −0.00945935
\(389\) 6.36837 0.322889 0.161445 0.986882i \(-0.448385\pi\)
0.161445 + 0.986882i \(0.448385\pi\)
\(390\) 0.891477 0.0451417
\(391\) 0 0
\(392\) 18.1010 0.914237
\(393\) 2.14693 0.108298
\(394\) 20.0705 1.01114
\(395\) −14.8439 −0.746880
\(396\) −0.999941 −0.0502489
\(397\) −33.3778 −1.67518 −0.837591 0.546298i \(-0.816037\pi\)
−0.837591 + 0.546298i \(0.816037\pi\)
\(398\) 18.3203 0.918316
\(399\) 0.177443 0.00888327
\(400\) −4.13322 −0.206661
\(401\) −11.7500 −0.586769 −0.293384 0.955995i \(-0.594782\pi\)
−0.293384 + 0.955995i \(0.594782\pi\)
\(402\) 0.473338 0.0236080
\(403\) 37.3979 1.86292
\(404\) 0.986724 0.0490914
\(405\) −8.89143 −0.441819
\(406\) 6.50494 0.322835
\(407\) 0.575436 0.0285233
\(408\) 0 0
\(409\) 12.6834 0.627154 0.313577 0.949563i \(-0.398473\pi\)
0.313577 + 0.949563i \(0.398473\pi\)
\(410\) −1.55170 −0.0766328
\(411\) 0.419541 0.0206944
\(412\) −0.751735 −0.0370353
\(413\) −6.89405 −0.339234
\(414\) −19.9284 −0.979427
\(415\) −5.03506 −0.247162
\(416\) −2.19975 −0.107852
\(417\) −1.45654 −0.0713269
\(418\) −16.2068 −0.792700
\(419\) −35.0224 −1.71095 −0.855477 0.517840i \(-0.826736\pi\)
−0.855477 + 0.517840i \(0.826736\pi\)
\(420\) 0.00527044 0.000257171 0
\(421\) −10.0231 −0.488497 −0.244248 0.969713i \(-0.578541\pi\)
−0.244248 + 0.969713i \(0.578541\pi\)
\(422\) −18.5234 −0.901706
\(423\) −14.7514 −0.717240
\(424\) −33.2929 −1.61685
\(425\) 0 0
\(426\) 0.741207 0.0359116
\(427\) 1.11417 0.0539184
\(428\) −1.14711 −0.0554479
\(429\) −3.00643 −0.145152
\(430\) 0.922169 0.0444709
\(431\) 23.7461 1.14381 0.571905 0.820320i \(-0.306205\pi\)
0.571905 + 0.820320i \(0.306205\pi\)
\(432\) −2.72013 −0.130872
\(433\) −32.2917 −1.55184 −0.775919 0.630832i \(-0.782714\pi\)
−0.775919 + 0.630832i \(0.782714\pi\)
\(434\) 6.63067 0.318282
\(435\) 0.715073 0.0342851
\(436\) −0.731283 −0.0350221
\(437\) −10.7701 −0.515205
\(438\) −0.869353 −0.0415393
\(439\) 21.3269 1.01788 0.508939 0.860803i \(-0.330038\pi\)
0.508939 + 0.860803i \(0.330038\pi\)
\(440\) 13.4736 0.642330
\(441\) 19.4719 0.927231
\(442\) 0 0
\(443\) −13.8187 −0.656546 −0.328273 0.944583i \(-0.606467\pi\)
−0.328273 + 0.944583i \(0.606467\pi\)
\(444\) −0.000899466 0 −4.26868e−5 0
\(445\) 2.35657 0.111712
\(446\) 29.3732 1.39086
\(447\) 1.91834 0.0907345
\(448\) 5.35586 0.253040
\(449\) 6.61380 0.312125 0.156062 0.987747i \(-0.450120\pi\)
0.156062 + 0.987747i \(0.450120\pi\)
\(450\) −4.29782 −0.202601
\(451\) 5.23297 0.246411
\(452\) −0.796118 −0.0374462
\(453\) 1.23881 0.0582046
\(454\) 1.75526 0.0823786
\(455\) −3.91962 −0.183755
\(456\) −0.709063 −0.0332049
\(457\) 5.01039 0.234376 0.117188 0.993110i \(-0.462612\pi\)
0.117188 + 0.993110i \(0.462612\pi\)
\(458\) 5.06236 0.236548
\(459\) 0 0
\(460\) −0.319896 −0.0149152
\(461\) 16.3822 0.762994 0.381497 0.924370i \(-0.375409\pi\)
0.381497 + 0.924370i \(0.375409\pi\)
\(462\) −0.533043 −0.0247994
\(463\) −27.3768 −1.27231 −0.636153 0.771563i \(-0.719475\pi\)
−0.636153 + 0.771563i \(0.719475\pi\)
\(464\) −26.8915 −1.24841
\(465\) 0.728895 0.0338017
\(466\) −41.7172 −1.93251
\(467\) −0.646341 −0.0299091 −0.0149545 0.999888i \(-0.504760\pi\)
−0.0149545 + 0.999888i \(0.504760\pi\)
\(468\) −1.16241 −0.0537325
\(469\) −2.08116 −0.0960991
\(470\) −7.10141 −0.327564
\(471\) 0.675423 0.0311218
\(472\) 27.5487 1.26803
\(473\) −3.10994 −0.142995
\(474\) −2.34668 −0.107786
\(475\) −2.32272 −0.106574
\(476\) 0 0
\(477\) −35.8144 −1.63983
\(478\) 11.3221 0.517861
\(479\) −13.5649 −0.619795 −0.309898 0.950770i \(-0.600295\pi\)
−0.309898 + 0.950770i \(0.600295\pi\)
\(480\) −0.0428738 −0.00195691
\(481\) 0.668933 0.0305007
\(482\) 16.7242 0.761767
\(483\) −0.354231 −0.0161181
\(484\) 0.864516 0.0392962
\(485\) 2.70080 0.122637
\(486\) −4.24553 −0.192581
\(487\) 29.0339 1.31565 0.657826 0.753170i \(-0.271476\pi\)
0.657826 + 0.753170i \(0.271476\pi\)
\(488\) −4.45222 −0.201543
\(489\) −1.23108 −0.0556716
\(490\) 9.37384 0.423467
\(491\) 13.1298 0.592541 0.296271 0.955104i \(-0.404257\pi\)
0.296271 + 0.955104i \(0.404257\pi\)
\(492\) −0.00817968 −0.000368768 0
\(493\) 0 0
\(494\) −18.8401 −0.847655
\(495\) 14.4941 0.651460
\(496\) −27.4113 −1.23080
\(497\) −3.25892 −0.146183
\(498\) −0.795992 −0.0356692
\(499\) 11.3410 0.507691 0.253846 0.967245i \(-0.418305\pi\)
0.253846 + 0.967245i \(0.418305\pi\)
\(500\) −0.0689897 −0.00308531
\(501\) −0.627131 −0.0280182
\(502\) −11.4308 −0.510183
\(503\) 20.5436 0.915995 0.457998 0.888953i \(-0.348567\pi\)
0.457998 + 0.888953i \(0.348567\pi\)
\(504\) 5.76860 0.256954
\(505\) −14.3025 −0.636452
\(506\) 32.3537 1.43830
\(507\) −2.06613 −0.0917601
\(508\) −0.0343940 −0.00152599
\(509\) 8.40900 0.372722 0.186361 0.982481i \(-0.440331\pi\)
0.186361 + 0.982481i \(0.440331\pi\)
\(510\) 0 0
\(511\) 3.82235 0.169091
\(512\) −21.3482 −0.943467
\(513\) −1.52861 −0.0674899
\(514\) −11.4026 −0.502946
\(515\) 10.8963 0.480150
\(516\) 0.00486116 0.000214001 0
\(517\) 23.9489 1.05327
\(518\) 0.118602 0.00521108
\(519\) 0.498706 0.0218908
\(520\) 15.6628 0.686860
\(521\) 21.3561 0.935627 0.467813 0.883827i \(-0.345042\pi\)
0.467813 + 0.883827i \(0.345042\pi\)
\(522\) −27.9624 −1.22388
\(523\) −24.4644 −1.06975 −0.534877 0.844930i \(-0.679642\pi\)
−0.534877 + 0.844930i \(0.679642\pi\)
\(524\) −1.34765 −0.0588724
\(525\) −0.0763945 −0.00333413
\(526\) 12.2785 0.535367
\(527\) 0 0
\(528\) 2.20361 0.0958996
\(529\) −1.49953 −0.0651969
\(530\) −17.2412 −0.748909
\(531\) 29.6351 1.28605
\(532\) −0.111383 −0.00482907
\(533\) 6.08323 0.263494
\(534\) 0.372550 0.0161218
\(535\) 16.6273 0.718862
\(536\) 8.31633 0.359211
\(537\) 2.01960 0.0871521
\(538\) 22.9897 0.991155
\(539\) −31.6125 −1.36165
\(540\) −0.0454030 −0.00195384
\(541\) −1.92406 −0.0827219 −0.0413610 0.999144i \(-0.513169\pi\)
−0.0413610 + 0.999144i \(0.513169\pi\)
\(542\) −32.4055 −1.39194
\(543\) −1.17800 −0.0505530
\(544\) 0 0
\(545\) 10.5999 0.454049
\(546\) −0.619652 −0.0265186
\(547\) 14.7222 0.629475 0.314737 0.949179i \(-0.398084\pi\)
0.314737 + 0.949179i \(0.398084\pi\)
\(548\) −0.263350 −0.0112498
\(549\) −4.78941 −0.204407
\(550\) 6.97750 0.297522
\(551\) −15.1120 −0.643794
\(552\) 1.41551 0.0602480
\(553\) 10.3178 0.438757
\(554\) −9.92798 −0.421800
\(555\) 0.0130377 0.000553419 0
\(556\) 0.914285 0.0387743
\(557\) −24.3617 −1.03224 −0.516119 0.856517i \(-0.672624\pi\)
−0.516119 + 0.856517i \(0.672624\pi\)
\(558\) −28.5029 −1.20662
\(559\) −3.61524 −0.152909
\(560\) 2.87294 0.121404
\(561\) 0 0
\(562\) 13.4931 0.569171
\(563\) −30.7200 −1.29470 −0.647348 0.762195i \(-0.724122\pi\)
−0.647348 + 0.762195i \(0.724122\pi\)
\(564\) −0.0374347 −0.00157628
\(565\) 11.5397 0.485477
\(566\) −29.5978 −1.24409
\(567\) 6.18030 0.259548
\(568\) 13.0227 0.546419
\(569\) 5.35732 0.224590 0.112295 0.993675i \(-0.464180\pi\)
0.112295 + 0.993675i \(0.464180\pi\)
\(570\) −0.367198 −0.0153802
\(571\) 36.0360 1.50806 0.754031 0.656839i \(-0.228107\pi\)
0.754031 + 0.656839i \(0.228107\pi\)
\(572\) 1.88717 0.0789067
\(573\) −2.03764 −0.0851235
\(574\) 1.07856 0.0450182
\(575\) 4.63686 0.193370
\(576\) −23.0229 −0.959288
\(577\) −39.5472 −1.64637 −0.823186 0.567772i \(-0.807806\pi\)
−0.823186 + 0.567772i \(0.807806\pi\)
\(578\) 0 0
\(579\) −1.08653 −0.0451546
\(580\) −0.448860 −0.0186379
\(581\) 3.49979 0.145196
\(582\) 0.426969 0.0176984
\(583\) 58.1446 2.40810
\(584\) −15.2741 −0.632048
\(585\) 16.8490 0.696622
\(586\) −33.7361 −1.39363
\(587\) 17.9282 0.739975 0.369988 0.929037i \(-0.379362\pi\)
0.369988 + 0.929037i \(0.379362\pi\)
\(588\) 0.0494137 0.00203778
\(589\) −15.4041 −0.634716
\(590\) 14.2665 0.587341
\(591\) −1.53357 −0.0630827
\(592\) −0.490303 −0.0201513
\(593\) −15.2975 −0.628192 −0.314096 0.949391i \(-0.601701\pi\)
−0.314096 + 0.949391i \(0.601701\pi\)
\(594\) 4.59199 0.188412
\(595\) 0 0
\(596\) −1.20416 −0.0493245
\(597\) −1.39984 −0.0572917
\(598\) 37.6105 1.53801
\(599\) 34.6498 1.41575 0.707877 0.706336i \(-0.249653\pi\)
0.707877 + 0.706336i \(0.249653\pi\)
\(600\) 0.305273 0.0124627
\(601\) −16.0361 −0.654126 −0.327063 0.945003i \(-0.606059\pi\)
−0.327063 + 0.945003i \(0.606059\pi\)
\(602\) −0.640985 −0.0261246
\(603\) 8.94617 0.364316
\(604\) −0.777618 −0.0316408
\(605\) −12.5311 −0.509461
\(606\) −2.26108 −0.0918499
\(607\) 36.5119 1.48197 0.740986 0.671521i \(-0.234359\pi\)
0.740986 + 0.671521i \(0.234359\pi\)
\(608\) 0.906076 0.0367462
\(609\) −0.497037 −0.0201409
\(610\) −2.30564 −0.0933528
\(611\) 27.8402 1.12629
\(612\) 0 0
\(613\) 33.2758 1.34400 0.671998 0.740553i \(-0.265436\pi\)
0.671998 + 0.740553i \(0.265436\pi\)
\(614\) 43.7647 1.76620
\(615\) 0.118564 0.00478095
\(616\) −9.36532 −0.377339
\(617\) −31.7084 −1.27653 −0.638267 0.769815i \(-0.720348\pi\)
−0.638267 + 0.769815i \(0.720348\pi\)
\(618\) 1.72260 0.0692931
\(619\) 40.8302 1.64110 0.820552 0.571572i \(-0.193666\pi\)
0.820552 + 0.571572i \(0.193666\pi\)
\(620\) −0.457535 −0.0183751
\(621\) 3.05158 0.122456
\(622\) −1.55331 −0.0622820
\(623\) −1.63802 −0.0656258
\(624\) 2.56165 0.102548
\(625\) 1.00000 0.0400000
\(626\) −5.21497 −0.208432
\(627\) 1.23835 0.0494548
\(628\) −0.423970 −0.0169183
\(629\) 0 0
\(630\) 2.98735 0.119019
\(631\) −15.8001 −0.628992 −0.314496 0.949259i \(-0.601835\pi\)
−0.314496 + 0.949259i \(0.601835\pi\)
\(632\) −41.2300 −1.64004
\(633\) 1.41536 0.0562555
\(634\) 12.6505 0.502415
\(635\) 0.498539 0.0197839
\(636\) −0.0908860 −0.00360386
\(637\) −36.7489 −1.45605
\(638\) 45.3969 1.79728
\(639\) 14.0089 0.554185
\(640\) −11.8635 −0.468947
\(641\) 24.9339 0.984831 0.492415 0.870360i \(-0.336114\pi\)
0.492415 + 0.870360i \(0.336114\pi\)
\(642\) 2.62861 0.103743
\(643\) −24.0161 −0.947103 −0.473552 0.880766i \(-0.657028\pi\)
−0.473552 + 0.880766i \(0.657028\pi\)
\(644\) 0.222355 0.00876200
\(645\) −0.0704621 −0.00277444
\(646\) 0 0
\(647\) −23.8307 −0.936882 −0.468441 0.883495i \(-0.655184\pi\)
−0.468441 + 0.883495i \(0.655184\pi\)
\(648\) −24.6965 −0.970170
\(649\) −48.1125 −1.88858
\(650\) 8.11121 0.318148
\(651\) −0.506644 −0.0198569
\(652\) 0.772766 0.0302638
\(653\) −16.5191 −0.646441 −0.323221 0.946324i \(-0.604766\pi\)
−0.323221 + 0.946324i \(0.604766\pi\)
\(654\) 1.67573 0.0655264
\(655\) 19.5341 0.763260
\(656\) −4.45878 −0.174086
\(657\) −16.4309 −0.641031
\(658\) 4.93608 0.192428
\(659\) 10.2510 0.399324 0.199662 0.979865i \(-0.436016\pi\)
0.199662 + 0.979865i \(0.436016\pi\)
\(660\) 0.0367815 0.00143172
\(661\) −21.3416 −0.830090 −0.415045 0.909801i \(-0.636234\pi\)
−0.415045 + 0.909801i \(0.636234\pi\)
\(662\) 50.5790 1.96581
\(663\) 0 0
\(664\) −13.9852 −0.542731
\(665\) 1.61449 0.0626071
\(666\) −0.509829 −0.0197555
\(667\) 30.1683 1.16812
\(668\) 0.393657 0.0152311
\(669\) −2.24438 −0.0867728
\(670\) 4.30672 0.166383
\(671\) 7.77560 0.300174
\(672\) 0.0298009 0.00114960
\(673\) −27.5159 −1.06066 −0.530331 0.847791i \(-0.677932\pi\)
−0.530331 + 0.847791i \(0.677932\pi\)
\(674\) 45.3314 1.74610
\(675\) 0.658113 0.0253308
\(676\) 1.29693 0.0498821
\(677\) −17.0437 −0.655042 −0.327521 0.944844i \(-0.606213\pi\)
−0.327521 + 0.944844i \(0.606213\pi\)
\(678\) 1.82430 0.0700619
\(679\) −1.87729 −0.0720437
\(680\) 0 0
\(681\) −0.134118 −0.00513942
\(682\) 46.2744 1.77194
\(683\) −3.12281 −0.119491 −0.0597456 0.998214i \(-0.519029\pi\)
−0.0597456 + 0.998214i \(0.519029\pi\)
\(684\) 0.478796 0.0183072
\(685\) 3.81724 0.145849
\(686\) −13.5143 −0.515977
\(687\) −0.386810 −0.0147577
\(688\) 2.64984 0.101024
\(689\) 67.5919 2.57505
\(690\) 0.733040 0.0279064
\(691\) 36.1278 1.37437 0.687184 0.726484i \(-0.258847\pi\)
0.687184 + 0.726484i \(0.258847\pi\)
\(692\) −0.313044 −0.0119001
\(693\) −10.0746 −0.382702
\(694\) 0.633344 0.0240414
\(695\) −13.2525 −0.502695
\(696\) 1.98616 0.0752852
\(697\) 0 0
\(698\) −17.8680 −0.676315
\(699\) 3.18758 0.120565
\(700\) 0.0479537 0.00181248
\(701\) −18.1677 −0.686185 −0.343093 0.939302i \(-0.611474\pi\)
−0.343093 + 0.939302i \(0.611474\pi\)
\(702\) 5.33809 0.201473
\(703\) −0.275533 −0.0103919
\(704\) 37.3777 1.40872
\(705\) 0.542613 0.0204360
\(706\) −10.6162 −0.399545
\(707\) 9.94144 0.373886
\(708\) 0.0752048 0.00282637
\(709\) 11.6045 0.435817 0.217909 0.975969i \(-0.430077\pi\)
0.217909 + 0.975969i \(0.430077\pi\)
\(710\) 6.74396 0.253096
\(711\) −44.3525 −1.66335
\(712\) 6.54553 0.245304
\(713\) 30.7514 1.15165
\(714\) 0 0
\(715\) −27.3544 −1.02300
\(716\) −1.26772 −0.0473771
\(717\) −0.865112 −0.0323082
\(718\) −10.1433 −0.378543
\(719\) 25.7861 0.961658 0.480829 0.876814i \(-0.340336\pi\)
0.480829 + 0.876814i \(0.340336\pi\)
\(720\) −12.3497 −0.460247
\(721\) −7.57388 −0.282066
\(722\) −19.5694 −0.728296
\(723\) −1.27788 −0.0475249
\(724\) 0.739447 0.0274813
\(725\) 6.50618 0.241634
\(726\) −1.98104 −0.0735231
\(727\) 17.7430 0.658051 0.329025 0.944321i \(-0.393280\pi\)
0.329025 + 0.944321i \(0.393280\pi\)
\(728\) −10.8870 −0.403499
\(729\) −26.3499 −0.975922
\(730\) −7.90991 −0.292759
\(731\) 0 0
\(732\) −0.0121541 −0.000449227 0
\(733\) −26.8221 −0.990695 −0.495348 0.868695i \(-0.664959\pi\)
−0.495348 + 0.868695i \(0.664959\pi\)
\(734\) −23.4699 −0.866290
\(735\) −0.716247 −0.0264192
\(736\) −1.80880 −0.0666734
\(737\) −14.5241 −0.535002
\(738\) −4.63634 −0.170666
\(739\) 0.451458 0.0166071 0.00830357 0.999966i \(-0.497357\pi\)
0.00830357 + 0.999966i \(0.497357\pi\)
\(740\) −0.00818390 −0.000300846 0
\(741\) 1.43955 0.0528833
\(742\) 11.9841 0.439950
\(743\) 20.6466 0.757450 0.378725 0.925509i \(-0.376363\pi\)
0.378725 + 0.925509i \(0.376363\pi\)
\(744\) 2.02455 0.0742236
\(745\) 17.4543 0.639475
\(746\) −26.4407 −0.968063
\(747\) −15.0444 −0.550445
\(748\) 0 0
\(749\) −11.5574 −0.422298
\(750\) 0.158090 0.00577262
\(751\) 26.7059 0.974514 0.487257 0.873259i \(-0.337998\pi\)
0.487257 + 0.873259i \(0.337998\pi\)
\(752\) −20.4058 −0.744123
\(753\) 0.873420 0.0318292
\(754\) 52.7730 1.92188
\(755\) 11.2715 0.410212
\(756\) 0.0315589 0.00114779
\(757\) 19.3283 0.702499 0.351250 0.936282i \(-0.385757\pi\)
0.351250 + 0.936282i \(0.385757\pi\)
\(758\) 23.7270 0.861805
\(759\) −2.47212 −0.0897322
\(760\) −6.45150 −0.234020
\(761\) −9.52382 −0.345238 −0.172619 0.984989i \(-0.555223\pi\)
−0.172619 + 0.984989i \(0.555223\pi\)
\(762\) 0.0788138 0.00285512
\(763\) −7.36782 −0.266733
\(764\) 1.27905 0.0462743
\(765\) 0 0
\(766\) −52.2751 −1.88878
\(767\) −55.9298 −2.01951
\(768\) −0.181764 −0.00655886
\(769\) 21.8393 0.787544 0.393772 0.919208i \(-0.371170\pi\)
0.393772 + 0.919208i \(0.371170\pi\)
\(770\) −4.84996 −0.174780
\(771\) 0.871260 0.0313777
\(772\) 0.682026 0.0245466
\(773\) −18.2320 −0.655760 −0.327880 0.944719i \(-0.606334\pi\)
−0.327880 + 0.944719i \(0.606334\pi\)
\(774\) 2.75537 0.0990396
\(775\) 6.63194 0.238226
\(776\) 7.50165 0.269294
\(777\) −0.00906229 −0.000325108 0
\(778\) 9.16025 0.328411
\(779\) −2.50567 −0.0897751
\(780\) 0.0427578 0.00153097
\(781\) −22.7435 −0.813826
\(782\) 0 0
\(783\) 4.28180 0.153019
\(784\) 26.9356 0.961986
\(785\) 6.14541 0.219339
\(786\) 3.08814 0.110150
\(787\) −10.0983 −0.359967 −0.179983 0.983670i \(-0.557604\pi\)
−0.179983 + 0.983670i \(0.557604\pi\)
\(788\) 0.962641 0.0342927
\(789\) −0.938188 −0.0334004
\(790\) −21.3515 −0.759653
\(791\) −8.02104 −0.285195
\(792\) 40.2581 1.43051
\(793\) 9.03898 0.320984
\(794\) −48.0105 −1.70383
\(795\) 1.31738 0.0467228
\(796\) 0.878696 0.0311446
\(797\) −30.2149 −1.07027 −0.535133 0.844768i \(-0.679738\pi\)
−0.535133 + 0.844768i \(0.679738\pi\)
\(798\) 0.255234 0.00903518
\(799\) 0 0
\(800\) −0.390093 −0.0137919
\(801\) 7.04125 0.248790
\(802\) −16.9012 −0.596803
\(803\) 26.6756 0.941360
\(804\) 0.0227027 0.000800661 0
\(805\) −3.22301 −0.113596
\(806\) 53.7930 1.89478
\(807\) −1.75662 −0.0618360
\(808\) −39.7260 −1.39756
\(809\) 25.8073 0.907337 0.453669 0.891170i \(-0.350115\pi\)
0.453669 + 0.891170i \(0.350115\pi\)
\(810\) −12.7894 −0.449374
\(811\) −47.1759 −1.65657 −0.828284 0.560308i \(-0.810683\pi\)
−0.828284 + 0.560308i \(0.810683\pi\)
\(812\) 0.311995 0.0109489
\(813\) 2.47608 0.0868399
\(814\) 0.827706 0.0290111
\(815\) −11.2012 −0.392360
\(816\) 0 0
\(817\) 1.48911 0.0520975
\(818\) 18.2438 0.637880
\(819\) −11.7115 −0.409233
\(820\) −0.0744238 −0.00259899
\(821\) 34.8152 1.21506 0.607530 0.794297i \(-0.292161\pi\)
0.607530 + 0.794297i \(0.292161\pi\)
\(822\) 0.603467 0.0210483
\(823\) −11.9291 −0.415823 −0.207912 0.978148i \(-0.566667\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(824\) 30.2652 1.05434
\(825\) −0.533145 −0.0185617
\(826\) −9.91639 −0.345035
\(827\) 7.58265 0.263674 0.131837 0.991271i \(-0.457912\pi\)
0.131837 + 0.991271i \(0.457912\pi\)
\(828\) −0.955823 −0.0332171
\(829\) 24.5064 0.851141 0.425570 0.904925i \(-0.360073\pi\)
0.425570 + 0.904925i \(0.360073\pi\)
\(830\) −7.24243 −0.251388
\(831\) 0.758589 0.0263152
\(832\) 43.4508 1.50639
\(833\) 0 0
\(834\) −2.09508 −0.0725467
\(835\) −5.70603 −0.197465
\(836\) −0.777324 −0.0268843
\(837\) 4.36456 0.150861
\(838\) −50.3761 −1.74021
\(839\) −13.9747 −0.482462 −0.241231 0.970468i \(-0.577551\pi\)
−0.241231 + 0.970468i \(0.577551\pi\)
\(840\) −0.212190 −0.00732127
\(841\) 13.3304 0.459669
\(842\) −14.4172 −0.496850
\(843\) −1.03099 −0.0355093
\(844\) −0.888437 −0.0305813
\(845\) −18.7989 −0.646703
\(846\) −21.2184 −0.729505
\(847\) 8.71017 0.299285
\(848\) −49.5423 −1.70129
\(849\) 2.26154 0.0776158
\(850\) 0 0
\(851\) 0.550047 0.0188554
\(852\) 0.0355504 0.00121794
\(853\) −7.40009 −0.253374 −0.126687 0.991943i \(-0.540434\pi\)
−0.126687 + 0.991943i \(0.540434\pi\)
\(854\) 1.60262 0.0548404
\(855\) −6.94010 −0.237347
\(856\) 46.1834 1.57852
\(857\) −48.3185 −1.65053 −0.825264 0.564748i \(-0.808973\pi\)
−0.825264 + 0.564748i \(0.808973\pi\)
\(858\) −4.32445 −0.147634
\(859\) −5.21085 −0.177792 −0.0888959 0.996041i \(-0.528334\pi\)
−0.0888959 + 0.996041i \(0.528334\pi\)
\(860\) 0.0442299 0.00150823
\(861\) −0.0824119 −0.00280859
\(862\) 34.1563 1.16337
\(863\) 7.90307 0.269024 0.134512 0.990912i \(-0.457053\pi\)
0.134512 + 0.990912i \(0.457053\pi\)
\(864\) −0.256725 −0.00873396
\(865\) 4.53754 0.154281
\(866\) −46.4483 −1.57838
\(867\) 0 0
\(868\) 0.318026 0.0107945
\(869\) 72.0063 2.44265
\(870\) 1.02856 0.0348715
\(871\) −16.8840 −0.572091
\(872\) 29.4419 0.997027
\(873\) 8.06979 0.273121
\(874\) −15.4917 −0.524016
\(875\) −0.695085 −0.0234982
\(876\) −0.0416967 −0.00140880
\(877\) −27.5064 −0.928824 −0.464412 0.885619i \(-0.653734\pi\)
−0.464412 + 0.885619i \(0.653734\pi\)
\(878\) 30.6766 1.03528
\(879\) 2.57775 0.0869452
\(880\) 20.0498 0.675878
\(881\) −19.7314 −0.664769 −0.332384 0.943144i \(-0.607853\pi\)
−0.332384 + 0.943144i \(0.607853\pi\)
\(882\) 28.0083 0.943088
\(883\) 21.8566 0.735534 0.367767 0.929918i \(-0.380122\pi\)
0.367767 + 0.929918i \(0.380122\pi\)
\(884\) 0 0
\(885\) −1.09009 −0.0366429
\(886\) −19.8768 −0.667774
\(887\) 2.77874 0.0933011 0.0466505 0.998911i \(-0.485145\pi\)
0.0466505 + 0.998911i \(0.485145\pi\)
\(888\) 0.0362130 0.00121523
\(889\) −0.346526 −0.0116221
\(890\) 3.38969 0.113623
\(891\) 43.1313 1.44495
\(892\) 1.40882 0.0471709
\(893\) −11.4673 −0.383740
\(894\) 2.75934 0.0922861
\(895\) 18.3756 0.614227
\(896\) 8.24615 0.275485
\(897\) −2.87379 −0.0959530
\(898\) 9.51328 0.317462
\(899\) 43.1486 1.43909
\(900\) −0.206136 −0.00687119
\(901\) 0 0
\(902\) 7.52710 0.250625
\(903\) 0.0489771 0.00162986
\(904\) 32.0521 1.06604
\(905\) −10.7182 −0.356286
\(906\) 1.78191 0.0592000
\(907\) 42.4769 1.41042 0.705210 0.708998i \(-0.250853\pi\)
0.705210 + 0.708998i \(0.250853\pi\)
\(908\) 0.0841875 0.00279386
\(909\) −42.7347 −1.41742
\(910\) −5.63798 −0.186897
\(911\) −59.0680 −1.95701 −0.978505 0.206223i \(-0.933883\pi\)
−0.978505 + 0.206223i \(0.933883\pi\)
\(912\) −1.05514 −0.0349392
\(913\) 24.4245 0.808333
\(914\) 7.20694 0.238384
\(915\) 0.176172 0.00582407
\(916\) 0.242805 0.00802251
\(917\) −13.5778 −0.448380
\(918\) 0 0
\(919\) 26.5657 0.876323 0.438161 0.898896i \(-0.355630\pi\)
0.438161 + 0.898896i \(0.355630\pi\)
\(920\) 12.8792 0.424614
\(921\) −3.34402 −0.110189
\(922\) 23.5641 0.776042
\(923\) −26.4388 −0.870245
\(924\) −0.0255663 −0.000841069 0
\(925\) 0.118625 0.00390036
\(926\) −39.3787 −1.29406
\(927\) 32.5574 1.06932
\(928\) −2.53801 −0.0833144
\(929\) −38.9968 −1.27944 −0.639722 0.768606i \(-0.720951\pi\)
−0.639722 + 0.768606i \(0.720951\pi\)
\(930\) 1.04844 0.0343797
\(931\) 15.1368 0.496090
\(932\) −2.00088 −0.0655410
\(933\) 0.118687 0.00388563
\(934\) −0.929695 −0.0304206
\(935\) 0 0
\(936\) 46.7993 1.52968
\(937\) 9.80514 0.320320 0.160160 0.987091i \(-0.448799\pi\)
0.160160 + 0.987091i \(0.448799\pi\)
\(938\) −2.99354 −0.0977425
\(939\) 0.398471 0.0130036
\(940\) −0.340604 −0.0111093
\(941\) −49.2240 −1.60466 −0.802328 0.596884i \(-0.796405\pi\)
−0.802328 + 0.596884i \(0.796405\pi\)
\(942\) 0.971527 0.0316540
\(943\) 5.00209 0.162890
\(944\) 40.9945 1.33426
\(945\) −0.457444 −0.0148807
\(946\) −4.47333 −0.145441
\(947\) 18.1975 0.591339 0.295669 0.955290i \(-0.404457\pi\)
0.295669 + 0.955290i \(0.404457\pi\)
\(948\) −0.112553 −0.00365556
\(949\) 31.0098 1.00662
\(950\) −3.34100 −0.108396
\(951\) −0.966612 −0.0313445
\(952\) 0 0
\(953\) −5.23591 −0.169608 −0.0848039 0.996398i \(-0.527026\pi\)
−0.0848039 + 0.996398i \(0.527026\pi\)
\(954\) −51.5153 −1.66787
\(955\) −18.5397 −0.599930
\(956\) 0.543041 0.0175632
\(957\) −3.46874 −0.112128
\(958\) −19.5117 −0.630395
\(959\) −2.65331 −0.0856797
\(960\) 0.846868 0.0273326
\(961\) 12.9826 0.418793
\(962\) 0.962191 0.0310223
\(963\) 49.6811 1.60095
\(964\) 0.802141 0.0258352
\(965\) −9.88591 −0.318239
\(966\) −0.509525 −0.0163937
\(967\) 3.19462 0.102732 0.0513661 0.998680i \(-0.483642\pi\)
0.0513661 + 0.998680i \(0.483642\pi\)
\(968\) −34.8059 −1.11870
\(969\) 0 0
\(970\) 3.88483 0.124734
\(971\) −27.2613 −0.874856 −0.437428 0.899253i \(-0.644110\pi\)
−0.437428 + 0.899253i \(0.644110\pi\)
\(972\) −0.203628 −0.00653136
\(973\) 9.21160 0.295310
\(974\) 41.7623 1.33815
\(975\) −0.619770 −0.0198485
\(976\) −6.62524 −0.212069
\(977\) 8.00610 0.256138 0.128069 0.991765i \(-0.459122\pi\)
0.128069 + 0.991765i \(0.459122\pi\)
\(978\) −1.77079 −0.0566236
\(979\) −11.4315 −0.365351
\(980\) 0.449596 0.0143618
\(981\) 31.6716 1.01120
\(982\) 18.8859 0.602674
\(983\) −10.9464 −0.349137 −0.174569 0.984645i \(-0.555853\pi\)
−0.174569 + 0.984645i \(0.555853\pi\)
\(984\) 0.329318 0.0104983
\(985\) −13.9534 −0.444592
\(986\) 0 0
\(987\) −0.377162 −0.0120052
\(988\) −0.903624 −0.0287481
\(989\) −2.97273 −0.0945273
\(990\) 20.8482 0.662600
\(991\) 29.0834 0.923863 0.461932 0.886915i \(-0.347157\pi\)
0.461932 + 0.886915i \(0.347157\pi\)
\(992\) −2.58707 −0.0821395
\(993\) −3.86470 −0.122642
\(994\) −4.68762 −0.148682
\(995\) −12.7366 −0.403778
\(996\) −0.0381780 −0.00120972
\(997\) −13.6956 −0.433745 −0.216873 0.976200i \(-0.569586\pi\)
−0.216873 + 0.976200i \(0.569586\pi\)
\(998\) 16.3128 0.516373
\(999\) 0.0780686 0.00246998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.10 12
5.4 even 2 7225.2.a.bq.1.3 12
17.3 odd 16 85.2.l.a.26.5 24
17.4 even 4 1445.2.d.j.866.6 24
17.6 odd 16 85.2.l.a.36.5 yes 24
17.13 even 4 1445.2.d.j.866.5 24
17.16 even 2 1445.2.a.p.1.10 12
51.20 even 16 765.2.be.b.451.2 24
51.23 even 16 765.2.be.b.631.2 24
85.3 even 16 425.2.n.c.349.2 24
85.23 even 16 425.2.n.f.274.5 24
85.37 even 16 425.2.n.f.349.5 24
85.54 odd 16 425.2.m.b.26.2 24
85.57 even 16 425.2.n.c.274.2 24
85.74 odd 16 425.2.m.b.376.2 24
85.84 even 2 7225.2.a.bs.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.5 24 17.3 odd 16
85.2.l.a.36.5 yes 24 17.6 odd 16
425.2.m.b.26.2 24 85.54 odd 16
425.2.m.b.376.2 24 85.74 odd 16
425.2.n.c.274.2 24 85.57 even 16
425.2.n.c.349.2 24 85.3 even 16
425.2.n.f.274.5 24 85.23 even 16
425.2.n.f.349.5 24 85.37 even 16
765.2.be.b.451.2 24 51.20 even 16
765.2.be.b.631.2 24 51.23 even 16
1445.2.a.p.1.10 12 17.16 even 2
1445.2.a.q.1.10 12 1.1 even 1 trivial
1445.2.d.j.866.5 24 17.13 even 4
1445.2.d.j.866.6 24 17.4 even 4
7225.2.a.bq.1.3 12 5.4 even 2
7225.2.a.bs.1.3 12 85.84 even 2