Properties

Label 1440.5.e.b.991.6
Level $1440$
Weight $5$
Character 1440.991
Analytic conductor $148.853$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,5,Mod(991,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.991"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1440.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,560,0,0,0,0,0,0,0,1000,0,0, 0,2064,0,0,0,0,0,0,0,3616] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(148.852746841\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 35x^{6} + 413x^{4} + 2015x^{2} + 3481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{20}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 991.6
Root \(-2.72964i\) of defining polynomial
Character \(\chi\) \(=\) 1440.991
Dual form 1440.5.e.b.991.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.1803 q^{5} -32.1829i q^{7} -1.80919i q^{11} +50.2406 q^{13} -374.600 q^{17} +364.448i q^{19} -499.886i q^{23} +125.000 q^{25} +118.609 q^{29} +128.914i q^{31} -359.816i q^{35} +1346.95 q^{37} -1779.09 q^{41} +3034.10i q^{43} +1843.73i q^{47} +1365.26 q^{49} -1604.66 q^{53} -20.2274i q^{55} +1463.79i q^{59} +3006.04 q^{61} +561.707 q^{65} +3120.66i q^{67} +5532.73i q^{71} -3377.26 q^{73} -58.2250 q^{77} -11766.1i q^{79} -6719.80i q^{83} -4188.15 q^{85} +12536.4 q^{89} -1616.89i q^{91} +4074.66i q^{95} -968.394 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{13} + 560 q^{17} + 1000 q^{25} + 2064 q^{29} + 3616 q^{37} + 5216 q^{41} + 4088 q^{49} - 5088 q^{53} - 5504 q^{61} + 7600 q^{65} + 17936 q^{73} + 15840 q^{77} - 9600 q^{85} + 50608 q^{89} + 3440 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.1803 0.447214
\(6\) 0 0
\(7\) − 32.1829i − 0.656794i −0.944540 0.328397i \(-0.893492\pi\)
0.944540 0.328397i \(-0.106508\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.80919i − 0.0149520i −0.999972 0.00747600i \(-0.997620\pi\)
0.999972 0.00747600i \(-0.00237971\pi\)
\(12\) 0 0
\(13\) 50.2406 0.297282 0.148641 0.988891i \(-0.452510\pi\)
0.148641 + 0.988891i \(0.452510\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −374.600 −1.29619 −0.648097 0.761558i \(-0.724435\pi\)
−0.648097 + 0.761558i \(0.724435\pi\)
\(18\) 0 0
\(19\) 364.448i 1.00955i 0.863250 + 0.504776i \(0.168425\pi\)
−0.863250 + 0.504776i \(0.831575\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 499.886i − 0.944965i −0.881340 0.472482i \(-0.843358\pi\)
0.881340 0.472482i \(-0.156642\pi\)
\(24\) 0 0
\(25\) 125.000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 118.609 0.141033 0.0705164 0.997511i \(-0.477535\pi\)
0.0705164 + 0.997511i \(0.477535\pi\)
\(30\) 0 0
\(31\) 128.914i 0.134145i 0.997748 + 0.0670727i \(0.0213659\pi\)
−0.997748 + 0.0670727i \(0.978634\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 359.816i − 0.293727i
\(36\) 0 0
\(37\) 1346.95 0.983894 0.491947 0.870625i \(-0.336285\pi\)
0.491947 + 0.870625i \(0.336285\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1779.09 −1.05835 −0.529175 0.848512i \(-0.677499\pi\)
−0.529175 + 0.848512i \(0.677499\pi\)
\(42\) 0 0
\(43\) 3034.10i 1.64094i 0.571690 + 0.820470i \(0.306288\pi\)
−0.571690 + 0.820470i \(0.693712\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1843.73i 0.834643i 0.908759 + 0.417322i \(0.137031\pi\)
−0.908759 + 0.417322i \(0.862969\pi\)
\(48\) 0 0
\(49\) 1365.26 0.568622
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1604.66 −0.571257 −0.285629 0.958340i \(-0.592202\pi\)
−0.285629 + 0.958340i \(0.592202\pi\)
\(54\) 0 0
\(55\) − 20.2274i − 0.00668674i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1463.79i 0.420508i 0.977647 + 0.210254i \(0.0674291\pi\)
−0.977647 + 0.210254i \(0.932571\pi\)
\(60\) 0 0
\(61\) 3006.04 0.807859 0.403929 0.914790i \(-0.367644\pi\)
0.403929 + 0.914790i \(0.367644\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 561.707 0.132948
\(66\) 0 0
\(67\) 3120.66i 0.695179i 0.937647 + 0.347589i \(0.113000\pi\)
−0.937647 + 0.347589i \(0.887000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5532.73i 1.09755i 0.835971 + 0.548773i \(0.184905\pi\)
−0.835971 + 0.548773i \(0.815095\pi\)
\(72\) 0 0
\(73\) −3377.26 −0.633751 −0.316875 0.948467i \(-0.602634\pi\)
−0.316875 + 0.948467i \(0.602634\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −58.2250 −0.00982038
\(78\) 0 0
\(79\) − 11766.1i − 1.88528i −0.333806 0.942642i \(-0.608333\pi\)
0.333806 0.942642i \(-0.391667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6719.80i − 0.975440i −0.873000 0.487720i \(-0.837829\pi\)
0.873000 0.487720i \(-0.162171\pi\)
\(84\) 0 0
\(85\) −4188.15 −0.579675
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12536.4 1.58268 0.791339 0.611378i \(-0.209384\pi\)
0.791339 + 0.611378i \(0.209384\pi\)
\(90\) 0 0
\(91\) − 1616.89i − 0.195253i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4074.66i 0.451485i
\(96\) 0 0
\(97\) −968.394 −0.102922 −0.0514610 0.998675i \(-0.516388\pi\)
−0.0514610 + 0.998675i \(0.516388\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15104.8 1.48072 0.740360 0.672211i \(-0.234655\pi\)
0.740360 + 0.672211i \(0.234655\pi\)
\(102\) 0 0
\(103\) 35.7601i 0.00337074i 0.999999 + 0.00168537i \(0.000536470\pi\)
−0.999999 + 0.00168537i \(0.999464\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10691.1i 0.933806i 0.884308 + 0.466903i \(0.154630\pi\)
−0.884308 + 0.466903i \(0.845370\pi\)
\(108\) 0 0
\(109\) −5435.32 −0.457480 −0.228740 0.973488i \(-0.573461\pi\)
−0.228740 + 0.973488i \(0.573461\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15583.6 −1.22043 −0.610213 0.792237i \(-0.708916\pi\)
−0.610213 + 0.792237i \(0.708916\pi\)
\(114\) 0 0
\(115\) − 5588.90i − 0.422601i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12055.7i 0.851332i
\(120\) 0 0
\(121\) 14637.7 0.999776
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1397.54 0.0894427
\(126\) 0 0
\(127\) 1530.71i 0.0949042i 0.998874 + 0.0474521i \(0.0151102\pi\)
−0.998874 + 0.0474521i \(0.984890\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2511.55i 0.146352i 0.997319 + 0.0731761i \(0.0233135\pi\)
−0.997319 + 0.0731761i \(0.976686\pi\)
\(132\) 0 0
\(133\) 11729.0 0.663068
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8095.96 0.431347 0.215674 0.976465i \(-0.430805\pi\)
0.215674 + 0.976465i \(0.430805\pi\)
\(138\) 0 0
\(139\) − 20207.8i − 1.04590i −0.852364 0.522949i \(-0.824832\pi\)
0.852364 0.522949i \(-0.175168\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 90.8949i − 0.00444495i
\(144\) 0 0
\(145\) 1326.08 0.0630718
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21223.9 0.955990 0.477995 0.878363i \(-0.341364\pi\)
0.477995 + 0.878363i \(0.341364\pi\)
\(150\) 0 0
\(151\) 39395.1i 1.72778i 0.503682 + 0.863889i \(0.331978\pi\)
−0.503682 + 0.863889i \(0.668022\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1441.30i 0.0599916i
\(156\) 0 0
\(157\) 27492.0 1.11534 0.557670 0.830063i \(-0.311696\pi\)
0.557670 + 0.830063i \(0.311696\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16087.8 −0.620647
\(162\) 0 0
\(163\) 36559.7i 1.37603i 0.725698 + 0.688014i \(0.241517\pi\)
−0.725698 + 0.688014i \(0.758483\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 35981.9i − 1.29018i −0.764106 0.645091i \(-0.776819\pi\)
0.764106 0.645091i \(-0.223181\pi\)
\(168\) 0 0
\(169\) −26036.9 −0.911624
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −41985.2 −1.40283 −0.701413 0.712755i \(-0.747447\pi\)
−0.701413 + 0.712755i \(0.747447\pi\)
\(174\) 0 0
\(175\) − 4022.86i − 0.131359i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 55301.6i 1.72596i 0.505235 + 0.862982i \(0.331406\pi\)
−0.505235 + 0.862982i \(0.668594\pi\)
\(180\) 0 0
\(181\) 6709.23 0.204793 0.102397 0.994744i \(-0.467349\pi\)
0.102397 + 0.994744i \(0.467349\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15059.4 0.440011
\(186\) 0 0
\(187\) 677.723i 0.0193807i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 57528.3i − 1.57694i −0.615074 0.788469i \(-0.710874\pi\)
0.615074 0.788469i \(-0.289126\pi\)
\(192\) 0 0
\(193\) 54959.8 1.47547 0.737736 0.675090i \(-0.235895\pi\)
0.737736 + 0.675090i \(0.235895\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 43745.7 1.12720 0.563602 0.826046i \(-0.309415\pi\)
0.563602 + 0.826046i \(0.309415\pi\)
\(198\) 0 0
\(199\) 15262.1i 0.385397i 0.981258 + 0.192699i \(0.0617240\pi\)
−0.981258 + 0.192699i \(0.938276\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 3817.17i − 0.0926295i
\(204\) 0 0
\(205\) −19890.8 −0.473309
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 659.357 0.0150948
\(210\) 0 0
\(211\) − 71215.5i − 1.59959i −0.600271 0.799796i \(-0.704941\pi\)
0.600271 0.799796i \(-0.295059\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 33922.2i 0.733851i
\(216\) 0 0
\(217\) 4148.82 0.0881059
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18820.1 −0.385334
\(222\) 0 0
\(223\) 37447.8i 0.753038i 0.926409 + 0.376519i \(0.122879\pi\)
−0.926409 + 0.376519i \(0.877121\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 29560.2i 0.573661i 0.957981 + 0.286831i \(0.0926017\pi\)
−0.957981 + 0.286831i \(0.907398\pi\)
\(228\) 0 0
\(229\) −69948.9 −1.33386 −0.666929 0.745121i \(-0.732392\pi\)
−0.666929 + 0.745121i \(0.732392\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 58289.6 1.07369 0.536846 0.843681i \(-0.319616\pi\)
0.536846 + 0.843681i \(0.319616\pi\)
\(234\) 0 0
\(235\) 20613.5i 0.373264i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 83095.5i 1.45473i 0.686252 + 0.727364i \(0.259255\pi\)
−0.686252 + 0.727364i \(0.740745\pi\)
\(240\) 0 0
\(241\) 46933.8 0.808076 0.404038 0.914742i \(-0.367606\pi\)
0.404038 + 0.914742i \(0.367606\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15264.1 0.254295
\(246\) 0 0
\(247\) 18310.1i 0.300121i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 56227.9i 0.892493i 0.894910 + 0.446246i \(0.147240\pi\)
−0.894910 + 0.446246i \(0.852760\pi\)
\(252\) 0 0
\(253\) −904.390 −0.0141291
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15534.8 −0.235201 −0.117601 0.993061i \(-0.537520\pi\)
−0.117601 + 0.993061i \(0.537520\pi\)
\(258\) 0 0
\(259\) − 43348.8i − 0.646215i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 126497.i 1.82881i 0.404802 + 0.914404i \(0.367340\pi\)
−0.404802 + 0.914404i \(0.632660\pi\)
\(264\) 0 0
\(265\) −17940.7 −0.255474
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 107881. 1.49087 0.745433 0.666580i \(-0.232243\pi\)
0.745433 + 0.666580i \(0.232243\pi\)
\(270\) 0 0
\(271\) 82356.7i 1.12140i 0.828019 + 0.560700i \(0.189468\pi\)
−0.828019 + 0.560700i \(0.810532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 226.149i − 0.00299040i
\(276\) 0 0
\(277\) −72796.3 −0.948746 −0.474373 0.880324i \(-0.657325\pi\)
−0.474373 + 0.880324i \(0.657325\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 116309. 1.47300 0.736500 0.676438i \(-0.236477\pi\)
0.736500 + 0.676438i \(0.236477\pi\)
\(282\) 0 0
\(283\) 134321.i 1.67715i 0.544788 + 0.838574i \(0.316610\pi\)
−0.544788 + 0.838574i \(0.683390\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 57256.2i 0.695118i
\(288\) 0 0
\(289\) 56804.1 0.680118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 124186. 1.44657 0.723284 0.690550i \(-0.242632\pi\)
0.723284 + 0.690550i \(0.242632\pi\)
\(294\) 0 0
\(295\) 16365.6i 0.188057i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 25114.6i − 0.280921i
\(300\) 0 0
\(301\) 97646.1 1.07776
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33608.6 0.361285
\(306\) 0 0
\(307\) − 49865.3i − 0.529080i −0.964375 0.264540i \(-0.914780\pi\)
0.964375 0.264540i \(-0.0852202\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 74202.6i 0.767182i 0.923503 + 0.383591i \(0.125313\pi\)
−0.923503 + 0.383591i \(0.874687\pi\)
\(312\) 0 0
\(313\) −49425.8 −0.504504 −0.252252 0.967662i \(-0.581171\pi\)
−0.252252 + 0.967662i \(0.581171\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 54528.3 0.542630 0.271315 0.962491i \(-0.412541\pi\)
0.271315 + 0.962491i \(0.412541\pi\)
\(318\) 0 0
\(319\) − 214.586i − 0.00210872i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 136522.i − 1.30857i
\(324\) 0 0
\(325\) 6280.07 0.0594563
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 59336.5 0.548189
\(330\) 0 0
\(331\) − 76903.2i − 0.701921i −0.936390 0.350961i \(-0.885855\pi\)
0.936390 0.350961i \(-0.114145\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 34890.0i 0.310893i
\(336\) 0 0
\(337\) 59178.9 0.521083 0.260542 0.965463i \(-0.416099\pi\)
0.260542 + 0.965463i \(0.416099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 233.230 0.00200574
\(342\) 0 0
\(343\) − 121209.i − 1.03026i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 44386.0i − 0.368627i −0.982867 0.184314i \(-0.940994\pi\)
0.982867 0.184314i \(-0.0590062\pi\)
\(348\) 0 0
\(349\) 222882. 1.82988 0.914941 0.403587i \(-0.132237\pi\)
0.914941 + 0.403587i \(0.132237\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −28966.3 −0.232458 −0.116229 0.993222i \(-0.537081\pi\)
−0.116229 + 0.993222i \(0.537081\pi\)
\(354\) 0 0
\(355\) 61857.8i 0.490837i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 1777.59i − 0.0137925i −0.999976 0.00689624i \(-0.997805\pi\)
0.999976 0.00689624i \(-0.00219516\pi\)
\(360\) 0 0
\(361\) −2501.53 −0.0191951
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −37758.9 −0.283422
\(366\) 0 0
\(367\) 190911.i 1.41742i 0.705498 + 0.708712i \(0.250724\pi\)
−0.705498 + 0.708712i \(0.749276\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 51642.7i 0.375198i
\(372\) 0 0
\(373\) −10573.7 −0.0759994 −0.0379997 0.999278i \(-0.512099\pi\)
−0.0379997 + 0.999278i \(0.512099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5958.97 0.0419265
\(378\) 0 0
\(379\) 96649.6i 0.672855i 0.941709 + 0.336428i \(0.109219\pi\)
−0.941709 + 0.336428i \(0.890781\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 223806.i 1.52572i 0.646564 + 0.762860i \(0.276205\pi\)
−0.646564 + 0.762860i \(0.723795\pi\)
\(384\) 0 0
\(385\) −650.976 −0.00439181
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −128478. −0.849045 −0.424523 0.905417i \(-0.639558\pi\)
−0.424523 + 0.905417i \(0.639558\pi\)
\(390\) 0 0
\(391\) 187257.i 1.22486i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 131548.i − 0.843124i
\(396\) 0 0
\(397\) 38124.0 0.241890 0.120945 0.992659i \(-0.461408\pi\)
0.120945 + 0.992659i \(0.461408\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 153511. 0.954667 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(402\) 0 0
\(403\) 6476.70i 0.0398789i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2436.89i − 0.0147112i
\(408\) 0 0
\(409\) 112134. 0.670335 0.335167 0.942159i \(-0.391207\pi\)
0.335167 + 0.942159i \(0.391207\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 47108.9 0.276187
\(414\) 0 0
\(415\) − 75129.7i − 0.436230i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 95891.1i − 0.546198i −0.961986 0.273099i \(-0.911951\pi\)
0.961986 0.273099i \(-0.0880487\pi\)
\(420\) 0 0
\(421\) −95023.9 −0.536128 −0.268064 0.963401i \(-0.586384\pi\)
−0.268064 + 0.963401i \(0.586384\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −46825.0 −0.259239
\(426\) 0 0
\(427\) − 96743.2i − 0.530597i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10032.0i 0.0540051i 0.999635 + 0.0270026i \(0.00859623\pi\)
−0.999635 + 0.0270026i \(0.991404\pi\)
\(432\) 0 0
\(433\) −9765.08 −0.0520835 −0.0260418 0.999661i \(-0.508290\pi\)
−0.0260418 + 0.999661i \(0.508290\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 182183. 0.953991
\(438\) 0 0
\(439\) 334316.i 1.73471i 0.497686 + 0.867357i \(0.334183\pi\)
−0.497686 + 0.867357i \(0.665817\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 92435.9i 0.471013i 0.971873 + 0.235507i \(0.0756749\pi\)
−0.971873 + 0.235507i \(0.924325\pi\)
\(444\) 0 0
\(445\) 140161. 0.707795
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −254591. −1.26285 −0.631423 0.775438i \(-0.717529\pi\)
−0.631423 + 0.775438i \(0.717529\pi\)
\(450\) 0 0
\(451\) 3218.71i 0.0158245i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 18077.4i − 0.0873197i
\(456\) 0 0
\(457\) −195259. −0.934930 −0.467465 0.884012i \(-0.654833\pi\)
−0.467465 + 0.884012i \(0.654833\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 58243.8 0.274062 0.137031 0.990567i \(-0.456244\pi\)
0.137031 + 0.990567i \(0.456244\pi\)
\(462\) 0 0
\(463\) − 140061.i − 0.653363i −0.945135 0.326681i \(-0.894070\pi\)
0.945135 0.326681i \(-0.105930\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 151762.i 0.695872i 0.937518 + 0.347936i \(0.113117\pi\)
−0.937518 + 0.347936i \(0.886883\pi\)
\(468\) 0 0
\(469\) 100432. 0.456589
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5489.26 0.0245353
\(474\) 0 0
\(475\) 45556.0i 0.201910i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 67796.2i − 0.295484i −0.989026 0.147742i \(-0.952799\pi\)
0.989026 0.147742i \(-0.0472006\pi\)
\(480\) 0 0
\(481\) 67671.6 0.292493
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10827.0 −0.0460281
\(486\) 0 0
\(487\) 82482.5i 0.347779i 0.984765 + 0.173890i \(0.0556336\pi\)
−0.984765 + 0.173890i \(0.944366\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 432389.i 1.79354i 0.442496 + 0.896771i \(0.354093\pi\)
−0.442496 + 0.896771i \(0.645907\pi\)
\(492\) 0 0
\(493\) −44430.8 −0.182806
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 178059. 0.720861
\(498\) 0 0
\(499\) − 457217.i − 1.83621i −0.396343 0.918103i \(-0.629721\pi\)
0.396343 0.918103i \(-0.370279\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 409308.i 1.61776i 0.587973 + 0.808881i \(0.299926\pi\)
−0.587973 + 0.808881i \(0.700074\pi\)
\(504\) 0 0
\(505\) 168877. 0.662198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 69419.2 0.267944 0.133972 0.990985i \(-0.457227\pi\)
0.133972 + 0.990985i \(0.457227\pi\)
\(510\) 0 0
\(511\) 108690.i 0.416244i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 399.811i 0.00150744i
\(516\) 0 0
\(517\) 3335.65 0.0124796
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 326815. 1.20400 0.602001 0.798496i \(-0.294370\pi\)
0.602001 + 0.798496i \(0.294370\pi\)
\(522\) 0 0
\(523\) − 541900.i − 1.98114i −0.137002 0.990571i \(-0.543747\pi\)
0.137002 0.990571i \(-0.456253\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 48291.1i − 0.173878i
\(528\) 0 0
\(529\) 29954.5 0.107041
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −89382.4 −0.314628
\(534\) 0 0
\(535\) 119531.i 0.417611i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2470.02i − 0.00850203i
\(540\) 0 0
\(541\) −253798. −0.867150 −0.433575 0.901118i \(-0.642748\pi\)
−0.433575 + 0.901118i \(0.642748\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −60768.8 −0.204591
\(546\) 0 0
\(547\) − 421251.i − 1.40788i −0.710259 0.703940i \(-0.751422\pi\)
0.710259 0.703940i \(-0.248578\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 43226.7i 0.142380i
\(552\) 0 0
\(553\) −378666. −1.23824
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −117888. −0.379979 −0.189990 0.981786i \(-0.560845\pi\)
−0.189990 + 0.981786i \(0.560845\pi\)
\(558\) 0 0
\(559\) 152435.i 0.487821i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 160395.i − 0.506026i −0.967463 0.253013i \(-0.918578\pi\)
0.967463 0.253013i \(-0.0814216\pi\)
\(564\) 0 0
\(565\) −174230. −0.545791
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −288064. −0.889744 −0.444872 0.895594i \(-0.646751\pi\)
−0.444872 + 0.895594i \(0.646751\pi\)
\(570\) 0 0
\(571\) − 225085.i − 0.690358i −0.938537 0.345179i \(-0.887818\pi\)
0.938537 0.345179i \(-0.112182\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 62485.8i − 0.188993i
\(576\) 0 0
\(577\) −583308. −1.75205 −0.876024 0.482267i \(-0.839814\pi\)
−0.876024 + 0.482267i \(0.839814\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −216263. −0.640663
\(582\) 0 0
\(583\) 2903.14i 0.00854143i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 211122.i − 0.612713i −0.951917 0.306357i \(-0.900890\pi\)
0.951917 0.306357i \(-0.0991100\pi\)
\(588\) 0 0
\(589\) −46982.4 −0.135427
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 283082. 0.805014 0.402507 0.915417i \(-0.368139\pi\)
0.402507 + 0.915417i \(0.368139\pi\)
\(594\) 0 0
\(595\) 134787.i 0.380727i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 123497.i 0.344194i 0.985080 + 0.172097i \(0.0550542\pi\)
−0.985080 + 0.172097i \(0.944946\pi\)
\(600\) 0 0
\(601\) 266514. 0.737856 0.368928 0.929458i \(-0.379725\pi\)
0.368928 + 0.929458i \(0.379725\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 163655. 0.447114
\(606\) 0 0
\(607\) 436937.i 1.18588i 0.805246 + 0.592940i \(0.202033\pi\)
−0.805246 + 0.592940i \(0.797967\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 92629.9i 0.248124i
\(612\) 0 0
\(613\) 371598. 0.988900 0.494450 0.869206i \(-0.335370\pi\)
0.494450 + 0.869206i \(0.335370\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −185390. −0.486986 −0.243493 0.969903i \(-0.578293\pi\)
−0.243493 + 0.969903i \(0.578293\pi\)
\(618\) 0 0
\(619\) 175656.i 0.458439i 0.973375 + 0.229219i \(0.0736173\pi\)
−0.973375 + 0.229219i \(0.926383\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 403457.i − 1.03949i
\(624\) 0 0
\(625\) 15625.0 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −504567. −1.27532
\(630\) 0 0
\(631\) 234115.i 0.587991i 0.955807 + 0.293996i \(0.0949851\pi\)
−0.955807 + 0.293996i \(0.905015\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17113.9i 0.0424425i
\(636\) 0 0
\(637\) 68591.5 0.169041
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −243706. −0.593130 −0.296565 0.955013i \(-0.595841\pi\)
−0.296565 + 0.955013i \(0.595841\pi\)
\(642\) 0 0
\(643\) − 340234.i − 0.822917i −0.911428 0.411459i \(-0.865019\pi\)
0.911428 0.411459i \(-0.134981\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 143252.i − 0.342210i −0.985253 0.171105i \(-0.945266\pi\)
0.985253 0.171105i \(-0.0547337\pi\)
\(648\) 0 0
\(649\) 2648.27 0.00628743
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 246942. 0.579121 0.289561 0.957160i \(-0.406491\pi\)
0.289561 + 0.957160i \(0.406491\pi\)
\(654\) 0 0
\(655\) 28080.0i 0.0654507i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 87444.3i − 0.201354i −0.994919 0.100677i \(-0.967899\pi\)
0.994919 0.100677i \(-0.0321009\pi\)
\(660\) 0 0
\(661\) 566207. 1.29590 0.647952 0.761681i \(-0.275626\pi\)
0.647952 + 0.761681i \(0.275626\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 131134. 0.296533
\(666\) 0 0
\(667\) − 59290.8i − 0.133271i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 5438.51i − 0.0120791i
\(672\) 0 0
\(673\) 401892. 0.887318 0.443659 0.896196i \(-0.353680\pi\)
0.443659 + 0.896196i \(0.353680\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −339705. −0.741182 −0.370591 0.928796i \(-0.620845\pi\)
−0.370591 + 0.928796i \(0.620845\pi\)
\(678\) 0 0
\(679\) 31165.7i 0.0675986i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 360329.i − 0.772428i −0.922409 0.386214i \(-0.873783\pi\)
0.922409 0.386214i \(-0.126217\pi\)
\(684\) 0 0
\(685\) 90515.6 0.192904
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −80619.1 −0.169824
\(690\) 0 0
\(691\) 419757.i 0.879108i 0.898216 + 0.439554i \(0.144863\pi\)
−0.898216 + 0.439554i \(0.855137\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 225930.i − 0.467740i
\(696\) 0 0
\(697\) 666446. 1.37183
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −123094. −0.250495 −0.125248 0.992126i \(-0.539973\pi\)
−0.125248 + 0.992126i \(0.539973\pi\)
\(702\) 0 0
\(703\) 490894.i 0.993292i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 486117.i − 0.972528i
\(708\) 0 0
\(709\) −330597. −0.657668 −0.328834 0.944388i \(-0.606656\pi\)
−0.328834 + 0.944388i \(0.606656\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 64442.2 0.126763
\(714\) 0 0
\(715\) − 1016.24i − 0.00198784i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 78007.6i − 0.150896i −0.997150 0.0754482i \(-0.975961\pi\)
0.997150 0.0754482i \(-0.0240388\pi\)
\(720\) 0 0
\(721\) 1150.87 0.00221388
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14826.1 0.0282066
\(726\) 0 0
\(727\) − 635393.i − 1.20219i −0.799177 0.601096i \(-0.794731\pi\)
0.799177 0.601096i \(-0.205269\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1.13657e6i − 2.12698i
\(732\) 0 0
\(733\) −73723.1 −0.137213 −0.0686066 0.997644i \(-0.521855\pi\)
−0.0686066 + 0.997644i \(0.521855\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5645.87 0.0103943
\(738\) 0 0
\(739\) − 523323.i − 0.958255i −0.877745 0.479128i \(-0.840953\pi\)
0.877745 0.479128i \(-0.159047\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 281437.i − 0.509804i −0.966967 0.254902i \(-0.917957\pi\)
0.966967 0.254902i \(-0.0820432\pi\)
\(744\) 0 0
\(745\) 237291. 0.427532
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 344072. 0.613318
\(750\) 0 0
\(751\) 165291.i 0.293069i 0.989206 + 0.146535i \(0.0468119\pi\)
−0.989206 + 0.146535i \(0.953188\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 440450.i 0.772686i
\(756\) 0 0
\(757\) −790794. −1.37998 −0.689988 0.723821i \(-0.742384\pi\)
−0.689988 + 0.723821i \(0.742384\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −899919. −1.55394 −0.776970 0.629538i \(-0.783244\pi\)
−0.776970 + 0.629538i \(0.783244\pi\)
\(762\) 0 0
\(763\) 174925.i 0.300470i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 73541.6i 0.125009i
\(768\) 0 0
\(769\) −415583. −0.702757 −0.351378 0.936234i \(-0.614287\pi\)
−0.351378 + 0.936234i \(0.614287\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −739588. −1.23774 −0.618872 0.785492i \(-0.712410\pi\)
−0.618872 + 0.785492i \(0.712410\pi\)
\(774\) 0 0
\(775\) 16114.2i 0.0268291i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 648385.i − 1.06846i
\(780\) 0 0
\(781\) 10009.8 0.0164105
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 307370. 0.498795
\(786\) 0 0
\(787\) 258121.i 0.416749i 0.978049 + 0.208375i \(0.0668173\pi\)
−0.978049 + 0.208375i \(0.933183\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 501526.i 0.801568i
\(792\) 0 0
\(793\) 151025. 0.240161
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −61353.4 −0.0965878 −0.0482939 0.998833i \(-0.515378\pi\)
−0.0482939 + 0.998833i \(0.515378\pi\)
\(798\) 0 0
\(799\) − 690660.i − 1.08186i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6110.10i 0.00947584i
\(804\) 0 0
\(805\) −179867. −0.277562
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 847065. 1.29425 0.647127 0.762382i \(-0.275970\pi\)
0.647127 + 0.762382i \(0.275970\pi\)
\(810\) 0 0
\(811\) 147315.i 0.223978i 0.993709 + 0.111989i \(0.0357221\pi\)
−0.993709 + 0.111989i \(0.964278\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 408750.i 0.615378i
\(816\) 0 0
\(817\) −1.10577e6 −1.65661
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 168969. 0.250681 0.125340 0.992114i \(-0.459998\pi\)
0.125340 + 0.992114i \(0.459998\pi\)
\(822\) 0 0
\(823\) 542532.i 0.800988i 0.916299 + 0.400494i \(0.131161\pi\)
−0.916299 + 0.400494i \(0.868839\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 432833.i − 0.632862i −0.948616 0.316431i \(-0.897515\pi\)
0.948616 0.316431i \(-0.102485\pi\)
\(828\) 0 0
\(829\) −1.32620e6 −1.92975 −0.964876 0.262708i \(-0.915385\pi\)
−0.964876 + 0.262708i \(0.915385\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −511427. −0.737044
\(834\) 0 0
\(835\) − 402290.i − 0.576987i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 879452.i 1.24936i 0.780880 + 0.624681i \(0.214771\pi\)
−0.780880 + 0.624681i \(0.785229\pi\)
\(840\) 0 0
\(841\) −693213. −0.980110
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −291101. −0.407690
\(846\) 0 0
\(847\) − 471085.i − 0.656647i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 673322.i − 0.929745i
\(852\) 0 0
\(853\) 543116. 0.746440 0.373220 0.927743i \(-0.378254\pi\)
0.373220 + 0.927743i \(0.378254\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.45508e6 −1.98119 −0.990593 0.136842i \(-0.956305\pi\)
−0.990593 + 0.136842i \(0.956305\pi\)
\(858\) 0 0
\(859\) − 1.03526e6i − 1.40302i −0.712658 0.701512i \(-0.752509\pi\)
0.712658 0.701512i \(-0.247491\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 133280.i − 0.178955i −0.995989 0.0894776i \(-0.971480\pi\)
0.995989 0.0894776i \(-0.0285198\pi\)
\(864\) 0 0
\(865\) −469409. −0.627363
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21287.1 −0.0281888
\(870\) 0 0
\(871\) 156784.i 0.206664i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 44977.0i − 0.0587454i
\(876\) 0 0
\(877\) −379461. −0.493365 −0.246682 0.969096i \(-0.579340\pi\)
−0.246682 + 0.969096i \(0.579340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.04171e6 1.34213 0.671063 0.741400i \(-0.265838\pi\)
0.671063 + 0.741400i \(0.265838\pi\)
\(882\) 0 0
\(883\) − 828406.i − 1.06248i −0.847220 0.531241i \(-0.821726\pi\)
0.847220 0.531241i \(-0.178274\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 758303.i − 0.963819i −0.876221 0.481910i \(-0.839943\pi\)
0.876221 0.481910i \(-0.160057\pi\)
\(888\) 0 0
\(889\) 49262.7 0.0623325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −671943. −0.842616
\(894\) 0 0
\(895\) 618291.i 0.771875i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15290.3i 0.0189189i
\(900\) 0 0
\(901\) 601106. 0.740460
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 75011.5 0.0915864
\(906\) 0 0
\(907\) − 449282.i − 0.546141i −0.961994 0.273070i \(-0.911961\pi\)
0.961994 0.273070i \(-0.0880392\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 828118.i 0.997827i 0.866652 + 0.498914i \(0.166267\pi\)
−0.866652 + 0.498914i \(0.833733\pi\)
\(912\) 0 0
\(913\) −12157.4 −0.0145848
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 80829.0 0.0961232
\(918\) 0 0
\(919\) − 1.27981e6i − 1.51535i −0.652630 0.757677i \(-0.726334\pi\)
0.652630 0.757677i \(-0.273666\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 277968.i 0.326280i
\(924\) 0 0
\(925\) 168369. 0.196779
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.12164e6 −1.29964 −0.649819 0.760089i \(-0.725155\pi\)
−0.649819 + 0.760089i \(0.725155\pi\)
\(930\) 0 0
\(931\) 497567.i 0.574053i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7577.17i 0.00866731i
\(936\) 0 0
\(937\) −746398. −0.850142 −0.425071 0.905160i \(-0.639751\pi\)
−0.425071 + 0.905160i \(0.639751\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1071.73 0.00121034 0.000605169 1.00000i \(-0.499807\pi\)
0.000605169 1.00000i \(0.499807\pi\)
\(942\) 0 0
\(943\) 889342.i 1.00010i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 383292.i − 0.427395i −0.976900 0.213697i \(-0.931449\pi\)
0.976900 0.213697i \(-0.0685507\pi\)
\(948\) 0 0
\(949\) −169675. −0.188402
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.09716e6 −1.20805 −0.604025 0.796965i \(-0.706437\pi\)
−0.604025 + 0.796965i \(0.706437\pi\)
\(954\) 0 0
\(955\) − 643186.i − 0.705228i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 260552.i − 0.283306i
\(960\) 0 0
\(961\) 906902. 0.982005
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 614470. 0.659851
\(966\) 0 0
\(967\) − 135722.i − 0.145143i −0.997363 0.0725716i \(-0.976879\pi\)
0.997363 0.0725716i \(-0.0231206\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 914675.i − 0.970126i −0.874479 0.485063i \(-0.838797\pi\)
0.874479 0.485063i \(-0.161203\pi\)
\(972\) 0 0
\(973\) −650346. −0.686940
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 714583. 0.748624 0.374312 0.927303i \(-0.377879\pi\)
0.374312 + 0.927303i \(0.377879\pi\)
\(978\) 0 0
\(979\) − 22680.7i − 0.0236642i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1.74144e6i − 1.80219i −0.433618 0.901097i \(-0.642763\pi\)
0.433618 0.901097i \(-0.357237\pi\)
\(984\) 0 0
\(985\) 489092. 0.504101
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.51670e6 1.55063
\(990\) 0 0
\(991\) 1.40429e6i 1.42991i 0.699170 + 0.714955i \(0.253553\pi\)
−0.699170 + 0.714955i \(0.746447\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 170636.i 0.172355i
\(996\) 0 0
\(997\) −927646. −0.933237 −0.466619 0.884459i \(-0.654528\pi\)
−0.466619 + 0.884459i \(0.654528\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.5.e.b.991.6 8
3.2 odd 2 160.5.b.a.31.5 yes 8
4.3 odd 2 inner 1440.5.e.b.991.7 8
12.11 even 2 160.5.b.a.31.4 8
15.2 even 4 800.5.h.l.799.6 8
15.8 even 4 800.5.h.k.799.4 8
15.14 odd 2 800.5.b.g.351.4 8
24.5 odd 2 320.5.b.c.191.4 8
24.11 even 2 320.5.b.c.191.5 8
60.23 odd 4 800.5.h.l.799.5 8
60.47 odd 4 800.5.h.k.799.3 8
60.59 even 2 800.5.b.g.351.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.5.b.a.31.4 8 12.11 even 2
160.5.b.a.31.5 yes 8 3.2 odd 2
320.5.b.c.191.4 8 24.5 odd 2
320.5.b.c.191.5 8 24.11 even 2
800.5.b.g.351.4 8 15.14 odd 2
800.5.b.g.351.5 8 60.59 even 2
800.5.h.k.799.3 8 60.47 odd 4
800.5.h.k.799.4 8 15.8 even 4
800.5.h.l.799.5 8 60.23 odd 4
800.5.h.l.799.6 8 15.2 even 4
1440.5.e.b.991.6 8 1.1 even 1 trivial
1440.5.e.b.991.7 8 4.3 odd 2 inner