Properties

Label 1440.5
Level 1440
Weight 5
Dimension 90018
Nonzero newspaces 40
Sturm bound 552960
Trace bound 53

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(552960\)
Trace bound: \(53\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(1440))\).

Total New Old
Modular forms 223232 90558 132674
Cusp forms 219136 90018 129118
Eisenstein series 4096 540 3556

Trace form

\( 90018 q - 24 q^{2} - 24 q^{3} - 24 q^{4} - 12 q^{5} - 96 q^{6} - 16 q^{7} - 24 q^{8} - 48 q^{9} + 92 q^{10} - 240 q^{11} - 32 q^{12} - 488 q^{13} - 888 q^{14} + 126 q^{15} + 1168 q^{16} + 1236 q^{17} - 32 q^{18}+ \cdots - 259228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(1440))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1440.5.c \(\chi_{1440}(449, \cdot)\) 1440.5.c.a 4 1
1440.5.c.b 4
1440.5.c.c 40
1440.5.c.d 48
1440.5.e \(\chi_{1440}(991, \cdot)\) 1440.5.e.a 8 1
1440.5.e.b 8
1440.5.e.c 16
1440.5.e.d 16
1440.5.e.e 16
1440.5.e.f 16
1440.5.g \(\chi_{1440}(271, \cdot)\) 1440.5.g.a 16 1
1440.5.g.b 32
1440.5.g.c 32
1440.5.i \(\chi_{1440}(1169, \cdot)\) 1440.5.i.a 96 1
1440.5.j \(\chi_{1440}(1279, \cdot)\) n/a 120 1
1440.5.l \(\chi_{1440}(161, \cdot)\) 1440.5.l.a 8 1
1440.5.l.b 8
1440.5.l.c 16
1440.5.l.d 16
1440.5.l.e 16
1440.5.n \(\chi_{1440}(881, \cdot)\) 1440.5.n.a 64 1
1440.5.p \(\chi_{1440}(559, \cdot)\) n/a 118 1
1440.5.r \(\chi_{1440}(199, \cdot)\) None 0 2
1440.5.s \(\chi_{1440}(521, \cdot)\) None 0 2
1440.5.v \(\chi_{1440}(143, \cdot)\) n/a 192 2
1440.5.y \(\chi_{1440}(433, \cdot)\) n/a 236 2
1440.5.ba \(\chi_{1440}(503, \cdot)\) None 0 2
1440.5.bb \(\chi_{1440}(73, \cdot)\) None 0 2
1440.5.be \(\chi_{1440}(1223, \cdot)\) None 0 2
1440.5.bf \(\chi_{1440}(793, \cdot)\) None 0 2
1440.5.bh \(\chi_{1440}(577, \cdot)\) n/a 240 2
1440.5.bk \(\chi_{1440}(287, \cdot)\) n/a 192 2
1440.5.bn \(\chi_{1440}(89, \cdot)\) None 0 2
1440.5.bo \(\chi_{1440}(631, \cdot)\) None 0 2
1440.5.bp \(\chi_{1440}(79, \cdot)\) n/a 568 2
1440.5.bq \(\chi_{1440}(401, \cdot)\) n/a 384 2
1440.5.bs \(\chi_{1440}(641, \cdot)\) n/a 384 2
1440.5.bu \(\chi_{1440}(319, \cdot)\) n/a 576 2
1440.5.bx \(\chi_{1440}(209, \cdot)\) n/a 568 2
1440.5.bz \(\chi_{1440}(751, \cdot)\) n/a 384 2
1440.5.cb \(\chi_{1440}(31, \cdot)\) n/a 384 2
1440.5.cd \(\chi_{1440}(929, \cdot)\) n/a 576 2
1440.5.cf \(\chi_{1440}(37, \cdot)\) n/a 1912 4
1440.5.cg \(\chi_{1440}(467, \cdot)\) n/a 1536 4
1440.5.cj \(\chi_{1440}(91, \cdot)\) n/a 1280 4
1440.5.ck \(\chi_{1440}(269, \cdot)\) n/a 1536 4
1440.5.cm \(\chi_{1440}(19, \cdot)\) n/a 1912 4
1440.5.cp \(\chi_{1440}(341, \cdot)\) n/a 1024 4
1440.5.cq \(\chi_{1440}(107, \cdot)\) n/a 1536 4
1440.5.ct \(\chi_{1440}(397, \cdot)\) n/a 1912 4
1440.5.cw \(\chi_{1440}(151, \cdot)\) None 0 4
1440.5.cx \(\chi_{1440}(329, \cdot)\) None 0 4
1440.5.cz \(\chi_{1440}(97, \cdot)\) n/a 1152 4
1440.5.da \(\chi_{1440}(383, \cdot)\) n/a 1152 4
1440.5.dd \(\chi_{1440}(313, \cdot)\) None 0 4
1440.5.de \(\chi_{1440}(263, \cdot)\) None 0 4
1440.5.dh \(\chi_{1440}(553, \cdot)\) None 0 4
1440.5.di \(\chi_{1440}(23, \cdot)\) None 0 4
1440.5.dl \(\chi_{1440}(47, \cdot)\) n/a 1136 4
1440.5.dm \(\chi_{1440}(337, \cdot)\) n/a 1136 4
1440.5.do \(\chi_{1440}(41, \cdot)\) None 0 4
1440.5.dp \(\chi_{1440}(439, \cdot)\) None 0 4
1440.5.ds \(\chi_{1440}(133, \cdot)\) n/a 9184 8
1440.5.dv \(\chi_{1440}(83, \cdot)\) n/a 9184 8
1440.5.dx \(\chi_{1440}(29, \cdot)\) n/a 9184 8
1440.5.dy \(\chi_{1440}(211, \cdot)\) n/a 6144 8
1440.5.ea \(\chi_{1440}(101, \cdot)\) n/a 6144 8
1440.5.ed \(\chi_{1440}(139, \cdot)\) n/a 9184 8
1440.5.ef \(\chi_{1440}(203, \cdot)\) n/a 9184 8
1440.5.eg \(\chi_{1440}(13, \cdot)\) n/a 9184 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(1440))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(1440)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 30}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 24}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 18}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 20}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 18}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 15}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 16}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(360))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(480))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(720))\)\(^{\oplus 2}\)