Properties

Label 144.4.l.a.35.19
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.19
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89081 + 2.10353i) q^{2} +(-0.849709 + 7.95475i) q^{4} +(-11.2962 - 11.2962i) q^{5} -19.1985 q^{7} +(-18.3397 + 13.2535i) q^{8} +(2.40303 - 45.1210i) q^{10} +(34.3321 - 34.3321i) q^{11} +(-59.4521 - 59.4521i) q^{13} +(-36.3006 - 40.3847i) q^{14} +(-62.5560 - 13.5184i) q^{16} +102.723i q^{17} +(-60.4132 + 60.4132i) q^{19} +(99.4571 - 80.2601i) q^{20} +(137.134 + 7.30341i) q^{22} -106.082i q^{23} +130.209i q^{25} +(12.6471 - 237.472i) q^{26} +(16.3131 - 152.719i) q^{28} +(30.6651 - 30.6651i) q^{29} +99.7709i q^{31} +(-89.8447 - 157.149i) q^{32} +(-216.082 + 194.230i) q^{34} +(216.870 + 216.870i) q^{35} +(-94.9220 + 94.9220i) q^{37} +(-241.311 - 12.8516i) q^{38} +(356.884 + 57.4552i) q^{40} +34.5075 q^{41} +(-198.078 - 198.078i) q^{43} +(243.931 + 302.276i) q^{44} +(223.147 - 200.581i) q^{46} -314.847 q^{47} +25.5819 q^{49} +(-273.900 + 246.201i) q^{50} +(523.443 - 422.409i) q^{52} +(187.087 + 187.087i) q^{53} -775.647 q^{55} +(352.095 - 254.447i) q^{56} +(122.487 + 6.52334i) q^{58} +(382.568 - 382.568i) q^{59} +(509.275 + 509.275i) q^{61} +(-209.871 + 188.647i) q^{62} +(160.690 - 486.130i) q^{64} +1343.17i q^{65} +(-107.017 + 107.017i) q^{67} +(-817.139 - 87.2851i) q^{68} +(-46.1345 + 866.254i) q^{70} +209.706i q^{71} +411.628i q^{73} +(-379.151 - 20.1926i) q^{74} +(-429.238 - 531.906i) q^{76} +(-659.125 + 659.125i) q^{77} -992.581i q^{79} +(553.939 + 859.354i) q^{80} +(65.2470 + 72.5877i) q^{82} +(-852.083 - 852.083i) q^{83} +(1160.39 - 1160.39i) q^{85} +(42.1367 - 791.189i) q^{86} +(-174.621 + 1084.66i) q^{88} -205.447 q^{89} +(1141.39 + 1141.39i) q^{91} +(843.856 + 90.1389i) q^{92} +(-595.315 - 662.292i) q^{94} +1364.88 q^{95} -775.052 q^{97} +(48.3705 + 53.8125i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89081 + 2.10353i 0.668501 + 0.743712i
\(3\) 0 0
\(4\) −0.849709 + 7.95475i −0.106214 + 0.994343i
\(5\) −11.2962 11.2962i −1.01037 1.01037i −0.999946 0.0104195i \(-0.996683\pi\)
−0.0104195 0.999946i \(-0.503317\pi\)
\(6\) 0 0
\(7\) −19.1985 −1.03662 −0.518310 0.855193i \(-0.673439\pi\)
−0.518310 + 0.855193i \(0.673439\pi\)
\(8\) −18.3397 + 13.2535i −0.810508 + 0.585727i
\(9\) 0 0
\(10\) 2.40303 45.1210i 0.0759904 1.42685i
\(11\) 34.3321 34.3321i 0.941047 0.941047i −0.0573091 0.998356i \(-0.518252\pi\)
0.998356 + 0.0573091i \(0.0182521\pi\)
\(12\) 0 0
\(13\) −59.4521 59.4521i −1.26839 1.26839i −0.946920 0.321468i \(-0.895824\pi\)
−0.321468 0.946920i \(-0.604176\pi\)
\(14\) −36.3006 40.3847i −0.692982 0.770947i
\(15\) 0 0
\(16\) −62.5560 13.5184i −0.977437 0.211226i
\(17\) 102.723i 1.46554i 0.680479 + 0.732768i \(0.261772\pi\)
−0.680479 + 0.732768i \(0.738228\pi\)
\(18\) 0 0
\(19\) −60.4132 + 60.4132i −0.729460 + 0.729460i −0.970512 0.241052i \(-0.922508\pi\)
0.241052 + 0.970512i \(0.422508\pi\)
\(20\) 99.4571 80.2601i 1.11196 0.897335i
\(21\) 0 0
\(22\) 137.134 + 7.30341i 1.32896 + 0.0707770i
\(23\) 106.082i 0.961723i −0.876796 0.480862i \(-0.840324\pi\)
0.876796 0.480862i \(-0.159676\pi\)
\(24\) 0 0
\(25\) 130.209i 1.04168i
\(26\) 12.6471 237.472i 0.0953965 1.79123i
\(27\) 0 0
\(28\) 16.3131 152.719i 0.110103 1.03076i
\(29\) 30.6651 30.6651i 0.196358 0.196358i −0.602079 0.798437i \(-0.705661\pi\)
0.798437 + 0.602079i \(0.205661\pi\)
\(30\) 0 0
\(31\) 99.7709i 0.578044i 0.957322 + 0.289022i \(0.0933301\pi\)
−0.957322 + 0.289022i \(0.906670\pi\)
\(32\) −89.8447 157.149i −0.496327 0.868136i
\(33\) 0 0
\(34\) −216.082 + 194.230i −1.08994 + 0.979711i
\(35\) 216.870 + 216.870i 1.04737 + 1.04737i
\(36\) 0 0
\(37\) −94.9220 + 94.9220i −0.421759 + 0.421759i −0.885809 0.464050i \(-0.846396\pi\)
0.464050 + 0.885809i \(0.346396\pi\)
\(38\) −241.311 12.8516i −1.03015 0.0548633i
\(39\) 0 0
\(40\) 356.884 + 57.4552i 1.41071 + 0.227112i
\(41\) 34.5075 0.131443 0.0657216 0.997838i \(-0.479065\pi\)
0.0657216 + 0.997838i \(0.479065\pi\)
\(42\) 0 0
\(43\) −198.078 198.078i −0.702478 0.702478i 0.262464 0.964942i \(-0.415465\pi\)
−0.964942 + 0.262464i \(0.915465\pi\)
\(44\) 243.931 + 302.276i 0.835772 + 1.03568i
\(45\) 0 0
\(46\) 223.147 200.581i 0.715245 0.642913i
\(47\) −314.847 −0.977131 −0.488566 0.872527i \(-0.662480\pi\)
−0.488566 + 0.872527i \(0.662480\pi\)
\(48\) 0 0
\(49\) 25.5819 0.0745829
\(50\) −273.900 + 246.201i −0.774706 + 0.696361i
\(51\) 0 0
\(52\) 523.443 422.409i 1.39593 1.12649i
\(53\) 187.087 + 187.087i 0.484876 + 0.484876i 0.906685 0.421809i \(-0.138605\pi\)
−0.421809 + 0.906685i \(0.638605\pi\)
\(54\) 0 0
\(55\) −775.647 −1.90160
\(56\) 352.095 254.447i 0.840190 0.607177i
\(57\) 0 0
\(58\) 122.487 + 6.52334i 0.277299 + 0.0147682i
\(59\) 382.568 382.568i 0.844172 0.844172i −0.145226 0.989398i \(-0.546391\pi\)
0.989398 + 0.145226i \(0.0463909\pi\)
\(60\) 0 0
\(61\) 509.275 + 509.275i 1.06895 + 1.06895i 0.997440 + 0.0715101i \(0.0227818\pi\)
0.0715101 + 0.997440i \(0.477218\pi\)
\(62\) −209.871 + 188.647i −0.429898 + 0.386423i
\(63\) 0 0
\(64\) 160.690 486.130i 0.313848 0.949473i
\(65\) 1343.17i 2.56307i
\(66\) 0 0
\(67\) −107.017 + 107.017i −0.195137 + 0.195137i −0.797912 0.602774i \(-0.794062\pi\)
0.602774 + 0.797912i \(0.294062\pi\)
\(68\) −817.139 87.2851i −1.45725 0.155660i
\(69\) 0 0
\(70\) −46.1345 + 866.254i −0.0787732 + 1.47910i
\(71\) 209.706i 0.350529i 0.984521 + 0.175265i \(0.0560781\pi\)
−0.984521 + 0.175265i \(0.943922\pi\)
\(72\) 0 0
\(73\) 411.628i 0.659965i 0.943987 + 0.329982i \(0.107043\pi\)
−0.943987 + 0.329982i \(0.892957\pi\)
\(74\) −379.151 20.1926i −0.595613 0.0317208i
\(75\) 0 0
\(76\) −429.238 531.906i −0.647855 0.802813i
\(77\) −659.125 + 659.125i −0.975509 + 0.975509i
\(78\) 0 0
\(79\) 992.581i 1.41360i −0.707415 0.706798i \(-0.750139\pi\)
0.707415 0.706798i \(-0.249861\pi\)
\(80\) 553.939 + 859.354i 0.774154 + 1.20098i
\(81\) 0 0
\(82\) 65.2470 + 72.5877i 0.0878698 + 0.0977558i
\(83\) −852.083 852.083i −1.12685 1.12685i −0.990687 0.136160i \(-0.956524\pi\)
−0.136160 0.990687i \(-0.543476\pi\)
\(84\) 0 0
\(85\) 1160.39 1160.39i 1.48073 1.48073i
\(86\) 42.1367 791.189i 0.0528339 0.992048i
\(87\) 0 0
\(88\) −174.621 + 1084.66i −0.211530 + 1.31392i
\(89\) −205.447 −0.244689 −0.122345 0.992488i \(-0.539041\pi\)
−0.122345 + 0.992488i \(0.539041\pi\)
\(90\) 0 0
\(91\) 1141.39 + 1141.39i 1.31484 + 1.31484i
\(92\) 843.856 + 90.1389i 0.956283 + 0.102148i
\(93\) 0 0
\(94\) −595.315 662.292i −0.653213 0.726704i
\(95\) 1364.88 1.47404
\(96\) 0 0
\(97\) −775.052 −0.811285 −0.405642 0.914032i \(-0.632952\pi\)
−0.405642 + 0.914032i \(0.632952\pi\)
\(98\) 48.3705 + 53.8125i 0.0498587 + 0.0554682i
\(99\) 0 0
\(100\) −1035.78 110.640i −1.03578 0.110640i
\(101\) −424.287 424.287i −0.418001 0.418001i 0.466513 0.884514i \(-0.345510\pi\)
−0.884514 + 0.466513i \(0.845510\pi\)
\(102\) 0 0
\(103\) −108.709 −0.103994 −0.0519972 0.998647i \(-0.516559\pi\)
−0.0519972 + 0.998647i \(0.516559\pi\)
\(104\) 1878.28 + 302.387i 1.77097 + 0.285110i
\(105\) 0 0
\(106\) −39.7988 + 747.291i −0.0364679 + 0.684748i
\(107\) 1030.41 1030.41i 0.930964 0.930964i −0.0668021 0.997766i \(-0.521280\pi\)
0.997766 + 0.0668021i \(0.0212796\pi\)
\(108\) 0 0
\(109\) 632.898 + 632.898i 0.556153 + 0.556153i 0.928210 0.372057i \(-0.121347\pi\)
−0.372057 + 0.928210i \(0.621347\pi\)
\(110\) −1466.60 1631.60i −1.27122 1.41424i
\(111\) 0 0
\(112\) 1200.98 + 259.534i 1.01323 + 0.218961i
\(113\) 1025.75i 0.853929i −0.904268 0.426965i \(-0.859583\pi\)
0.904268 0.426965i \(-0.140417\pi\)
\(114\) 0 0
\(115\) −1198.33 + 1198.33i −0.971692 + 0.971692i
\(116\) 217.877 + 269.990i 0.174391 + 0.216103i
\(117\) 0 0
\(118\) 1528.11 + 81.3832i 1.19215 + 0.0634909i
\(119\) 1972.13i 1.51920i
\(120\) 0 0
\(121\) 1026.39i 0.771140i
\(122\) −108.337 + 2034.22i −0.0803966 + 1.50958i
\(123\) 0 0
\(124\) −793.652 84.7762i −0.574775 0.0613962i
\(125\) 58.8473 58.8473i 0.0421077 0.0421077i
\(126\) 0 0
\(127\) 2285.63i 1.59699i −0.602004 0.798493i \(-0.705631\pi\)
0.602004 0.798493i \(-0.294369\pi\)
\(128\) 1326.43 581.161i 0.915942 0.401311i
\(129\) 0 0
\(130\) −2825.40 + 2539.67i −1.90619 + 1.71341i
\(131\) −277.305 277.305i −0.184948 0.184948i 0.608560 0.793508i \(-0.291748\pi\)
−0.793508 + 0.608560i \(0.791748\pi\)
\(132\) 0 0
\(133\) 1159.84 1159.84i 0.756174 0.756174i
\(134\) −427.462 22.7655i −0.275575 0.0146764i
\(135\) 0 0
\(136\) −1361.44 1883.92i −0.858403 1.18783i
\(137\) 733.827 0.457628 0.228814 0.973470i \(-0.426515\pi\)
0.228814 + 0.973470i \(0.426515\pi\)
\(138\) 0 0
\(139\) −687.229 687.229i −0.419352 0.419352i 0.465628 0.884981i \(-0.345828\pi\)
−0.884981 + 0.465628i \(0.845828\pi\)
\(140\) −1909.43 + 1540.87i −1.15269 + 0.930197i
\(141\) 0 0
\(142\) −441.124 + 396.514i −0.260692 + 0.234329i
\(143\) −4082.23 −2.38723
\(144\) 0 0
\(145\) −692.800 −0.396786
\(146\) −865.873 + 778.309i −0.490823 + 0.441187i
\(147\) 0 0
\(148\) −674.424 835.736i −0.374576 0.464170i
\(149\) −1380.56 1380.56i −0.759061 0.759061i 0.217091 0.976151i \(-0.430343\pi\)
−0.976151 + 0.217091i \(0.930343\pi\)
\(150\) 0 0
\(151\) 579.048 0.312068 0.156034 0.987752i \(-0.450129\pi\)
0.156034 + 0.987752i \(0.450129\pi\)
\(152\) 307.275 1908.65i 0.163969 1.01850i
\(153\) 0 0
\(154\) −2632.77 140.214i −1.37763 0.0733689i
\(155\) 1127.03 1127.03i 0.584036 0.584036i
\(156\) 0 0
\(157\) 339.614 + 339.614i 0.172638 + 0.172638i 0.788137 0.615499i \(-0.211046\pi\)
−0.615499 + 0.788137i \(0.711046\pi\)
\(158\) 2087.93 1876.78i 1.05131 0.944990i
\(159\) 0 0
\(160\) −760.289 + 2790.10i −0.375663 + 1.37861i
\(161\) 2036.61i 0.996942i
\(162\) 0 0
\(163\) 1700.16 1700.16i 0.816974 0.816974i −0.168694 0.985668i \(-0.553955\pi\)
0.985668 + 0.168694i \(0.0539550\pi\)
\(164\) −29.3214 + 274.499i −0.0139611 + 0.130700i
\(165\) 0 0
\(166\) 181.262 3403.51i 0.0847511 1.59135i
\(167\) 1641.78i 0.760747i 0.924833 + 0.380374i \(0.124205\pi\)
−0.924833 + 0.380374i \(0.875795\pi\)
\(168\) 0 0
\(169\) 4872.11i 2.21762i
\(170\) 4634.98 + 246.847i 2.09110 + 0.111367i
\(171\) 0 0
\(172\) 1743.96 1407.35i 0.773117 0.623891i
\(173\) 106.718 106.718i 0.0468995 0.0468995i −0.683268 0.730168i \(-0.739442\pi\)
0.730168 + 0.683268i \(0.239442\pi\)
\(174\) 0 0
\(175\) 2499.82i 1.07982i
\(176\) −2611.80 + 1683.56i −1.11859 + 0.721041i
\(177\) 0 0
\(178\) −388.460 432.165i −0.163575 0.181978i
\(179\) 2620.63 + 2620.63i 1.09427 + 1.09427i 0.995067 + 0.0992073i \(0.0316307\pi\)
0.0992073 + 0.995067i \(0.468369\pi\)
\(180\) 0 0
\(181\) 2928.95 2928.95i 1.20280 1.20280i 0.229489 0.973311i \(-0.426294\pi\)
0.973311 0.229489i \(-0.0737057\pi\)
\(182\) −242.806 + 4559.10i −0.0988900 + 1.85683i
\(183\) 0 0
\(184\) 1405.96 + 1945.51i 0.563307 + 0.779485i
\(185\) 2144.52 0.852261
\(186\) 0 0
\(187\) 3526.71 + 3526.71i 1.37914 + 1.37914i
\(188\) 267.528 2504.53i 0.103785 0.971604i
\(189\) 0 0
\(190\) 2580.73 + 2871.08i 0.985399 + 1.09626i
\(191\) −1753.27 −0.664199 −0.332100 0.943244i \(-0.607757\pi\)
−0.332100 + 0.943244i \(0.607757\pi\)
\(192\) 0 0
\(193\) −967.380 −0.360796 −0.180398 0.983594i \(-0.557739\pi\)
−0.180398 + 0.983594i \(0.557739\pi\)
\(194\) −1465.47 1630.35i −0.542344 0.603362i
\(195\) 0 0
\(196\) −21.7372 + 203.498i −0.00792172 + 0.0741610i
\(197\) −1798.77 1798.77i −0.650542 0.650542i 0.302581 0.953124i \(-0.402152\pi\)
−0.953124 + 0.302581i \(0.902152\pi\)
\(198\) 0 0
\(199\) −4873.66 −1.73610 −0.868052 0.496474i \(-0.834628\pi\)
−0.868052 + 0.496474i \(0.834628\pi\)
\(200\) −1725.73 2388.00i −0.610137 0.844287i
\(201\) 0 0
\(202\) 90.2578 1694.75i 0.0314382 0.590306i
\(203\) −588.724 + 588.724i −0.203548 + 0.203548i
\(204\) 0 0
\(205\) −389.805 389.805i −0.132806 0.132806i
\(206\) −205.548 228.673i −0.0695203 0.0773418i
\(207\) 0 0
\(208\) 2915.39 + 4522.79i 0.971854 + 1.50769i
\(209\) 4148.23i 1.37291i
\(210\) 0 0
\(211\) −1612.73 + 1612.73i −0.526184 + 0.526184i −0.919432 0.393248i \(-0.871351\pi\)
0.393248 + 0.919432i \(0.371351\pi\)
\(212\) −1647.20 + 1329.26i −0.533634 + 0.430633i
\(213\) 0 0
\(214\) 4115.79 + 219.197i 1.31472 + 0.0700186i
\(215\) 4475.06i 1.41952i
\(216\) 0 0
\(217\) 1915.45i 0.599213i
\(218\) −134.635 + 2528.01i −0.0418287 + 0.785406i
\(219\) 0 0
\(220\) 659.074 6170.07i 0.201976 1.89085i
\(221\) 6107.13 6107.13i 1.85887 1.85887i
\(222\) 0 0
\(223\) 3969.43i 1.19199i 0.802990 + 0.595993i \(0.203241\pi\)
−0.802990 + 0.595993i \(0.796759\pi\)
\(224\) 1724.88 + 3017.03i 0.514502 + 0.899928i
\(225\) 0 0
\(226\) 2157.69 1939.48i 0.635077 0.570852i
\(227\) 498.814 + 498.814i 0.145848 + 0.145848i 0.776260 0.630412i \(-0.217114\pi\)
−0.630412 + 0.776260i \(0.717114\pi\)
\(228\) 0 0
\(229\) −3714.57 + 3714.57i −1.07190 + 1.07190i −0.0746968 + 0.997206i \(0.523799\pi\)
−0.997206 + 0.0746968i \(0.976201\pi\)
\(230\) −4786.52 254.918i −1.37223 0.0730817i
\(231\) 0 0
\(232\) −155.970 + 968.809i −0.0441376 + 0.274161i
\(233\) −4041.77 −1.13642 −0.568209 0.822884i \(-0.692364\pi\)
−0.568209 + 0.822884i \(0.692364\pi\)
\(234\) 0 0
\(235\) 3556.58 + 3556.58i 0.987259 + 0.987259i
\(236\) 2718.16 + 3368.31i 0.749735 + 0.929060i
\(237\) 0 0
\(238\) 4148.45 3728.92i 1.12985 1.01559i
\(239\) −98.4276 −0.0266391 −0.0133196 0.999911i \(-0.504240\pi\)
−0.0133196 + 0.999911i \(0.504240\pi\)
\(240\) 0 0
\(241\) −6987.33 −1.86761 −0.933804 0.357785i \(-0.883532\pi\)
−0.933804 + 0.357785i \(0.883532\pi\)
\(242\) 2159.04 1940.70i 0.573506 0.515508i
\(243\) 0 0
\(244\) −4483.89 + 3618.42i −1.17644 + 0.949366i
\(245\) −288.979 288.979i −0.0753560 0.0753560i
\(246\) 0 0
\(247\) 7183.39 1.85048
\(248\) −1322.31 1829.77i −0.338576 0.468510i
\(249\) 0 0
\(250\) 235.056 + 12.5185i 0.0594650 + 0.00316695i
\(251\) 1054.33 1054.33i 0.265134 0.265134i −0.562002 0.827136i \(-0.689969\pi\)
0.827136 + 0.562002i \(0.189969\pi\)
\(252\) 0 0
\(253\) −3642.02 3642.02i −0.905027 0.905027i
\(254\) 4807.91 4321.69i 1.18770 1.06759i
\(255\) 0 0
\(256\) 3730.50 + 1691.32i 0.910767 + 0.412920i
\(257\) 159.320i 0.0386696i −0.999813 0.0193348i \(-0.993845\pi\)
0.999813 0.0193348i \(-0.00615485\pi\)
\(258\) 0 0
\(259\) 1822.36 1822.36i 0.437204 0.437204i
\(260\) −10684.6 1141.30i −2.54857 0.272233i
\(261\) 0 0
\(262\) 58.9906 1107.65i 0.0139101 0.261186i
\(263\) 5388.56i 1.26339i 0.775215 + 0.631697i \(0.217641\pi\)
−0.775215 + 0.631697i \(0.782359\pi\)
\(264\) 0 0
\(265\) 4226.76i 0.979804i
\(266\) 4632.81 + 246.731i 1.06788 + 0.0568725i
\(267\) 0 0
\(268\) −760.359 942.225i −0.173307 0.214760i
\(269\) −1342.95 + 1342.95i −0.304390 + 0.304390i −0.842729 0.538338i \(-0.819052\pi\)
0.538338 + 0.842729i \(0.319052\pi\)
\(270\) 0 0
\(271\) 985.086i 0.220811i −0.993887 0.110405i \(-0.964785\pi\)
0.993887 0.110405i \(-0.0352149\pi\)
\(272\) 1388.66 6425.97i 0.309559 1.43247i
\(273\) 0 0
\(274\) 1387.52 + 1543.63i 0.305925 + 0.340344i
\(275\) 4470.37 + 4470.37i 0.980266 + 0.980266i
\(276\) 0 0
\(277\) −2005.49 + 2005.49i −0.435012 + 0.435012i −0.890329 0.455317i \(-0.849526\pi\)
0.455317 + 0.890329i \(0.349526\pi\)
\(278\) 146.193 2745.03i 0.0315398 0.592215i
\(279\) 0 0
\(280\) −6851.63 1103.05i −1.46237 0.235429i
\(281\) 5647.53 1.19895 0.599473 0.800395i \(-0.295377\pi\)
0.599473 + 0.800395i \(0.295377\pi\)
\(282\) 0 0
\(283\) −2391.89 2391.89i −0.502415 0.502415i 0.409773 0.912188i \(-0.365608\pi\)
−0.912188 + 0.409773i \(0.865608\pi\)
\(284\) −1668.16 178.189i −0.348546 0.0372310i
\(285\) 0 0
\(286\) −7718.71 8587.11i −1.59586 1.77541i
\(287\) −662.492 −0.136257
\(288\) 0 0
\(289\) −5639.11 −1.14779
\(290\) −1309.95 1457.33i −0.265251 0.295094i
\(291\) 0 0
\(292\) −3274.40 349.764i −0.656231 0.0700972i
\(293\) −720.156 720.156i −0.143590 0.143590i 0.631657 0.775248i \(-0.282375\pi\)
−0.775248 + 0.631657i \(0.782375\pi\)
\(294\) 0 0
\(295\) −8643.16 −1.70584
\(296\) 482.795 2998.89i 0.0948036 0.588875i
\(297\) 0 0
\(298\) 293.685 5514.43i 0.0570896 1.07195i
\(299\) −6306.80 + 6306.80i −1.21984 + 1.21984i
\(300\) 0 0
\(301\) 3802.79 + 3802.79i 0.728203 + 0.728203i
\(302\) 1094.87 + 1218.05i 0.208618 + 0.232088i
\(303\) 0 0
\(304\) 4595.90 2962.52i 0.867083 0.558921i
\(305\) 11505.8i 2.16006i
\(306\) 0 0
\(307\) −5876.19 + 5876.19i −1.09242 + 1.09242i −0.0971468 + 0.995270i \(0.530972\pi\)
−0.995270 + 0.0971468i \(0.969028\pi\)
\(308\) −4683.10 5803.23i −0.866379 1.07360i
\(309\) 0 0
\(310\) 4501.76 + 239.752i 0.824783 + 0.0439258i
\(311\) 3603.64i 0.657054i −0.944495 0.328527i \(-0.893448\pi\)
0.944495 0.328527i \(-0.106552\pi\)
\(312\) 0 0
\(313\) 8101.77i 1.46306i 0.681807 + 0.731532i \(0.261194\pi\)
−0.681807 + 0.731532i \(0.738806\pi\)
\(314\) −72.2455 + 1356.53i −0.0129842 + 0.243801i
\(315\) 0 0
\(316\) 7895.73 + 843.406i 1.40560 + 0.150143i
\(317\) −4409.48 + 4409.48i −0.781265 + 0.781265i −0.980044 0.198779i \(-0.936302\pi\)
0.198779 + 0.980044i \(0.436302\pi\)
\(318\) 0 0
\(319\) 2105.60i 0.369563i
\(320\) −7306.63 + 3676.25i −1.27642 + 0.642214i
\(321\) 0 0
\(322\) −4284.09 + 3850.84i −0.741438 + 0.666457i
\(323\) −6205.86 6205.86i −1.06905 1.06905i
\(324\) 0 0
\(325\) 7741.23 7741.23i 1.32125 1.32125i
\(326\) 6791.02 + 361.672i 1.15374 + 0.0614453i
\(327\) 0 0
\(328\) −632.858 + 457.345i −0.106536 + 0.0769898i
\(329\) 6044.59 1.01291
\(330\) 0 0
\(331\) 133.348 + 133.348i 0.0221434 + 0.0221434i 0.718092 0.695948i \(-0.245016\pi\)
−0.695948 + 0.718092i \(0.745016\pi\)
\(332\) 7502.13 6054.08i 1.24016 1.00079i
\(333\) 0 0
\(334\) −3453.54 + 3104.29i −0.565776 + 0.508560i
\(335\) 2417.77 0.394320
\(336\) 0 0
\(337\) −365.268 −0.0590427 −0.0295214 0.999564i \(-0.509398\pi\)
−0.0295214 + 0.999564i \(0.509398\pi\)
\(338\) −10248.6 + 9212.21i −1.64927 + 1.48248i
\(339\) 0 0
\(340\) 8244.60 + 10216.6i 1.31508 + 1.62962i
\(341\) 3425.34 + 3425.34i 0.543967 + 0.543967i
\(342\) 0 0
\(343\) 6093.95 0.959307
\(344\) 6257.90 + 1007.47i 0.980824 + 0.157904i
\(345\) 0 0
\(346\) 426.267 + 22.7019i 0.0662320 + 0.00352735i
\(347\) 6172.89 6172.89i 0.954980 0.954980i −0.0440491 0.999029i \(-0.514026\pi\)
0.999029 + 0.0440491i \(0.0140258\pi\)
\(348\) 0 0
\(349\) 158.317 + 158.317i 0.0242822 + 0.0242822i 0.719144 0.694861i \(-0.244534\pi\)
−0.694861 + 0.719144i \(0.744534\pi\)
\(350\) 5258.47 4726.68i 0.803077 0.721862i
\(351\) 0 0
\(352\) −8479.83 2310.71i −1.28402 0.349890i
\(353\) 8796.93i 1.32638i −0.748449 0.663192i \(-0.769201\pi\)
0.748449 0.663192i \(-0.230799\pi\)
\(354\) 0 0
\(355\) 2368.89 2368.89i 0.354162 0.354162i
\(356\) 174.570 1634.28i 0.0259893 0.243305i
\(357\) 0 0
\(358\) −557.482 + 10467.7i −0.0823013 + 1.54535i
\(359\) 1994.39i 0.293203i −0.989196 0.146601i \(-0.953167\pi\)
0.989196 0.146601i \(-0.0468335\pi\)
\(360\) 0 0
\(361\) 440.519i 0.0642249i
\(362\) 11699.2 + 623.070i 1.69861 + 0.0904636i
\(363\) 0 0
\(364\) −10049.3 + 8109.62i −1.44705 + 1.16775i
\(365\) 4649.84 4649.84i 0.666805 0.666805i
\(366\) 0 0
\(367\) 11626.5i 1.65367i −0.562445 0.826835i \(-0.690139\pi\)
0.562445 0.826835i \(-0.309861\pi\)
\(368\) −1434.06 + 6636.07i −0.203141 + 0.940024i
\(369\) 0 0
\(370\) 4054.87 + 4511.07i 0.569737 + 0.633836i
\(371\) −3591.80 3591.80i −0.502633 0.502633i
\(372\) 0 0
\(373\) −6474.18 + 6474.18i −0.898713 + 0.898713i −0.995322 0.0966090i \(-0.969200\pi\)
0.0966090 + 0.995322i \(0.469200\pi\)
\(374\) −750.232 + 14086.9i −0.103726 + 1.94764i
\(375\) 0 0
\(376\) 5774.21 4172.82i 0.791973 0.572332i
\(377\) −3646.21 −0.498115
\(378\) 0 0
\(379\) 2278.55 + 2278.55i 0.308816 + 0.308816i 0.844450 0.535634i \(-0.179927\pi\)
−0.535634 + 0.844450i \(0.679927\pi\)
\(380\) −1159.75 + 10857.3i −0.156563 + 1.46570i
\(381\) 0 0
\(382\) −3315.09 3688.06i −0.444018 0.493973i
\(383\) 6258.43 0.834963 0.417481 0.908685i \(-0.362913\pi\)
0.417481 + 0.908685i \(0.362913\pi\)
\(384\) 0 0
\(385\) 14891.2 1.97124
\(386\) −1829.13 2034.92i −0.241192 0.268328i
\(387\) 0 0
\(388\) 658.569 6165.34i 0.0861695 0.806695i
\(389\) −4476.87 4476.87i −0.583512 0.583512i 0.352354 0.935867i \(-0.385381\pi\)
−0.935867 + 0.352354i \(0.885381\pi\)
\(390\) 0 0
\(391\) 10897.1 1.40944
\(392\) −469.165 + 339.050i −0.0604501 + 0.0436852i
\(393\) 0 0
\(394\) 382.649 7184.88i 0.0489278 0.918703i
\(395\) −11212.4 + 11212.4i −1.42825 + 1.42825i
\(396\) 0 0
\(397\) −4550.42 4550.42i −0.575263 0.575263i 0.358332 0.933594i \(-0.383346\pi\)
−0.933594 + 0.358332i \(0.883346\pi\)
\(398\) −9215.14 10251.9i −1.16059 1.29116i
\(399\) 0 0
\(400\) 1760.23 8145.38i 0.220029 1.01817i
\(401\) 10156.3i 1.26479i 0.774645 + 0.632396i \(0.217929\pi\)
−0.774645 + 0.632396i \(0.782071\pi\)
\(402\) 0 0
\(403\) 5931.59 5931.59i 0.733185 0.733185i
\(404\) 3735.61 3014.57i 0.460034 0.371239i
\(405\) 0 0
\(406\) −2351.56 125.238i −0.287453 0.0153090i
\(407\) 6517.74i 0.793790i
\(408\) 0 0
\(409\) 8099.91i 0.979253i −0.871932 0.489627i \(-0.837133\pi\)
0.871932 0.489627i \(-0.162867\pi\)
\(410\) 82.9225 1557.01i 0.00998842 0.187550i
\(411\) 0 0
\(412\) 92.3711 864.753i 0.0110456 0.103406i
\(413\) −7344.74 + 7344.74i −0.875087 + 0.875087i
\(414\) 0 0
\(415\) 19250.7i 2.27705i
\(416\) −4001.41 + 14684.3i −0.471599 + 1.73067i
\(417\) 0 0
\(418\) −8725.94 + 7843.49i −1.02105 + 0.917794i
\(419\) 3174.43 + 3174.43i 0.370122 + 0.370122i 0.867522 0.497400i \(-0.165712\pi\)
−0.497400 + 0.867522i \(0.665712\pi\)
\(420\) 0 0
\(421\) −1382.13 + 1382.13i −0.160002 + 0.160002i −0.782568 0.622565i \(-0.786090\pi\)
0.622565 + 0.782568i \(0.286090\pi\)
\(422\) −6441.79 343.073i −0.743083 0.0395747i
\(423\) 0 0
\(424\) −5910.69 951.569i −0.677001 0.108991i
\(425\) −13375.6 −1.52661
\(426\) 0 0
\(427\) −9777.30 9777.30i −1.10810 1.10810i
\(428\) 7321.08 + 9072.17i 0.826817 + 1.02458i
\(429\) 0 0
\(430\) −9413.43 + 8461.46i −1.05571 + 0.948949i
\(431\) −5143.97 −0.574887 −0.287444 0.957798i \(-0.592805\pi\)
−0.287444 + 0.957798i \(0.592805\pi\)
\(432\) 0 0
\(433\) 14855.1 1.64871 0.824354 0.566075i \(-0.191539\pi\)
0.824354 + 0.566075i \(0.191539\pi\)
\(434\) 4029.21 3621.74i 0.445642 0.400574i
\(435\) 0 0
\(436\) −5572.32 + 4496.77i −0.612078 + 0.493936i
\(437\) 6408.76 + 6408.76i 0.701539 + 0.701539i
\(438\) 0 0
\(439\) 6820.25 0.741487 0.370743 0.928735i \(-0.379103\pi\)
0.370743 + 0.928735i \(0.379103\pi\)
\(440\) 14225.1 10280.0i 1.54127 1.11382i
\(441\) 0 0
\(442\) 24393.9 + 1299.16i 2.62512 + 0.139807i
\(443\) 3410.66 3410.66i 0.365791 0.365791i −0.500149 0.865940i \(-0.666721\pi\)
0.865940 + 0.500149i \(0.166721\pi\)
\(444\) 0 0
\(445\) 2320.78 + 2320.78i 0.247226 + 0.247226i
\(446\) −8349.84 + 7505.43i −0.886494 + 0.796844i
\(447\) 0 0
\(448\) −3085.01 + 9332.97i −0.325341 + 0.984244i
\(449\) 11673.0i 1.22692i 0.789728 + 0.613458i \(0.210222\pi\)
−0.789728 + 0.613458i \(0.789778\pi\)
\(450\) 0 0
\(451\) 1184.72 1184.72i 0.123694 0.123694i
\(452\) 8159.54 + 871.585i 0.849099 + 0.0906989i
\(453\) 0 0
\(454\) −106.112 + 1992.43i −0.0109693 + 0.205968i
\(455\) 25786.8i 2.65693i
\(456\) 0 0
\(457\) 18011.9i 1.84368i −0.387572 0.921839i \(-0.626686\pi\)
0.387572 0.921839i \(-0.373314\pi\)
\(458\) −14837.3 790.195i −1.51375 0.0806187i
\(459\) 0 0
\(460\) −8514.16 10550.6i −0.862988 1.06940i
\(461\) −817.679 + 817.679i −0.0826098 + 0.0826098i −0.747204 0.664594i \(-0.768604\pi\)
0.664594 + 0.747204i \(0.268604\pi\)
\(462\) 0 0
\(463\) 15535.3i 1.55936i 0.626177 + 0.779681i \(0.284619\pi\)
−0.626177 + 0.779681i \(0.715381\pi\)
\(464\) −2332.83 + 1503.74i −0.233403 + 0.150451i
\(465\) 0 0
\(466\) −7642.21 8502.01i −0.759696 0.845167i
\(467\) −4070.59 4070.59i −0.403350 0.403350i 0.476062 0.879412i \(-0.342064\pi\)
−0.879412 + 0.476062i \(0.842064\pi\)
\(468\) 0 0
\(469\) 2054.56 2054.56i 0.202283 0.202283i
\(470\) −756.586 + 14206.2i −0.0742526 + 1.39422i
\(471\) 0 0
\(472\) −1945.83 + 12086.6i −0.189754 + 1.17866i
\(473\) −13600.8 −1.32213
\(474\) 0 0
\(475\) −7866.38 7866.38i −0.759861 0.759861i
\(476\) 15687.8 + 1675.74i 1.51061 + 0.161360i
\(477\) 0 0
\(478\) −186.107 207.046i −0.0178083 0.0198118i
\(479\) 13672.3 1.30418 0.652092 0.758140i \(-0.273892\pi\)
0.652092 + 0.758140i \(0.273892\pi\)
\(480\) 0 0
\(481\) 11286.6 1.06991
\(482\) −13211.7 14698.1i −1.24850 1.38896i
\(483\) 0 0
\(484\) 8164.65 + 872.131i 0.766778 + 0.0819056i
\(485\) 8755.16 + 8755.16i 0.819694 + 0.819694i
\(486\) 0 0
\(487\) −16464.2 −1.53196 −0.765981 0.642863i \(-0.777747\pi\)
−0.765981 + 0.642863i \(0.777747\pi\)
\(488\) −16089.6 2590.29i −1.49251 0.240280i
\(489\) 0 0
\(490\) 61.4741 1154.28i 0.00566758 0.106419i
\(491\) 11659.2 11659.2i 1.07163 1.07163i 0.0744061 0.997228i \(-0.476294\pi\)
0.997228 0.0744061i \(-0.0237061\pi\)
\(492\) 0 0
\(493\) 3150.03 + 3150.03i 0.287769 + 0.287769i
\(494\) 13582.4 + 15110.5i 1.23705 + 1.37622i
\(495\) 0 0
\(496\) 1348.75 6241.27i 0.122098 0.565002i
\(497\) 4026.04i 0.363366i
\(498\) 0 0
\(499\) 5942.66 5942.66i 0.533126 0.533126i −0.388375 0.921501i \(-0.626963\pi\)
0.921501 + 0.388375i \(0.126963\pi\)
\(500\) 418.112 + 518.118i 0.0373971 + 0.0463419i
\(501\) 0 0
\(502\) 4211.35 + 224.286i 0.374426 + 0.0199410i
\(503\) 9432.81i 0.836160i −0.908410 0.418080i \(-0.862703\pi\)
0.908410 0.418080i \(-0.137297\pi\)
\(504\) 0 0
\(505\) 9585.68i 0.844667i
\(506\) 774.761 14547.5i 0.0680678 1.27809i
\(507\) 0 0
\(508\) 18181.6 + 1942.12i 1.58795 + 0.169622i
\(509\) −360.977 + 360.977i −0.0314343 + 0.0314343i −0.722649 0.691215i \(-0.757076\pi\)
0.691215 + 0.722649i \(0.257076\pi\)
\(510\) 0 0
\(511\) 7902.64i 0.684133i
\(512\) 3495.91 + 11045.2i 0.301756 + 0.953385i
\(513\) 0 0
\(514\) 335.134 301.243i 0.0287590 0.0258507i
\(515\) 1228.00 + 1228.00i 0.105072 + 0.105072i
\(516\) 0 0
\(517\) −10809.4 + 10809.4i −0.919527 + 0.919527i
\(518\) 7279.12 + 387.667i 0.617425 + 0.0328825i
\(519\) 0 0
\(520\) −17801.7 24633.3i −1.50126 2.07739i
\(521\) 7038.01 0.591825 0.295913 0.955215i \(-0.404376\pi\)
0.295913 + 0.955215i \(0.404376\pi\)
\(522\) 0 0
\(523\) −7004.77 7004.77i −0.585655 0.585655i 0.350797 0.936452i \(-0.385911\pi\)
−0.936452 + 0.350797i \(0.885911\pi\)
\(524\) 2441.52 1970.26i 0.203546 0.164258i
\(525\) 0 0
\(526\) −11335.0 + 10188.7i −0.939601 + 0.844580i
\(527\) −10248.8 −0.847144
\(528\) 0 0
\(529\) 913.601 0.0750884
\(530\) 8891.14 7991.99i 0.728692 0.655000i
\(531\) 0 0
\(532\) 8240.73 + 10211.8i 0.671580 + 0.832212i
\(533\) −2051.54 2051.54i −0.166721 0.166721i
\(534\) 0 0
\(535\) −23279.4 −1.88123
\(536\) 544.312 3381.00i 0.0438632 0.272457i
\(537\) 0 0
\(538\) −5364.19 285.683i −0.429864 0.0228935i
\(539\) 878.282 878.282i 0.0701860 0.0701860i
\(540\) 0 0
\(541\) 54.6730 + 54.6730i 0.00434487 + 0.00434487i 0.709276 0.704931i \(-0.249022\pi\)
−0.704931 + 0.709276i \(0.749022\pi\)
\(542\) 2072.16 1862.61i 0.164220 0.147612i
\(543\) 0 0
\(544\) 16142.9 9229.16i 1.27228 0.727384i
\(545\) 14298.7i 1.12383i
\(546\) 0 0
\(547\) 8483.80 8483.80i 0.663146 0.663146i −0.292974 0.956120i \(-0.594645\pi\)
0.956120 + 0.292974i \(0.0946449\pi\)
\(548\) −623.540 + 5837.41i −0.0486064 + 0.455040i
\(549\) 0 0
\(550\) −950.973 + 17856.2i −0.0737266 + 1.38434i
\(551\) 3705.16i 0.286470i
\(552\) 0 0
\(553\) 19056.1i 1.46536i
\(554\) −8010.62 426.625i −0.614330 0.0327176i
\(555\) 0 0
\(556\) 6050.68 4882.79i 0.461521 0.372439i
\(557\) 1467.75 1467.75i 0.111653 0.111653i −0.649073 0.760726i \(-0.724843\pi\)
0.760726 + 0.649073i \(0.224843\pi\)
\(558\) 0 0
\(559\) 23552.3i 1.78203i
\(560\) −10634.8 16498.3i −0.802504 1.24496i
\(561\) 0 0
\(562\) 10678.4 + 11879.8i 0.801496 + 0.891670i
\(563\) −11322.6 11322.6i −0.847589 0.847589i 0.142243 0.989832i \(-0.454569\pi\)
−0.989832 + 0.142243i \(0.954569\pi\)
\(564\) 0 0
\(565\) −11587.1 + 11587.1i −0.862780 + 0.862780i
\(566\) 508.824 9554.04i 0.0377870 0.709516i
\(567\) 0 0
\(568\) −2779.34 3845.95i −0.205314 0.284107i
\(569\) 7736.59 0.570008 0.285004 0.958526i \(-0.408005\pi\)
0.285004 + 0.958526i \(0.408005\pi\)
\(570\) 0 0
\(571\) −9925.92 9925.92i −0.727472 0.727472i 0.242643 0.970116i \(-0.421986\pi\)
−0.970116 + 0.242643i \(0.921986\pi\)
\(572\) 3468.71 32473.1i 0.253556 2.37372i
\(573\) 0 0
\(574\) −1252.64 1393.57i −0.0910877 0.101336i
\(575\) 13812.9 1.00180
\(576\) 0 0
\(577\) 4772.65 0.344347 0.172173 0.985067i \(-0.444921\pi\)
0.172173 + 0.985067i \(0.444921\pi\)
\(578\) −10662.5 11862.1i −0.767300 0.853627i
\(579\) 0 0
\(580\) 588.679 5511.05i 0.0421441 0.394541i
\(581\) 16358.7 + 16358.7i 1.16811 + 1.16811i
\(582\) 0 0
\(583\) 12846.2 0.912583
\(584\) −5455.51 7549.14i −0.386559 0.534907i
\(585\) 0 0
\(586\) 153.198 2876.55i 0.0107995 0.202780i
\(587\) −4567.88 + 4567.88i −0.321187 + 0.321187i −0.849222 0.528036i \(-0.822929\pi\)
0.528036 + 0.849222i \(0.322929\pi\)
\(588\) 0 0
\(589\) −6027.48 6027.48i −0.421661 0.421661i
\(590\) −16342.5 18181.2i −1.14036 1.26866i
\(591\) 0 0
\(592\) 7221.13 4654.74i 0.501329 0.323156i
\(593\) 23559.5i 1.63149i 0.578411 + 0.815746i \(0.303673\pi\)
−0.578411 + 0.815746i \(0.696327\pi\)
\(594\) 0 0
\(595\) −22277.7 + 22277.7i −1.53495 + 1.53495i
\(596\) 12155.1 9808.94i 0.835389 0.674144i
\(597\) 0 0
\(598\) −25191.5 1341.64i −1.72267 0.0917451i
\(599\) 2962.86i 0.202102i 0.994881 + 0.101051i \(0.0322205\pi\)
−0.994881 + 0.101051i \(0.967779\pi\)
\(600\) 0 0
\(601\) 2867.08i 0.194594i −0.995255 0.0972969i \(-0.968980\pi\)
0.995255 0.0972969i \(-0.0310196\pi\)
\(602\) −808.961 + 15189.6i −0.0547688 + 1.02838i
\(603\) 0 0
\(604\) −492.022 + 4606.18i −0.0331459 + 0.310303i
\(605\) −11594.3 + 11594.3i −0.779133 + 0.779133i
\(606\) 0 0
\(607\) 14432.9i 0.965094i −0.875870 0.482547i \(-0.839712\pi\)
0.875870 0.482547i \(-0.160288\pi\)
\(608\) 14921.7 + 4066.09i 0.995321 + 0.271220i
\(609\) 0 0
\(610\) 24202.8 21755.2i 1.60646 1.44400i
\(611\) 18718.3 + 18718.3i 1.23938 + 1.23938i
\(612\) 0 0
\(613\) −3242.15 + 3242.15i −0.213620 + 0.213620i −0.805803 0.592183i \(-0.798266\pi\)
0.592183 + 0.805803i \(0.298266\pi\)
\(614\) −23471.5 1250.03i −1.54272 0.0821616i
\(615\) 0 0
\(616\) 3352.46 20823.9i 0.219277 1.36204i
\(617\) 10722.8 0.699651 0.349826 0.936815i \(-0.386241\pi\)
0.349826 + 0.936815i \(0.386241\pi\)
\(618\) 0 0
\(619\) −12578.8 12578.8i −0.816779 0.816779i 0.168861 0.985640i \(-0.445991\pi\)
−0.985640 + 0.168861i \(0.945991\pi\)
\(620\) 8007.62 + 9922.92i 0.518700 + 0.642765i
\(621\) 0 0
\(622\) 7580.39 6813.79i 0.488659 0.439241i
\(623\) 3944.27 0.253650
\(624\) 0 0
\(625\) 14946.7 0.956587
\(626\) −17042.4 + 15318.9i −1.08810 + 0.978060i
\(627\) 0 0
\(628\) −2990.12 + 2412.97i −0.189998 + 0.153325i
\(629\) −9750.71 9750.71i −0.618102 0.618102i
\(630\) 0 0
\(631\) 16416.5 1.03570 0.517852 0.855470i \(-0.326732\pi\)
0.517852 + 0.855470i \(0.326732\pi\)
\(632\) 13155.2 + 18203.7i 0.827982 + 1.14573i
\(633\) 0 0
\(634\) −17613.0 938.021i −1.10331 0.0587596i
\(635\) −25819.0 + 25819.0i −1.61354 + 1.61354i
\(636\) 0 0
\(637\) −1520.90 1520.90i −0.0946001 0.0946001i
\(638\) 4429.19 3981.27i 0.274849 0.247053i
\(639\) 0 0
\(640\) −21548.5 8418.68i −1.33091 0.519965i
\(641\) 19386.0i 1.19454i −0.802040 0.597271i \(-0.796252\pi\)
0.802040 0.597271i \(-0.203748\pi\)
\(642\) 0 0
\(643\) −16044.8 + 16044.8i −0.984050 + 0.984050i −0.999875 0.0158251i \(-0.994963\pi\)
0.0158251 + 0.999875i \(0.494963\pi\)
\(644\) −16200.8 1730.53i −0.991303 0.105889i
\(645\) 0 0
\(646\) 1320.16 24788.3i 0.0804041 1.50973i
\(647\) 6318.29i 0.383922i −0.981403 0.191961i \(-0.938515\pi\)
0.981403 0.191961i \(-0.0614847\pi\)
\(648\) 0 0
\(649\) 26268.8i 1.58881i
\(650\) 30921.1 + 1646.78i 1.86588 + 0.0993723i
\(651\) 0 0
\(652\) 12079.7 + 14969.0i 0.725579 + 0.899127i
\(653\) −6586.42 + 6586.42i −0.394711 + 0.394711i −0.876363 0.481652i \(-0.840037\pi\)
0.481652 + 0.876363i \(0.340037\pi\)
\(654\) 0 0
\(655\) 6265.00i 0.373731i
\(656\) −2158.65 466.488i −0.128477 0.0277642i
\(657\) 0 0
\(658\) 11429.1 + 12715.0i 0.677134 + 0.753316i
\(659\) −19630.8 19630.8i −1.16041 1.16041i −0.984386 0.176021i \(-0.943677\pi\)
−0.176021 0.984386i \(-0.556323\pi\)
\(660\) 0 0
\(661\) −1685.31 + 1685.31i −0.0991697 + 0.0991697i −0.754951 0.655781i \(-0.772339\pi\)
0.655781 + 0.754951i \(0.272339\pi\)
\(662\) −28.3668 + 532.636i −0.00166542 + 0.0312711i
\(663\) 0 0
\(664\) 26920.0 + 4333.89i 1.57334 + 0.253294i
\(665\) −26203.7 −1.52802
\(666\) 0 0
\(667\) −3253.02 3253.02i −0.188842 0.188842i
\(668\) −13059.9 1395.04i −0.756444 0.0808017i
\(669\) 0 0
\(670\) 4571.54 + 5085.87i 0.263603 + 0.293260i
\(671\) 34969.0 2.01187
\(672\) 0 0
\(673\) −27572.2 −1.57924 −0.789621 0.613595i \(-0.789723\pi\)
−0.789621 + 0.613595i \(0.789723\pi\)
\(674\) −690.650 768.353i −0.0394701 0.0439108i
\(675\) 0 0
\(676\) −38756.4 4139.87i −2.20507 0.235541i
\(677\) 18179.4 + 18179.4i 1.03204 + 1.03204i 0.999470 + 0.0325680i \(0.0103686\pi\)
0.0325680 + 0.999470i \(0.489631\pi\)
\(678\) 0 0
\(679\) 14879.8 0.840994
\(680\) −5901.99 + 36660.4i −0.332840 + 2.06744i
\(681\) 0 0
\(682\) −728.668 + 13682.0i −0.0409122 + 0.768197i
\(683\) −6405.32 + 6405.32i −0.358848 + 0.358848i −0.863388 0.504540i \(-0.831662\pi\)
0.504540 + 0.863388i \(0.331662\pi\)
\(684\) 0 0
\(685\) −8289.48 8289.48i −0.462372 0.462372i
\(686\) 11522.5 + 12818.8i 0.641297 + 0.713447i
\(687\) 0 0
\(688\) 9713.24 + 15068.6i 0.538247 + 0.835009i
\(689\) 22245.5i 1.23002i
\(690\) 0 0
\(691\) 798.974 798.974i 0.0439861 0.0439861i −0.684772 0.728758i \(-0.740098\pi\)
0.728758 + 0.684772i \(0.240098\pi\)
\(692\) 758.234 + 939.592i 0.0416528 + 0.0516155i
\(693\) 0 0
\(694\) 24656.6 + 1313.15i 1.34863 + 0.0718249i
\(695\) 15526.2i 0.847398i
\(696\) 0 0
\(697\) 3544.73i 0.192635i
\(698\) −33.6785 + 632.371i −0.00182629 + 0.0342917i
\(699\) 0 0
\(700\) 19885.5 + 2124.12i 1.07371 + 0.114692i
\(701\) 2571.67 2571.67i 0.138560 0.138560i −0.634425 0.772985i \(-0.718763\pi\)
0.772985 + 0.634425i \(0.218763\pi\)
\(702\) 0 0
\(703\) 11469.1i 0.615313i
\(704\) −11173.0 22206.7i −0.598153 1.18885i
\(705\) 0 0
\(706\) 18504.6 16633.3i 0.986447 0.886688i
\(707\) 8145.66 + 8145.66i 0.433309 + 0.433309i
\(708\) 0 0
\(709\) −1247.12 + 1247.12i −0.0660601 + 0.0660601i −0.739365 0.673305i \(-0.764874\pi\)
0.673305 + 0.739365i \(0.264874\pi\)
\(710\) 9462.15 + 503.930i 0.500152 + 0.0266368i
\(711\) 0 0
\(712\) 3767.84 2722.89i 0.198323 0.143321i
\(713\) 10583.9 0.555919
\(714\) 0 0
\(715\) 46113.8 + 46113.8i 2.41197 + 2.41197i
\(716\) −23073.2 + 18619.7i −1.20431 + 0.971857i
\(717\) 0 0
\(718\) 4195.27 3771.00i 0.218058 0.196006i
\(719\) 9209.29 0.477675 0.238838 0.971059i \(-0.423234\pi\)
0.238838 + 0.971059i \(0.423234\pi\)
\(720\) 0 0
\(721\) 2087.05 0.107803
\(722\) 926.646 832.935i 0.0477648 0.0429344i
\(723\) 0 0
\(724\) 20810.3 + 25787.8i 1.06824 + 1.32375i
\(725\) 3992.89 + 3992.89i 0.204541 + 0.204541i
\(726\) 0 0
\(727\) 1546.22 0.0788807 0.0394403 0.999222i \(-0.487442\pi\)
0.0394403 + 0.999222i \(0.487442\pi\)
\(728\) −36060.2 5805.37i −1.83582 0.295551i
\(729\) 0 0
\(730\) 18573.1 + 989.153i 0.941671 + 0.0501510i
\(731\) 20347.2 20347.2i 1.02951 1.02951i
\(732\) 0 0
\(733\) 11592.2 + 11592.2i 0.584132 + 0.584132i 0.936036 0.351904i \(-0.114466\pi\)
−0.351904 + 0.936036i \(0.614466\pi\)
\(734\) 24456.7 21983.4i 1.22985 1.10548i
\(735\) 0 0
\(736\) −16670.7 + 9530.91i −0.834906 + 0.477329i
\(737\) 7348.23i 0.367267i
\(738\) 0 0
\(739\) 17265.6 17265.6i 0.859438 0.859438i −0.131834 0.991272i \(-0.542086\pi\)
0.991272 + 0.131834i \(0.0420865\pi\)
\(740\) −1822.22 + 17059.1i −0.0905217 + 0.847440i
\(741\) 0 0
\(742\) 764.077 14346.9i 0.0378034 0.709824i
\(743\) 6931.89i 0.342269i 0.985248 + 0.171135i \(0.0547433\pi\)
−0.985248 + 0.171135i \(0.945257\pi\)
\(744\) 0 0
\(745\) 31190.3i 1.53386i
\(746\) −25860.1 1377.24i −1.26917 0.0675930i
\(747\) 0 0
\(748\) −31050.8 + 25057.4i −1.51782 + 1.22485i
\(749\) −19782.2 + 19782.2i −0.965057 + 0.965057i
\(750\) 0 0
\(751\) 29358.2i 1.42649i 0.700915 + 0.713245i \(0.252775\pi\)
−0.700915 + 0.713245i \(0.747225\pi\)
\(752\) 19695.6 + 4256.24i 0.955085 + 0.206395i
\(753\) 0 0
\(754\) −6894.28 7669.93i −0.332990 0.370454i
\(755\) −6541.05 6541.05i −0.315302 0.315302i
\(756\) 0 0
\(757\) 11711.4 11711.4i 0.562296 0.562296i −0.367663 0.929959i \(-0.619842\pi\)
0.929959 + 0.367663i \(0.119842\pi\)
\(758\) −484.712 + 9101.30i −0.0232263 + 0.436114i
\(759\) 0 0
\(760\) −25031.6 + 18089.5i −1.19472 + 0.863386i
\(761\) 6035.74 0.287510 0.143755 0.989613i \(-0.454082\pi\)
0.143755 + 0.989613i \(0.454082\pi\)
\(762\) 0 0
\(763\) −12150.7 12150.7i −0.576520 0.576520i
\(764\) 1489.77 13946.8i 0.0705470 0.660442i
\(765\) 0 0
\(766\) 11833.5 + 13164.8i 0.558173 + 0.620972i
\(767\) −45489.0 −2.14148
\(768\) 0 0
\(769\) −28555.0 −1.33904 −0.669519 0.742795i \(-0.733500\pi\)
−0.669519 + 0.742795i \(0.733500\pi\)
\(770\) 28156.4 + 31324.2i 1.31778 + 1.46603i
\(771\) 0 0
\(772\) 821.992 7695.27i 0.0383214 0.358755i
\(773\) −19821.5 19821.5i −0.922289 0.922289i 0.0749018 0.997191i \(-0.476136\pi\)
−0.997191 + 0.0749018i \(0.976136\pi\)
\(774\) 0 0
\(775\) −12991.1 −0.602135
\(776\) 14214.2 10272.1i 0.657553 0.475191i
\(777\) 0 0
\(778\) 952.357 17882.1i 0.0438864 0.824043i
\(779\) −2084.71 + 2084.71i −0.0958826 + 0.0958826i
\(780\) 0 0
\(781\) 7199.66 + 7199.66i 0.329864 + 0.329864i
\(782\) 20604.3 + 22922.4i 0.942211 + 1.04822i
\(783\) 0 0
\(784\) −1600.30 345.828i −0.0729001 0.0157538i
\(785\) 7672.71i 0.348855i
\(786\) 0 0
\(787\) 23418.5 23418.5i 1.06071 1.06071i 0.0626785 0.998034i \(-0.480036\pi\)
0.998034 0.0626785i \(-0.0199643\pi\)
\(788\) 15837.2 12780.3i 0.715959 0.577766i
\(789\) 0 0
\(790\) −44786.2 2385.20i −2.01699 0.107420i
\(791\) 19692.8i 0.885201i
\(792\) 0 0
\(793\) 60554.9i 2.71169i
\(794\) 968.004 18175.9i 0.0432660 0.812393i
\(795\) 0 0
\(796\) 4141.19 38768.7i 0.184398 1.72628i
\(797\) 28091.3 28091.3i 1.24849 1.24849i 0.292100 0.956388i \(-0.405646\pi\)
0.956388 0.292100i \(-0.0943541\pi\)
\(798\) 0 0
\(799\) 32342.2i 1.43202i
\(800\) 20462.3 11698.6i 0.904316 0.517011i
\(801\) 0 0
\(802\) −21364.1 + 19203.6i −0.940641 + 0.845515i
\(803\) 14132.1 + 14132.1i 0.621058 + 0.621058i
\(804\) 0 0
\(805\) 23006.1 23006.1i 1.00728 1.00728i
\(806\) 23692.8 + 1261.82i 1.03541 + 0.0551434i
\(807\) 0 0
\(808\) 13404.6 + 2158.02i 0.583628 + 0.0939589i
\(809\) 11636.8 0.505721 0.252861 0.967503i \(-0.418629\pi\)
0.252861 + 0.967503i \(0.418629\pi\)
\(810\) 0 0
\(811\) 26276.4 + 26276.4i 1.13772 + 1.13772i 0.988858 + 0.148859i \(0.0475601\pi\)
0.148859 + 0.988858i \(0.452440\pi\)
\(812\) −4182.90 5183.39i −0.180777 0.224017i
\(813\) 0 0
\(814\) −13710.3 + 12323.8i −0.590351 + 0.530649i
\(815\) −38410.8 −1.65088
\(816\) 0 0
\(817\) 23933.0 1.02486
\(818\) 17038.4 15315.3i 0.728282 0.654632i
\(819\) 0 0
\(820\) 3432.02 2769.58i 0.146160 0.117949i
\(821\) −25422.7 25422.7i −1.08071 1.08071i −0.996444 0.0842629i \(-0.973146\pi\)
−0.0842629 0.996444i \(-0.526854\pi\)
\(822\) 0 0
\(823\) −2843.64 −0.120441 −0.0602206 0.998185i \(-0.519180\pi\)
−0.0602206 + 0.998185i \(0.519180\pi\)
\(824\) 1993.69 1440.77i 0.0842883 0.0609123i
\(825\) 0 0
\(826\) −29337.4 1562.43i −1.23581 0.0658160i
\(827\) −7433.12 + 7433.12i −0.312545 + 0.312545i −0.845895 0.533350i \(-0.820933\pi\)
0.533350 + 0.845895i \(0.320933\pi\)
\(828\) 0 0
\(829\) 3375.43 + 3375.43i 0.141415 + 0.141415i 0.774270 0.632855i \(-0.218117\pi\)
−0.632855 + 0.774270i \(0.718117\pi\)
\(830\) −40494.4 + 36399.2i −1.69347 + 1.52221i
\(831\) 0 0
\(832\) −38454.8 + 19348.1i −1.60238 + 0.806220i
\(833\) 2627.86i 0.109304i
\(834\) 0 0
\(835\) 18545.9 18545.9i 0.768632 0.768632i
\(836\) −32998.1 3524.79i −1.36515 0.145822i
\(837\) 0 0
\(838\) −675.291 + 12679.8i −0.0278372 + 0.522691i
\(839\) 3873.13i 0.159375i 0.996820 + 0.0796873i \(0.0253922\pi\)
−0.996820 + 0.0796873i \(0.974608\pi\)
\(840\) 0 0
\(841\) 22508.3i 0.922887i
\(842\) −5520.71 294.019i −0.225957 0.0120339i
\(843\) 0 0
\(844\) −11458.5 14199.2i −0.467320 0.579095i
\(845\) 55036.4 55036.4i 2.24060 2.24060i
\(846\) 0 0
\(847\) 19705.1i 0.799380i
\(848\) −9174.31 14232.6i −0.371518 0.576354i
\(849\) 0 0
\(850\) −25290.6 28136.0i −1.02054 1.13536i
\(851\) 10069.5 + 10069.5i 0.405615 + 0.405615i
\(852\) 0 0
\(853\) −9011.15 + 9011.15i −0.361707 + 0.361707i −0.864441 0.502734i \(-0.832327\pi\)
0.502734 + 0.864441i \(0.332327\pi\)
\(854\) 2079.91 39053.9i 0.0833408 1.56487i
\(855\) 0 0
\(856\) −5240.88 + 32553.8i −0.209264 + 1.29985i
\(857\) 19088.6 0.760857 0.380429 0.924810i \(-0.375776\pi\)
0.380429 + 0.924810i \(0.375776\pi\)
\(858\) 0 0
\(859\) −30431.6 30431.6i −1.20875 1.20875i −0.971433 0.237312i \(-0.923734\pi\)
−0.237312 0.971433i \(-0.576266\pi\)
\(860\) −35597.9 3802.50i −1.41149 0.150772i
\(861\) 0 0
\(862\) −9726.25 10820.5i −0.384313 0.427550i
\(863\) −25203.6 −0.994136 −0.497068 0.867712i \(-0.665590\pi\)
−0.497068 + 0.867712i \(0.665590\pi\)
\(864\) 0 0
\(865\) −2411.02 −0.0947712
\(866\) 28088.1 + 31248.2i 1.10216 + 1.22616i
\(867\) 0 0
\(868\) 15236.9 + 1627.58i 0.595823 + 0.0636446i
\(869\) −34077.4 34077.4i −1.33026 1.33026i
\(870\) 0 0
\(871\) 12724.8 0.495019
\(872\) −19995.3 3219.06i −0.776520 0.125013i
\(873\) 0 0
\(874\) −1363.32 + 25598.8i −0.0527633 + 0.990722i
\(875\) −1129.78 + 1129.78i −0.0436497 + 0.0436497i
\(876\) 0 0
\(877\) −29609.6 29609.6i −1.14008 1.14008i −0.988436 0.151640i \(-0.951544\pi\)
−0.151640 0.988436i \(-0.548456\pi\)
\(878\) 12895.8 + 14346.6i 0.495684 + 0.551452i
\(879\) 0 0
\(880\) 48521.3 + 10485.5i 1.85870 + 0.401667i
\(881\) 32388.0i 1.23857i −0.785166 0.619285i \(-0.787422\pi\)
0.785166 0.619285i \(-0.212578\pi\)
\(882\) 0 0
\(883\) −15752.4 + 15752.4i −0.600353 + 0.600353i −0.940406 0.340053i \(-0.889555\pi\)
0.340053 + 0.940406i \(0.389555\pi\)
\(884\) 43391.4 + 53769.9i 1.65092 + 2.04579i
\(885\) 0 0
\(886\) 13623.3 + 725.544i 0.516574 + 0.0275114i
\(887\) 30496.9i 1.15444i 0.816589 + 0.577219i \(0.195862\pi\)
−0.816589 + 0.577219i \(0.804138\pi\)
\(888\) 0 0
\(889\) 43880.7i 1.65547i
\(890\) −493.695 + 9269.97i −0.0185940 + 0.349135i
\(891\) 0 0
\(892\) −31575.8 3372.86i −1.18524 0.126605i
\(893\) 19020.9 19020.9i 0.712779 0.712779i
\(894\) 0 0
\(895\) 59206.5i 2.21123i
\(896\) −25465.4 + 11157.4i −0.949484 + 0.416007i
\(897\) 0 0
\(898\) −24554.6 + 22071.5i −0.912471 + 0.820194i
\(899\) 3059.48 + 3059.48i 0.113503 + 0.113503i
\(900\) 0 0
\(901\) −19218.3 + 19218.3i −0.710603 + 0.710603i
\(902\) 4732.16 + 252.023i 0.174682 + 0.00930314i
\(903\) 0 0
\(904\) 13594.7 + 18811.9i 0.500169 + 0.692117i
\(905\) −66172.1 −2.43054
\(906\) 0 0
\(907\) 18365.1 + 18365.1i 0.672331 + 0.672331i 0.958253 0.285922i \(-0.0922997\pi\)
−0.285922 + 0.958253i \(0.592300\pi\)
\(908\) −4391.79 + 3544.09i −0.160514 + 0.129532i
\(909\) 0 0
\(910\) 54243.4 48757.8i 1.97599 1.77616i
\(911\) 20989.1 0.763338 0.381669 0.924299i \(-0.375349\pi\)
0.381669 + 0.924299i \(0.375349\pi\)
\(912\) 0 0
\(913\) −58507.6 −2.12083
\(914\) 37888.6 34057.0i 1.37117 1.23250i
\(915\) 0 0
\(916\) −26392.2 32704.8i −0.951989 1.17969i
\(917\) 5323.83 + 5323.83i 0.191721 + 0.191721i
\(918\) 0 0
\(919\) 14926.2 0.535768 0.267884 0.963451i \(-0.413676\pi\)
0.267884 + 0.963451i \(0.413676\pi\)
\(920\) 6094.96 37859.0i 0.218418 1.35671i
\(921\) 0 0
\(922\) −3266.09 173.944i −0.116663 0.00621315i
\(923\) 12467.5 12467.5i 0.444607 0.444607i
\(924\) 0 0
\(925\) −12359.7 12359.7i −0.439336 0.439336i
\(926\) −32678.9 + 29374.1i −1.15972 + 1.04243i
\(927\) 0 0
\(928\) −7574.10 2063.91i −0.267922 0.0730076i
\(929\) 31117.8i 1.09897i 0.835504 + 0.549484i \(0.185176\pi\)
−0.835504 + 0.549484i \(0.814824\pi\)
\(930\) 0 0
\(931\) −1545.49 + 1545.49i −0.0544053 + 0.0544053i
\(932\) 3434.33 32151.3i 0.120703 1.12999i
\(933\) 0 0
\(934\) 865.931 16259.3i 0.0303363 0.569616i
\(935\) 79677.1i 2.78687i
\(936\) 0 0
\(937\) 48051.8i 1.67533i −0.546184 0.837665i \(-0.683920\pi\)
0.546184 0.837665i \(-0.316080\pi\)
\(938\) 8206.62 + 437.064i 0.285667 + 0.0152139i
\(939\) 0 0
\(940\) −31313.8 + 25269.7i −1.08654 + 0.876814i
\(941\) 1453.30 1453.30i 0.0503468 0.0503468i −0.681485 0.731832i \(-0.738666\pi\)
0.731832 + 0.681485i \(0.238666\pi\)
\(942\) 0 0
\(943\) 3660.63i 0.126412i
\(944\) −29103.7 + 18760.2i −1.00344 + 0.646815i
\(945\) 0 0
\(946\) −25716.5 28609.8i −0.883844 0.983283i
\(947\) −33015.9 33015.9i −1.13292 1.13292i −0.989690 0.143229i \(-0.954252\pi\)
−0.143229 0.989690i \(-0.545748\pi\)
\(948\) 0 0
\(949\) 24472.2 24472.2i 0.837091 0.837091i
\(950\) 1673.40 31421.0i 0.0571498 1.07309i
\(951\) 0 0
\(952\) 26137.7 + 36168.4i 0.889839 + 1.23133i
\(953\) 19443.8 0.660908 0.330454 0.943822i \(-0.392798\pi\)
0.330454 + 0.943822i \(0.392798\pi\)
\(954\) 0 0
\(955\) 19805.3 + 19805.3i 0.671084 + 0.671084i
\(956\) 83.6348 782.967i 0.00282944 0.0264884i
\(957\) 0 0
\(958\) 25851.7 + 28760.2i 0.871847 + 0.969936i
\(959\) −14088.4 −0.474387
\(960\) 0 0
\(961\) 19836.8 0.665865
\(962\) 21340.8 + 23741.8i 0.715234 + 0.795703i
\(963\) 0 0
\(964\) 5937.20 55582.5i 0.198365 1.85704i
\(965\) 10927.7 + 10927.7i 0.364535 + 0.364535i
\(966\) 0 0
\(967\) −28069.0 −0.933441 −0.466720 0.884405i \(-0.654565\pi\)
−0.466720 + 0.884405i \(0.654565\pi\)
\(968\) 13603.2 + 18823.7i 0.451678 + 0.625016i
\(969\) 0 0
\(970\) −1862.47 + 34971.1i −0.0616498 + 1.15758i
\(971\) −82.8628 + 82.8628i −0.00273861 + 0.00273861i −0.708475 0.705736i \(-0.750616\pi\)
0.705736 + 0.708475i \(0.250616\pi\)
\(972\) 0 0
\(973\) 13193.8 + 13193.8i 0.434709 + 0.434709i
\(974\) −31130.7 34633.1i −1.02412 1.13934i
\(975\) 0 0
\(976\) −24973.6 38742.8i −0.819042 1.27062i
\(977\) 55424.4i 1.81493i 0.420131 + 0.907464i \(0.361984\pi\)
−0.420131 + 0.907464i \(0.638016\pi\)
\(978\) 0 0
\(979\) −7053.43 + 7053.43i −0.230264 + 0.230264i
\(980\) 2544.31 2053.21i 0.0829335 0.0669259i
\(981\) 0 0
\(982\) 46570.8 + 2480.24i 1.51337 + 0.0805985i
\(983\) 49024.3i 1.59067i 0.606167 + 0.795337i \(0.292706\pi\)
−0.606167 + 0.795337i \(0.707294\pi\)
\(984\) 0 0
\(985\) 40638.5i 1.31457i
\(986\) −670.100 + 12582.3i −0.0216433 + 0.406391i
\(987\) 0 0
\(988\) −6103.79 + 57142.0i −0.196546 + 1.84001i
\(989\) −21012.5 + 21012.5i −0.675589 + 0.675589i
\(990\) 0 0
\(991\) 21281.2i 0.682160i 0.940034 + 0.341080i \(0.110793\pi\)
−0.940034 + 0.341080i \(0.889207\pi\)
\(992\) 15678.9 8963.88i 0.501821 0.286899i
\(993\) 0 0
\(994\) 8468.92 7612.47i 0.270239 0.242910i
\(995\) 55054.0 + 55054.0i 1.75410 + 1.75410i
\(996\) 0 0
\(997\) 16897.3 16897.3i 0.536752 0.536752i −0.385822 0.922573i \(-0.626082\pi\)
0.922573 + 0.385822i \(0.126082\pi\)
\(998\) 23737.0 + 1264.17i 0.752888 + 0.0400969i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.19 yes 48
3.2 odd 2 inner 144.4.l.a.35.6 48
4.3 odd 2 576.4.l.a.431.4 48
8.3 odd 2 1152.4.l.a.863.21 48
8.5 even 2 1152.4.l.b.863.21 48
12.11 even 2 576.4.l.a.431.21 48
16.3 odd 4 1152.4.l.b.287.4 48
16.5 even 4 576.4.l.a.143.21 48
16.11 odd 4 inner 144.4.l.a.107.6 yes 48
16.13 even 4 1152.4.l.a.287.4 48
24.5 odd 2 1152.4.l.b.863.4 48
24.11 even 2 1152.4.l.a.863.4 48
48.5 odd 4 576.4.l.a.143.4 48
48.11 even 4 inner 144.4.l.a.107.19 yes 48
48.29 odd 4 1152.4.l.a.287.21 48
48.35 even 4 1152.4.l.b.287.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.6 48 3.2 odd 2 inner
144.4.l.a.35.19 yes 48 1.1 even 1 trivial
144.4.l.a.107.6 yes 48 16.11 odd 4 inner
144.4.l.a.107.19 yes 48 48.11 even 4 inner
576.4.l.a.143.4 48 48.5 odd 4
576.4.l.a.143.21 48 16.5 even 4
576.4.l.a.431.4 48 4.3 odd 2
576.4.l.a.431.21 48 12.11 even 2
1152.4.l.a.287.4 48 16.13 even 4
1152.4.l.a.287.21 48 48.29 odd 4
1152.4.l.a.863.4 48 24.11 even 2
1152.4.l.a.863.21 48 8.3 odd 2
1152.4.l.b.287.4 48 16.3 odd 4
1152.4.l.b.287.21 48 48.35 even 4
1152.4.l.b.863.4 48 24.5 odd 2
1152.4.l.b.863.21 48 8.5 even 2