Properties

Label 144.4.l.a.107.9
Level $144$
Weight $4$
Character 144.107
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.9
Character \(\chi\) \(=\) 144.107
Dual form 144.4.l.a.35.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64440 + 2.30129i) q^{2} +(-2.59187 - 7.56850i) q^{4} +(-7.28730 + 7.28730i) q^{5} +29.9574 q^{7} +(21.6794 + 6.48105i) q^{8} +(-4.78691 - 28.7535i) q^{10} +(-0.408325 - 0.408325i) q^{11} +(-26.6262 + 26.6262i) q^{13} +(-49.2621 + 68.9406i) q^{14} +(-50.5645 + 39.2331i) q^{16} +83.0075i q^{17} +(-51.6479 - 51.6479i) q^{19} +(74.0416 + 36.2662i) q^{20} +(1.61113 - 0.268222i) q^{22} +173.664i q^{23} +18.7906i q^{25} +(-17.4903 - 105.059i) q^{26} +(-77.6455 - 226.732i) q^{28} +(-167.311 - 167.311i) q^{29} +191.279i q^{31} +(-7.13826 - 180.879i) q^{32} +(-191.024 - 136.498i) q^{34} +(-218.308 + 218.308i) q^{35} +(185.381 + 185.381i) q^{37} +(203.787 - 33.9267i) q^{38} +(-205.214 + 110.755i) q^{40} -62.7651 q^{41} +(-193.397 + 193.397i) q^{43} +(-2.03209 + 4.14873i) q^{44} +(-399.650 - 285.573i) q^{46} +93.1177 q^{47} +554.445 q^{49} +(-43.2425 - 30.8993i) q^{50} +(270.532 + 132.509i) q^{52} +(249.010 - 249.010i) q^{53} +5.95117 q^{55} +(649.458 + 194.155i) q^{56} +(660.156 - 109.904i) q^{58} +(-24.6042 - 24.6042i) q^{59} +(451.553 - 451.553i) q^{61} +(-440.189 - 314.541i) q^{62} +(427.992 + 281.010i) q^{64} -388.066i q^{65} +(453.974 + 453.974i) q^{67} +(628.242 - 215.144i) q^{68} +(-143.403 - 861.378i) q^{70} +348.649i q^{71} +923.229i q^{73} +(-731.458 + 121.774i) q^{74} +(-257.033 + 524.762i) q^{76} +(-12.2323 - 12.2323i) q^{77} -989.875i q^{79} +(82.5751 - 654.382i) q^{80} +(103.211 - 144.441i) q^{82} +(-325.077 + 325.077i) q^{83} +(-604.900 - 604.900i) q^{85} +(-127.039 - 763.084i) q^{86} +(-6.20586 - 11.4986i) q^{88} -1005.33 q^{89} +(-797.651 + 797.651i) q^{91} +(1314.37 - 450.113i) q^{92} +(-153.123 + 214.291i) q^{94} +752.747 q^{95} +997.579 q^{97} +(-911.731 + 1275.94i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64440 + 2.30129i −0.581385 + 0.813629i
\(3\) 0 0
\(4\) −2.59187 7.56850i −0.323983 0.946063i
\(5\) −7.28730 + 7.28730i −0.651796 + 0.651796i −0.953425 0.301629i \(-0.902469\pi\)
0.301629 + 0.953425i \(0.402469\pi\)
\(6\) 0 0
\(7\) 29.9574 1.61755 0.808773 0.588121i \(-0.200132\pi\)
0.808773 + 0.588121i \(0.200132\pi\)
\(8\) 21.6794 + 6.48105i 0.958103 + 0.286425i
\(9\) 0 0
\(10\) −4.78691 28.7535i −0.151376 0.909264i
\(11\) −0.408325 0.408325i −0.0111922 0.0111922i 0.701489 0.712681i \(-0.252519\pi\)
−0.712681 + 0.701489i \(0.752519\pi\)
\(12\) 0 0
\(13\) −26.6262 + 26.6262i −0.568060 + 0.568060i −0.931584 0.363525i \(-0.881573\pi\)
0.363525 + 0.931584i \(0.381573\pi\)
\(14\) −49.2621 + 68.9406i −0.940417 + 1.31608i
\(15\) 0 0
\(16\) −50.5645 + 39.2331i −0.790070 + 0.613017i
\(17\) 83.0075i 1.18425i 0.805846 + 0.592126i \(0.201711\pi\)
−0.805846 + 0.592126i \(0.798289\pi\)
\(18\) 0 0
\(19\) −51.6479 51.6479i −0.623623 0.623623i 0.322833 0.946456i \(-0.395365\pi\)
−0.946456 + 0.322833i \(0.895365\pi\)
\(20\) 74.0416 + 36.2662i 0.827811 + 0.405469i
\(21\) 0 0
\(22\) 1.61113 0.268222i 0.0156133 0.00259933i
\(23\) 173.664i 1.57441i 0.616693 + 0.787204i \(0.288472\pi\)
−0.616693 + 0.787204i \(0.711528\pi\)
\(24\) 0 0
\(25\) 18.7906i 0.150325i
\(26\) −17.4903 105.059i −0.131928 0.792451i
\(27\) 0 0
\(28\) −77.6455 226.732i −0.524058 1.53030i
\(29\) −167.311 167.311i −1.07134 1.07134i −0.997252 0.0740856i \(-0.976396\pi\)
−0.0740856 0.997252i \(-0.523604\pi\)
\(30\) 0 0
\(31\) 191.279i 1.10822i 0.832444 + 0.554109i \(0.186941\pi\)
−0.832444 + 0.554109i \(0.813059\pi\)
\(32\) −7.13826 180.879i −0.0394337 0.999222i
\(33\) 0 0
\(34\) −191.024 136.498i −0.963541 0.688506i
\(35\) −218.308 + 218.308i −1.05431 + 1.05431i
\(36\) 0 0
\(37\) 185.381 + 185.381i 0.823689 + 0.823689i 0.986635 0.162946i \(-0.0520997\pi\)
−0.162946 + 0.986635i \(0.552100\pi\)
\(38\) 203.787 33.9267i 0.869963 0.144833i
\(39\) 0 0
\(40\) −205.214 + 110.755i −0.811178 + 0.437797i
\(41\) −62.7651 −0.239080 −0.119540 0.992829i \(-0.538142\pi\)
−0.119540 + 0.992829i \(0.538142\pi\)
\(42\) 0 0
\(43\) −193.397 + 193.397i −0.685877 + 0.685877i −0.961318 0.275441i \(-0.911176\pi\)
0.275441 + 0.961318i \(0.411176\pi\)
\(44\) −2.03209 + 4.14873i −0.00696246 + 0.0142147i
\(45\) 0 0
\(46\) −399.650 285.573i −1.28098 0.915336i
\(47\) 93.1177 0.288992 0.144496 0.989505i \(-0.453844\pi\)
0.144496 + 0.989505i \(0.453844\pi\)
\(48\) 0 0
\(49\) 554.445 1.61646
\(50\) −43.2425 30.8993i −0.122308 0.0873964i
\(51\) 0 0
\(52\) 270.532 + 132.509i 0.721462 + 0.353378i
\(53\) 249.010 249.010i 0.645360 0.645360i −0.306508 0.951868i \(-0.599161\pi\)
0.951868 + 0.306508i \(0.0991606\pi\)
\(54\) 0 0
\(55\) 5.95117 0.0145901
\(56\) 649.458 + 194.155i 1.54978 + 0.463305i
\(57\) 0 0
\(58\) 660.156 109.904i 1.49453 0.248812i
\(59\) −24.6042 24.6042i −0.0542913 0.0542913i 0.679440 0.733731i \(-0.262223\pi\)
−0.733731 + 0.679440i \(0.762223\pi\)
\(60\) 0 0
\(61\) 451.553 451.553i 0.947795 0.947795i −0.0509083 0.998703i \(-0.516212\pi\)
0.998703 + 0.0509083i \(0.0162116\pi\)
\(62\) −440.189 314.541i −0.901678 0.644301i
\(63\) 0 0
\(64\) 427.992 + 281.010i 0.835922 + 0.548848i
\(65\) 388.066i 0.740518i
\(66\) 0 0
\(67\) 453.974 + 453.974i 0.827788 + 0.827788i 0.987210 0.159423i \(-0.0509632\pi\)
−0.159423 + 0.987210i \(0.550963\pi\)
\(68\) 628.242 215.144i 1.12038 0.383678i
\(69\) 0 0
\(70\) −143.403 861.378i −0.244857 1.47078i
\(71\) 348.649i 0.582774i 0.956605 + 0.291387i \(0.0941168\pi\)
−0.956605 + 0.291387i \(0.905883\pi\)
\(72\) 0 0
\(73\) 923.229i 1.48022i 0.672488 + 0.740108i \(0.265226\pi\)
−0.672488 + 0.740108i \(0.734774\pi\)
\(74\) −731.458 + 121.774i −1.14906 + 0.191297i
\(75\) 0 0
\(76\) −257.033 + 524.762i −0.387943 + 0.792030i
\(77\) −12.2323 12.2323i −0.0181040 0.0181040i
\(78\) 0 0
\(79\) 989.875i 1.40974i −0.709335 0.704871i \(-0.751005\pi\)
0.709335 0.704871i \(-0.248995\pi\)
\(80\) 82.5751 654.382i 0.115402 0.914526i
\(81\) 0 0
\(82\) 103.211 144.441i 0.138997 0.194522i
\(83\) −325.077 + 325.077i −0.429901 + 0.429901i −0.888595 0.458693i \(-0.848318\pi\)
0.458693 + 0.888595i \(0.348318\pi\)
\(84\) 0 0
\(85\) −604.900 604.900i −0.771890 0.771890i
\(86\) −127.039 763.084i −0.159291 0.956808i
\(87\) 0 0
\(88\) −6.20586 11.4986i −0.00751758 0.0139290i
\(89\) −1005.33 −1.19735 −0.598676 0.800991i \(-0.704306\pi\)
−0.598676 + 0.800991i \(0.704306\pi\)
\(90\) 0 0
\(91\) −797.651 + 797.651i −0.918863 + 0.918863i
\(92\) 1314.37 450.113i 1.48949 0.510082i
\(93\) 0 0
\(94\) −153.123 + 214.291i −0.168015 + 0.235132i
\(95\) 752.747 0.812950
\(96\) 0 0
\(97\) 997.579 1.04421 0.522107 0.852880i \(-0.325146\pi\)
0.522107 + 0.852880i \(0.325146\pi\)
\(98\) −911.731 + 1275.94i −0.939783 + 1.31520i
\(99\) 0 0
\(100\) 142.216 48.7026i 0.142216 0.0487026i
\(101\) 1176.16 1176.16i 1.15874 1.15874i 0.173993 0.984747i \(-0.444333\pi\)
0.984747 0.173993i \(-0.0556671\pi\)
\(102\) 0 0
\(103\) −979.265 −0.936794 −0.468397 0.883518i \(-0.655168\pi\)
−0.468397 + 0.883518i \(0.655168\pi\)
\(104\) −749.805 + 404.674i −0.706966 + 0.381553i
\(105\) 0 0
\(106\) 163.571 + 982.515i 0.149881 + 0.900286i
\(107\) 484.233 + 484.233i 0.437501 + 0.437501i 0.891170 0.453669i \(-0.149885\pi\)
−0.453669 + 0.891170i \(0.649885\pi\)
\(108\) 0 0
\(109\) −719.387 + 719.387i −0.632154 + 0.632154i −0.948608 0.316454i \(-0.897508\pi\)
0.316454 + 0.948608i \(0.397508\pi\)
\(110\) −9.78614 + 13.6954i −0.00848247 + 0.0118709i
\(111\) 0 0
\(112\) −1514.78 + 1175.32i −1.27797 + 0.991584i
\(113\) 1396.36i 1.16246i −0.813738 0.581232i \(-0.802571\pi\)
0.813738 0.581232i \(-0.197429\pi\)
\(114\) 0 0
\(115\) −1265.54 1265.54i −1.02619 1.02619i
\(116\) −832.644 + 1699.94i −0.666457 + 1.36065i
\(117\) 0 0
\(118\) 97.0805 16.1621i 0.0757371 0.0126088i
\(119\) 2486.69i 1.91558i
\(120\) 0 0
\(121\) 1330.67i 0.999749i
\(122\) 296.619 + 1781.69i 0.220120 + 1.32219i
\(123\) 0 0
\(124\) 1447.70 495.770i 1.04844 0.359044i
\(125\) −1047.84 1047.84i −0.749777 0.749777i
\(126\) 0 0
\(127\) 2325.65i 1.62494i −0.583001 0.812471i \(-0.698122\pi\)
0.583001 0.812471i \(-0.301878\pi\)
\(128\) −1350.48 + 522.839i −0.932551 + 0.361038i
\(129\) 0 0
\(130\) 893.052 + 638.137i 0.602506 + 0.430526i
\(131\) 407.380 407.380i 0.271702 0.271702i −0.558083 0.829785i \(-0.688463\pi\)
0.829785 + 0.558083i \(0.188463\pi\)
\(132\) 0 0
\(133\) −1547.24 1547.24i −1.00874 1.00874i
\(134\) −1791.24 + 298.209i −1.15478 + 0.192249i
\(135\) 0 0
\(136\) −537.976 + 1799.55i −0.339199 + 1.13463i
\(137\) 1751.03 1.09197 0.545987 0.837794i \(-0.316155\pi\)
0.545987 + 0.837794i \(0.316155\pi\)
\(138\) 0 0
\(139\) −2031.19 + 2031.19i −1.23945 + 1.23945i −0.279220 + 0.960227i \(0.590076\pi\)
−0.960227 + 0.279220i \(0.909924\pi\)
\(140\) 2218.09 + 1086.44i 1.33902 + 0.655865i
\(141\) 0 0
\(142\) −802.341 573.319i −0.474162 0.338816i
\(143\) 21.7443 0.0127157
\(144\) 0 0
\(145\) 2438.48 1.39659
\(146\) −2124.62 1518.16i −1.20435 0.860575i
\(147\) 0 0
\(148\) 922.575 1883.54i 0.512400 1.04612i
\(149\) 14.2055 14.2055i 0.00781049 0.00781049i −0.703191 0.711001i \(-0.748242\pi\)
0.711001 + 0.703191i \(0.248242\pi\)
\(150\) 0 0
\(151\) 2215.34 1.19392 0.596959 0.802272i \(-0.296376\pi\)
0.596959 + 0.802272i \(0.296376\pi\)
\(152\) −784.963 1454.43i −0.418874 0.776116i
\(153\) 0 0
\(154\) 48.2651 8.03524i 0.0252553 0.00420453i
\(155\) −1393.91 1393.91i −0.722332 0.722332i
\(156\) 0 0
\(157\) −360.380 + 360.380i −0.183194 + 0.183194i −0.792746 0.609552i \(-0.791349\pi\)
0.609552 + 0.792746i \(0.291349\pi\)
\(158\) 2277.99 + 1627.76i 1.14701 + 0.819603i
\(159\) 0 0
\(160\) 1370.13 + 1266.10i 0.676992 + 0.625586i
\(161\) 5202.51i 2.54668i
\(162\) 0 0
\(163\) −205.489 205.489i −0.0987432 0.0987432i 0.656009 0.754753i \(-0.272243\pi\)
−0.754753 + 0.656009i \(0.772243\pi\)
\(164\) 162.679 + 475.038i 0.0774578 + 0.226184i
\(165\) 0 0
\(166\) −213.538 1282.65i −0.0998420 0.599718i
\(167\) 1245.76i 0.577246i −0.957443 0.288623i \(-0.906803\pi\)
0.957443 0.288623i \(-0.0931975\pi\)
\(168\) 0 0
\(169\) 779.093i 0.354617i
\(170\) 2386.75 397.350i 1.07680 0.179267i
\(171\) 0 0
\(172\) 1964.98 + 962.465i 0.871095 + 0.426670i
\(173\) 1094.91 + 1094.91i 0.481181 + 0.481181i 0.905509 0.424328i \(-0.139490\pi\)
−0.424328 + 0.905509i \(0.639490\pi\)
\(174\) 0 0
\(175\) 562.916i 0.243157i
\(176\) 36.6666 + 4.62688i 0.0157037 + 0.00198162i
\(177\) 0 0
\(178\) 1653.16 2313.55i 0.696123 0.974201i
\(179\) 340.980 340.980i 0.142380 0.142380i −0.632324 0.774704i \(-0.717899\pi\)
0.774704 + 0.632324i \(0.217899\pi\)
\(180\) 0 0
\(181\) −2257.36 2257.36i −0.927009 0.927009i 0.0705027 0.997512i \(-0.477540\pi\)
−0.997512 + 0.0705027i \(0.977540\pi\)
\(182\) −523.964 3147.29i −0.213400 1.28183i
\(183\) 0 0
\(184\) −1125.52 + 3764.92i −0.450949 + 1.50844i
\(185\) −2701.86 −1.07375
\(186\) 0 0
\(187\) 33.8940 33.8940i 0.0132544 0.0132544i
\(188\) −241.349 704.762i −0.0936285 0.273404i
\(189\) 0 0
\(190\) −1237.82 + 1732.29i −0.472637 + 0.661440i
\(191\) 4673.62 1.77053 0.885265 0.465087i \(-0.153977\pi\)
0.885265 + 0.465087i \(0.153977\pi\)
\(192\) 0 0
\(193\) −1023.43 −0.381701 −0.190850 0.981619i \(-0.561125\pi\)
−0.190850 + 0.981619i \(0.561125\pi\)
\(194\) −1640.42 + 2295.72i −0.607090 + 0.849603i
\(195\) 0 0
\(196\) −1437.05 4196.31i −0.523705 1.52927i
\(197\) 3664.48 3664.48i 1.32530 1.32530i 0.415877 0.909421i \(-0.363475\pi\)
0.909421 0.415877i \(-0.136525\pi\)
\(198\) 0 0
\(199\) 2442.52 0.870079 0.435040 0.900411i \(-0.356734\pi\)
0.435040 + 0.900411i \(0.356734\pi\)
\(200\) −121.783 + 407.368i −0.0430566 + 0.144026i
\(201\) 0 0
\(202\) 772.605 + 4640.79i 0.269110 + 1.61646i
\(203\) −5012.19 5012.19i −1.73294 1.73294i
\(204\) 0 0
\(205\) 457.388 457.388i 0.155831 0.155831i
\(206\) 1610.31 2253.57i 0.544638 0.762203i
\(207\) 0 0
\(208\) 301.711 2390.97i 0.100576 0.797037i
\(209\) 42.1783i 0.0139595i
\(210\) 0 0
\(211\) 2619.72 + 2619.72i 0.854736 + 0.854736i 0.990712 0.135976i \(-0.0434172\pi\)
−0.135976 + 0.990712i \(0.543417\pi\)
\(212\) −2530.03 1239.23i −0.819637 0.401465i
\(213\) 0 0
\(214\) −1910.63 + 318.085i −0.610319 + 0.101607i
\(215\) 2818.68i 0.894103i
\(216\) 0 0
\(217\) 5730.23i 1.79259i
\(218\) −472.555 2838.48i −0.146814 0.881864i
\(219\) 0 0
\(220\) −15.4246 45.0415i −0.00472695 0.0138032i
\(221\) −2210.17 2210.17i −0.672725 0.672725i
\(222\) 0 0
\(223\) 3002.85i 0.901730i −0.892592 0.450865i \(-0.851116\pi\)
0.892592 0.450865i \(-0.148884\pi\)
\(224\) −213.844 5418.65i −0.0637858 1.61629i
\(225\) 0 0
\(226\) 3213.42 + 2296.18i 0.945813 + 0.675838i
\(227\) −2191.51 + 2191.51i −0.640774 + 0.640774i −0.950746 0.309971i \(-0.899680\pi\)
0.309971 + 0.950746i \(0.399680\pi\)
\(228\) 0 0
\(229\) 1807.23 + 1807.23i 0.521508 + 0.521508i 0.918027 0.396519i \(-0.129782\pi\)
−0.396519 + 0.918027i \(0.629782\pi\)
\(230\) 4993.43 831.313i 1.43155 0.238327i
\(231\) 0 0
\(232\) −2542.84 4711.54i −0.719594 1.33331i
\(233\) −1109.72 −0.312018 −0.156009 0.987756i \(-0.549863\pi\)
−0.156009 + 0.987756i \(0.549863\pi\)
\(234\) 0 0
\(235\) −678.576 + 678.576i −0.188364 + 0.188364i
\(236\) −122.446 + 249.987i −0.0337735 + 0.0689525i
\(237\) 0 0
\(238\) −5722.59 4089.12i −1.55857 1.11369i
\(239\) −471.822 −0.127697 −0.0638486 0.997960i \(-0.520337\pi\)
−0.0638486 + 0.997960i \(0.520337\pi\)
\(240\) 0 0
\(241\) 1506.72 0.402723 0.201362 0.979517i \(-0.435463\pi\)
0.201362 + 0.979517i \(0.435463\pi\)
\(242\) 3062.25 + 2188.15i 0.813425 + 0.581239i
\(243\) 0 0
\(244\) −4587.95 2247.22i −1.20374 0.589604i
\(245\) −4040.40 + 4040.40i −1.05360 + 1.05360i
\(246\) 0 0
\(247\) 2750.37 0.708510
\(248\) −1239.69 + 4146.82i −0.317421 + 1.06179i
\(249\) 0 0
\(250\) 4134.47 688.313i 1.04595 0.174131i
\(251\) 3490.17 + 3490.17i 0.877679 + 0.877679i 0.993294 0.115616i \(-0.0368840\pi\)
−0.115616 + 0.993294i \(0.536884\pi\)
\(252\) 0 0
\(253\) 70.9112 70.9112i 0.0176211 0.0176211i
\(254\) 5351.99 + 3824.30i 1.32210 + 0.944717i
\(255\) 0 0
\(256\) 1017.53 3967.60i 0.248420 0.968652i
\(257\) 4623.43i 1.12219i 0.827753 + 0.561093i \(0.189619\pi\)
−0.827753 + 0.561093i \(0.810381\pi\)
\(258\) 0 0
\(259\) 5553.53 + 5553.53i 1.33235 + 1.33235i
\(260\) −2937.08 + 1005.81i −0.700576 + 0.239915i
\(261\) 0 0
\(262\) 267.602 + 1607.40i 0.0631011 + 0.379028i
\(263\) 1480.27i 0.347063i 0.984828 + 0.173532i \(0.0555179\pi\)
−0.984828 + 0.173532i \(0.944482\pi\)
\(264\) 0 0
\(265\) 3629.21i 0.841286i
\(266\) 6104.92 1016.36i 1.40721 0.234274i
\(267\) 0 0
\(268\) 2259.27 4612.55i 0.514950 1.05133i
\(269\) 4722.72 + 4722.72i 1.07044 + 1.07044i 0.997323 + 0.0731197i \(0.0232955\pi\)
0.0731197 + 0.997323i \(0.476704\pi\)
\(270\) 0 0
\(271\) 76.7667i 0.0172076i −0.999963 0.00860378i \(-0.997261\pi\)
0.999963 0.00860378i \(-0.00273870\pi\)
\(272\) −3256.64 4197.23i −0.725966 0.935641i
\(273\) 0 0
\(274\) −2879.40 + 4029.62i −0.634857 + 0.888461i
\(275\) 7.67266 7.67266i 0.00168247 0.00168247i
\(276\) 0 0
\(277\) −3935.81 3935.81i −0.853718 0.853718i 0.136871 0.990589i \(-0.456295\pi\)
−0.990589 + 0.136871i \(0.956295\pi\)
\(278\) −1334.26 8014.45i −0.287854 1.72905i
\(279\) 0 0
\(280\) −6147.66 + 3317.93i −1.31212 + 0.708157i
\(281\) −2951.92 −0.626678 −0.313339 0.949641i \(-0.601448\pi\)
−0.313339 + 0.949641i \(0.601448\pi\)
\(282\) 0 0
\(283\) 2479.89 2479.89i 0.520898 0.520898i −0.396944 0.917843i \(-0.629929\pi\)
0.917843 + 0.396944i \(0.129929\pi\)
\(284\) 2638.75 903.651i 0.551341 0.188809i
\(285\) 0 0
\(286\) −35.7564 + 50.0399i −0.00739272 + 0.0103459i
\(287\) −1880.28 −0.386723
\(288\) 0 0
\(289\) −1977.25 −0.402452
\(290\) −4009.85 + 5611.66i −0.811954 + 1.13630i
\(291\) 0 0
\(292\) 6987.46 2392.89i 1.40038 0.479565i
\(293\) −3083.66 + 3083.66i −0.614844 + 0.614844i −0.944204 0.329360i \(-0.893167\pi\)
0.329360 + 0.944204i \(0.393167\pi\)
\(294\) 0 0
\(295\) 358.596 0.0707737
\(296\) 2817.49 + 5220.42i 0.553254 + 1.02510i
\(297\) 0 0
\(298\) 9.33140 + 56.0507i 0.00181394 + 0.0108957i
\(299\) −4624.00 4624.00i −0.894357 0.894357i
\(300\) 0 0
\(301\) −5793.66 + 5793.66i −1.10944 + 1.10944i
\(302\) −3642.91 + 5098.13i −0.694126 + 0.971406i
\(303\) 0 0
\(304\) 4637.86 + 585.242i 0.874998 + 0.110414i
\(305\) 6581.21i 1.23554i
\(306\) 0 0
\(307\) −3541.41 3541.41i −0.658367 0.658367i 0.296627 0.954994i \(-0.404138\pi\)
−0.954994 + 0.296627i \(0.904138\pi\)
\(308\) −60.8759 + 124.285i −0.0112621 + 0.0229929i
\(309\) 0 0
\(310\) 5499.94 915.638i 1.00766 0.167757i
\(311\) 3223.24i 0.587694i −0.955852 0.293847i \(-0.905064\pi\)
0.955852 0.293847i \(-0.0949357\pi\)
\(312\) 0 0
\(313\) 8312.33i 1.50109i −0.660820 0.750545i \(-0.729791\pi\)
0.660820 0.750545i \(-0.270209\pi\)
\(314\) −236.728 1421.95i −0.0425456 0.255558i
\(315\) 0 0
\(316\) −7491.87 + 2565.62i −1.33371 + 0.456733i
\(317\) 4342.41 + 4342.41i 0.769382 + 0.769382i 0.977998 0.208616i \(-0.0668958\pi\)
−0.208616 + 0.977998i \(0.566896\pi\)
\(318\) 0 0
\(319\) 136.634i 0.0239813i
\(320\) −5166.71 + 1071.10i −0.902587 + 0.187113i
\(321\) 0 0
\(322\) −11972.5 8555.03i −2.07205 1.48060i
\(323\) 4287.16 4287.16i 0.738527 0.738527i
\(324\) 0 0
\(325\) −500.321 500.321i −0.0853933 0.0853933i
\(326\) 810.797 134.983i 0.137748 0.0229325i
\(327\) 0 0
\(328\) −1360.71 406.784i −0.229063 0.0684783i
\(329\) 2789.56 0.467458
\(330\) 0 0
\(331\) −4075.14 + 4075.14i −0.676706 + 0.676706i −0.959253 0.282547i \(-0.908821\pi\)
0.282547 + 0.959253i \(0.408821\pi\)
\(332\) 3302.90 + 1617.79i 0.545995 + 0.267433i
\(333\) 0 0
\(334\) 2866.86 + 2048.54i 0.469664 + 0.335602i
\(335\) −6616.49 −1.07910
\(336\) 0 0
\(337\) 936.542 0.151385 0.0756925 0.997131i \(-0.475883\pi\)
0.0756925 + 0.997131i \(0.475883\pi\)
\(338\) −1792.92 1281.14i −0.288526 0.206169i
\(339\) 0 0
\(340\) −3010.37 + 6146.01i −0.480177 + 0.980336i
\(341\) 78.1041 78.1041i 0.0124034 0.0124034i
\(342\) 0 0
\(343\) 6334.32 0.997147
\(344\) −5446.13 + 2939.31i −0.853593 + 0.460689i
\(345\) 0 0
\(346\) −4320.17 + 719.228i −0.671254 + 0.111751i
\(347\) −793.398 793.398i −0.122743 0.122743i 0.643067 0.765810i \(-0.277662\pi\)
−0.765810 + 0.643067i \(0.777662\pi\)
\(348\) 0 0
\(349\) 396.244 396.244i 0.0607749 0.0607749i −0.676066 0.736841i \(-0.736317\pi\)
0.736841 + 0.676066i \(0.236317\pi\)
\(350\) −1295.43 925.662i −0.197839 0.141368i
\(351\) 0 0
\(352\) −70.9425 + 76.7720i −0.0107422 + 0.0116249i
\(353\) 5035.58i 0.759254i −0.925140 0.379627i \(-0.876052\pi\)
0.925140 0.379627i \(-0.123948\pi\)
\(354\) 0 0
\(355\) −2540.71 2540.71i −0.379850 0.379850i
\(356\) 2605.67 + 7608.82i 0.387922 + 1.13277i
\(357\) 0 0
\(358\) 223.984 + 1345.40i 0.0330669 + 0.198622i
\(359\) 3252.36i 0.478142i 0.971002 + 0.239071i \(0.0768428\pi\)
−0.971002 + 0.239071i \(0.923157\pi\)
\(360\) 0 0
\(361\) 1523.99i 0.222188i
\(362\) 8906.87 1482.83i 1.29319 0.215292i
\(363\) 0 0
\(364\) 8104.42 + 3969.62i 1.16700 + 0.571606i
\(365\) −6727.85 6727.85i −0.964799 0.964799i
\(366\) 0 0
\(367\) 5829.07i 0.829087i 0.910030 + 0.414543i \(0.136059\pi\)
−0.910030 + 0.414543i \(0.863941\pi\)
\(368\) −6813.36 8781.21i −0.965138 1.24389i
\(369\) 0 0
\(370\) 4442.95 6217.75i 0.624264 0.873637i
\(371\) 7459.67 7459.67i 1.04390 1.04390i
\(372\) 0 0
\(373\) 3187.28 + 3187.28i 0.442442 + 0.442442i 0.892832 0.450390i \(-0.148715\pi\)
−0.450390 + 0.892832i \(0.648715\pi\)
\(374\) 22.2645 + 133.736i 0.00307826 + 0.0184901i
\(375\) 0 0
\(376\) 2018.74 + 603.500i 0.276884 + 0.0827743i
\(377\) 8909.68 1.21717
\(378\) 0 0
\(379\) 159.188 159.188i 0.0215751 0.0215751i −0.696237 0.717812i \(-0.745144\pi\)
0.717812 + 0.696237i \(0.245144\pi\)
\(380\) −1951.02 5697.17i −0.263382 0.769102i
\(381\) 0 0
\(382\) −7685.32 + 10755.3i −1.02936 + 1.44055i
\(383\) 32.8699 0.00438530 0.00219265 0.999998i \(-0.499302\pi\)
0.00219265 + 0.999998i \(0.499302\pi\)
\(384\) 0 0
\(385\) 178.282 0.0236002
\(386\) 1682.94 2355.21i 0.221915 0.310563i
\(387\) 0 0
\(388\) −2585.59 7550.18i −0.338308 0.987892i
\(389\) −350.837 + 350.837i −0.0457278 + 0.0457278i −0.729601 0.683873i \(-0.760294\pi\)
0.683873 + 0.729601i \(0.260294\pi\)
\(390\) 0 0
\(391\) −14415.4 −1.86449
\(392\) 12020.0 + 3593.38i 1.54873 + 0.462993i
\(393\) 0 0
\(394\) 2407.14 + 14458.9i 0.307792 + 1.84881i
\(395\) 7213.52 + 7213.52i 0.918864 + 0.918864i
\(396\) 0 0
\(397\) 1334.06 1334.06i 0.168652 0.168652i −0.617735 0.786387i \(-0.711949\pi\)
0.786387 + 0.617735i \(0.211949\pi\)
\(398\) −4016.49 + 5620.95i −0.505851 + 0.707921i
\(399\) 0 0
\(400\) −737.212 950.135i −0.0921515 0.118767i
\(401\) 15289.0i 1.90398i −0.306137 0.951988i \(-0.599037\pi\)
0.306137 0.951988i \(-0.400963\pi\)
\(402\) 0 0
\(403\) −5093.04 5093.04i −0.629534 0.629534i
\(404\) −11950.3 5853.34i −1.47165 0.720829i
\(405\) 0 0
\(406\) 19776.6 3292.43i 2.41747 0.402464i
\(407\) 151.392i 0.0184378i
\(408\) 0 0
\(409\) 8690.12i 1.05061i −0.850915 0.525304i \(-0.823952\pi\)
0.850915 0.525304i \(-0.176048\pi\)
\(410\) 300.451 + 1804.71i 0.0361908 + 0.217387i
\(411\) 0 0
\(412\) 2538.12 + 7411.57i 0.303506 + 0.886266i
\(413\) −737.076 737.076i −0.0878188 0.0878188i
\(414\) 0 0
\(415\) 4737.86i 0.560416i
\(416\) 5006.17 + 4626.04i 0.590018 + 0.545217i
\(417\) 0 0
\(418\) −97.0644 69.3581i −0.0113578 0.00811583i
\(419\) −5393.05 + 5393.05i −0.628802 + 0.628802i −0.947766 0.318965i \(-0.896665\pi\)
0.318965 + 0.947766i \(0.396665\pi\)
\(420\) 0 0
\(421\) 1229.98 + 1229.98i 0.142389 + 0.142389i 0.774708 0.632319i \(-0.217897\pi\)
−0.632319 + 0.774708i \(0.717897\pi\)
\(422\) −10336.6 + 1720.86i −1.19237 + 0.198507i
\(423\) 0 0
\(424\) 7012.22 3784.53i 0.803168 0.433474i
\(425\) −1559.76 −0.178022
\(426\) 0 0
\(427\) 13527.4 13527.4i 1.53310 1.53310i
\(428\) 2409.85 4919.98i 0.272160 0.555646i
\(429\) 0 0
\(430\) 6486.59 + 4635.05i 0.727468 + 0.519818i
\(431\) 5167.35 0.577500 0.288750 0.957405i \(-0.406760\pi\)
0.288750 + 0.957405i \(0.406760\pi\)
\(432\) 0 0
\(433\) −8025.47 −0.890715 −0.445357 0.895353i \(-0.646923\pi\)
−0.445357 + 0.895353i \(0.646923\pi\)
\(434\) −13186.9 9422.81i −1.45851 1.04219i
\(435\) 0 0
\(436\) 7309.24 + 3580.13i 0.802865 + 0.393250i
\(437\) 8969.36 8969.36i 0.981837 0.981837i
\(438\) 0 0
\(439\) −2849.28 −0.309770 −0.154885 0.987933i \(-0.549501\pi\)
−0.154885 + 0.987933i \(0.549501\pi\)
\(440\) 129.018 + 38.5698i 0.0139788 + 0.00417896i
\(441\) 0 0
\(442\) 8720.67 1451.83i 0.938461 0.156236i
\(443\) 11748.5 + 11748.5i 1.26001 + 1.26001i 0.951085 + 0.308928i \(0.0999703\pi\)
0.308928 + 0.951085i \(0.400030\pi\)
\(444\) 0 0
\(445\) 7326.11 7326.11i 0.780429 0.780429i
\(446\) 6910.43 + 4937.90i 0.733673 + 0.524252i
\(447\) 0 0
\(448\) 12821.5 + 8418.33i 1.35214 + 0.887788i
\(449\) 14375.4i 1.51096i −0.655174 0.755478i \(-0.727405\pi\)
0.655174 0.755478i \(-0.272595\pi\)
\(450\) 0 0
\(451\) 25.6286 + 25.6286i 0.00267584 + 0.00267584i
\(452\) −10568.3 + 3619.17i −1.09976 + 0.376619i
\(453\) 0 0
\(454\) −1439.57 8647.04i −0.148816 0.893889i
\(455\) 11625.4i 1.19782i
\(456\) 0 0
\(457\) 125.930i 0.0128900i 0.999979 + 0.00644502i \(0.00205153\pi\)
−0.999979 + 0.00644502i \(0.997948\pi\)
\(458\) −7130.79 + 1187.14i −0.727511 + 0.121117i
\(459\) 0 0
\(460\) −6298.12 + 12858.3i −0.638373 + 1.30331i
\(461\) 179.001 + 179.001i 0.0180844 + 0.0180844i 0.716091 0.698007i \(-0.245929\pi\)
−0.698007 + 0.716091i \(0.745929\pi\)
\(462\) 0 0
\(463\) 1590.83i 0.159681i 0.996808 + 0.0798403i \(0.0254410\pi\)
−0.996808 + 0.0798403i \(0.974559\pi\)
\(464\) 15024.1 + 1895.86i 1.50318 + 0.189683i
\(465\) 0 0
\(466\) 1824.83 2553.79i 0.181403 0.253867i
\(467\) −11457.8 + 11457.8i −1.13534 + 1.13534i −0.146061 + 0.989276i \(0.546660\pi\)
−0.989276 + 0.146061i \(0.953340\pi\)
\(468\) 0 0
\(469\) 13599.9 + 13599.9i 1.33899 + 1.33899i
\(470\) −445.746 2677.46i −0.0437463 0.262770i
\(471\) 0 0
\(472\) −373.943 692.864i −0.0364663 0.0675671i
\(473\) 157.937 0.0153530
\(474\) 0 0
\(475\) 970.493 970.493i 0.0937459 0.0937459i
\(476\) 18820.5 6445.16i 1.81226 0.620616i
\(477\) 0 0
\(478\) 775.866 1085.80i 0.0742412 0.103898i
\(479\) 7077.38 0.675102 0.337551 0.941307i \(-0.390401\pi\)
0.337551 + 0.941307i \(0.390401\pi\)
\(480\) 0 0
\(481\) −9871.99 −0.935808
\(482\) −2477.66 + 3467.40i −0.234137 + 0.327667i
\(483\) 0 0
\(484\) −10071.2 + 3448.91i −0.945826 + 0.323902i
\(485\) −7269.65 + 7269.65i −0.680614 + 0.680614i
\(486\) 0 0
\(487\) −16187.6 −1.50622 −0.753112 0.657892i \(-0.771448\pi\)
−0.753112 + 0.657892i \(0.771448\pi\)
\(488\) 12715.9 6862.86i 1.17956 0.636613i
\(489\) 0 0
\(490\) −2654.08 15942.2i −0.244692 1.46979i
\(491\) −3058.51 3058.51i −0.281118 0.281118i 0.552437 0.833555i \(-0.313698\pi\)
−0.833555 + 0.552437i \(0.813698\pi\)
\(492\) 0 0
\(493\) 13888.0 13888.0i 1.26873 1.26873i
\(494\) −4522.73 + 6329.40i −0.411917 + 0.576464i
\(495\) 0 0
\(496\) −7504.48 9671.93i −0.679357 0.875570i
\(497\) 10444.6i 0.942665i
\(498\) 0 0
\(499\) −726.658 726.658i −0.0651898 0.0651898i 0.673760 0.738950i \(-0.264678\pi\)
−0.738950 + 0.673760i \(0.764678\pi\)
\(500\) −5214.74 + 10646.5i −0.466421 + 0.952251i
\(501\) 0 0
\(502\) −13771.1 + 2292.64i −1.22437 + 0.203835i
\(503\) 4589.71i 0.406849i 0.979091 + 0.203424i \(0.0652071\pi\)
−0.979091 + 0.203424i \(0.934793\pi\)
\(504\) 0 0
\(505\) 17142.1i 1.51052i
\(506\) 46.5805 + 279.794i 0.00409240 + 0.0245817i
\(507\) 0 0
\(508\) −17601.7 + 6027.76i −1.53730 + 0.526454i
\(509\) −4040.42 4040.42i −0.351844 0.351844i 0.508951 0.860795i \(-0.330033\pi\)
−0.860795 + 0.508951i \(0.830033\pi\)
\(510\) 0 0
\(511\) 27657.5i 2.39432i
\(512\) 7457.37 + 8865.97i 0.643696 + 0.765282i
\(513\) 0 0
\(514\) −10639.9 7602.79i −0.913042 0.652422i
\(515\) 7136.20 7136.20i 0.610599 0.610599i
\(516\) 0 0
\(517\) −38.0223 38.0223i −0.00323446 0.00323446i
\(518\) −21912.5 + 3648.03i −1.85865 + 0.309431i
\(519\) 0 0
\(520\) 2515.07 8413.03i 0.212102 0.709492i
\(521\) 243.434 0.0204703 0.0102351 0.999948i \(-0.496742\pi\)
0.0102351 + 0.999948i \(0.496742\pi\)
\(522\) 0 0
\(523\) 7802.07 7802.07i 0.652315 0.652315i −0.301235 0.953550i \(-0.597399\pi\)
0.953550 + 0.301235i \(0.0973989\pi\)
\(524\) −4139.13 2027.38i −0.345074 0.169020i
\(525\) 0 0
\(526\) −3406.54 2434.17i −0.282381 0.201777i
\(527\) −15877.6 −1.31241
\(528\) 0 0
\(529\) −17992.0 −1.47876
\(530\) −8351.87 5967.90i −0.684494 0.489111i
\(531\) 0 0
\(532\) −7700.03 + 15720.5i −0.627516 + 1.28115i
\(533\) 1671.20 1671.20i 0.135812 0.135812i
\(534\) 0 0
\(535\) −7057.50 −0.570322
\(536\) 6899.66 + 12784.1i 0.556007 + 1.03020i
\(537\) 0 0
\(538\) −18634.4 + 3102.28i −1.49328 + 0.248604i
\(539\) −226.394 226.394i −0.0180918 0.0180918i
\(540\) 0 0
\(541\) −8566.46 + 8566.46i −0.680778 + 0.680778i −0.960176 0.279397i \(-0.909865\pi\)
0.279397 + 0.960176i \(0.409865\pi\)
\(542\) 176.662 + 126.236i 0.0140006 + 0.0100042i
\(543\) 0 0
\(544\) 15014.3 592.529i 1.18333 0.0466994i
\(545\) 10484.8i 0.824071i
\(546\) 0 0
\(547\) 386.930 + 386.930i 0.0302448 + 0.0302448i 0.722067 0.691823i \(-0.243192\pi\)
−0.691823 + 0.722067i \(0.743192\pi\)
\(548\) −4538.43 13252.7i −0.353781 1.03308i
\(549\) 0 0
\(550\) 5.04005 + 30.2740i 0.000390743 + 0.00234707i
\(551\) 17282.5i 1.33622i
\(552\) 0 0
\(553\) 29654.1i 2.28032i
\(554\) 15529.5 2585.37i 1.19095 0.198271i
\(555\) 0 0
\(556\) 20637.6 + 10108.5i 1.57416 + 0.771035i
\(557\) −2421.34 2421.34i −0.184193 0.184193i 0.608987 0.793180i \(-0.291576\pi\)
−0.793180 + 0.608987i \(0.791576\pi\)
\(558\) 0 0
\(559\) 10298.8i 0.779238i
\(560\) 2473.73 19603.6i 0.186668 1.47929i
\(561\) 0 0
\(562\) 4854.14 6793.21i 0.364341 0.509883i
\(563\) −13851.2 + 13851.2i −1.03687 + 1.03687i −0.0375777 + 0.999294i \(0.511964\pi\)
−0.999294 + 0.0375777i \(0.988036\pi\)
\(564\) 0 0
\(565\) 10175.7 + 10175.7i 0.757689 + 0.757689i
\(566\) 1629.00 + 9784.89i 0.120975 + 0.726660i
\(567\) 0 0
\(568\) −2259.61 + 7558.49i −0.166921 + 0.558358i
\(569\) 1993.40 0.146868 0.0734338 0.997300i \(-0.476604\pi\)
0.0734338 + 0.997300i \(0.476604\pi\)
\(570\) 0 0
\(571\) −14755.5 + 14755.5i −1.08143 + 1.08143i −0.0850541 + 0.996376i \(0.527106\pi\)
−0.996376 + 0.0850541i \(0.972894\pi\)
\(572\) −56.3582 164.572i −0.00411968 0.0120299i
\(573\) 0 0
\(574\) 3091.94 4327.07i 0.224835 0.314649i
\(575\) −3263.24 −0.236672
\(576\) 0 0
\(577\) 24614.5 1.77593 0.887967 0.459907i \(-0.152117\pi\)
0.887967 + 0.459907i \(0.152117\pi\)
\(578\) 3251.39 4550.21i 0.233979 0.327446i
\(579\) 0 0
\(580\) −6320.22 18455.7i −0.452471 1.32126i
\(581\) −9738.45 + 9738.45i −0.695386 + 0.695386i
\(582\) 0 0
\(583\) −203.354 −0.0144460
\(584\) −5983.49 + 20015.0i −0.423970 + 1.41820i
\(585\) 0 0
\(586\) −2025.61 12167.2i −0.142794 0.857716i
\(587\) 16905.8 + 16905.8i 1.18871 + 1.18871i 0.977423 + 0.211291i \(0.0677668\pi\)
0.211291 + 0.977423i \(0.432233\pi\)
\(588\) 0 0
\(589\) 9879.17 9879.17i 0.691111 0.691111i
\(590\) −589.676 + 825.233i −0.0411468 + 0.0575835i
\(591\) 0 0
\(592\) −16646.8 2100.62i −1.15571 0.145836i
\(593\) 6650.14i 0.460520i −0.973129 0.230260i \(-0.926042\pi\)
0.973129 0.230260i \(-0.0739577\pi\)
\(594\) 0 0
\(595\) −18121.2 18121.2i −1.24857 1.24857i
\(596\) −144.333 70.6958i −0.00991968 0.00485874i
\(597\) 0 0
\(598\) 18244.9 3037.43i 1.24764 0.207709i
\(599\) 662.505i 0.0451907i −0.999745 0.0225953i \(-0.992807\pi\)
0.999745 0.0225953i \(-0.00719293\pi\)
\(600\) 0 0
\(601\) 5113.18i 0.347040i 0.984830 + 0.173520i \(0.0555141\pi\)
−0.984830 + 0.173520i \(0.944486\pi\)
\(602\) −3805.76 22860.0i −0.257660 1.54768i
\(603\) 0 0
\(604\) −5741.86 16766.8i −0.386809 1.12952i
\(605\) 9696.96 + 9696.96i 0.651632 + 0.651632i
\(606\) 0 0
\(607\) 28192.4i 1.88516i 0.333975 + 0.942582i \(0.391610\pi\)
−0.333975 + 0.942582i \(0.608390\pi\)
\(608\) −8973.32 + 9710.67i −0.598546 + 0.647730i
\(609\) 0 0
\(610\) −15145.3 10822.2i −1.00527 0.718323i
\(611\) −2479.37 + 2479.37i −0.164165 + 0.164165i
\(612\) 0 0
\(613\) 14861.4 + 14861.4i 0.979193 + 0.979193i 0.999788 0.0205946i \(-0.00655594\pi\)
−0.0205946 + 0.999788i \(0.506556\pi\)
\(614\) 13973.3 2326.30i 0.918431 0.152902i
\(615\) 0 0
\(616\) −185.911 344.468i −0.0121600 0.0225309i
\(617\) −1149.18 −0.0749826 −0.0374913 0.999297i \(-0.511937\pi\)
−0.0374913 + 0.999297i \(0.511937\pi\)
\(618\) 0 0
\(619\) −572.280 + 572.280i −0.0371598 + 0.0371598i −0.725443 0.688283i \(-0.758365\pi\)
0.688283 + 0.725443i \(0.258365\pi\)
\(620\) −6936.98 + 14162.6i −0.449348 + 0.917395i
\(621\) 0 0
\(622\) 7417.60 + 5300.30i 0.478165 + 0.341677i
\(623\) −30116.9 −1.93677
\(624\) 0 0
\(625\) 12923.1 0.827078
\(626\) 19129.1 + 13668.8i 1.22133 + 0.872711i
\(627\) 0 0
\(628\) 3661.59 + 1793.48i 0.232665 + 0.113961i
\(629\) −15388.0 + 15388.0i −0.975455 + 0.975455i
\(630\) 0 0
\(631\) 374.155 0.0236052 0.0118026 0.999930i \(-0.496243\pi\)
0.0118026 + 0.999930i \(0.496243\pi\)
\(632\) 6415.43 21459.9i 0.403785 1.35068i
\(633\) 0 0
\(634\) −17133.8 + 2852.46i −1.07330 + 0.178684i
\(635\) 16947.7 + 16947.7i 1.05913 + 1.05913i
\(636\) 0 0
\(637\) −14762.7 + 14762.7i −0.918243 + 0.918243i
\(638\) −314.435 224.682i −0.0195119 0.0139424i
\(639\) 0 0
\(640\) 6031.25 13651.4i 0.372510 0.843156i
\(641\) 11493.2i 0.708196i −0.935208 0.354098i \(-0.884788\pi\)
0.935208 0.354098i \(-0.115212\pi\)
\(642\) 0 0
\(643\) 15400.0 + 15400.0i 0.944507 + 0.944507i 0.998539 0.0540325i \(-0.0172074\pi\)
−0.0540325 + 0.998539i \(0.517207\pi\)
\(644\) 39375.2 13484.2i 2.40932 0.825081i
\(645\) 0 0
\(646\) 2816.17 + 16915.8i 0.171518 + 1.03025i
\(647\) 18258.5i 1.10945i 0.832034 + 0.554725i \(0.187176\pi\)
−0.832034 + 0.554725i \(0.812824\pi\)
\(648\) 0 0
\(649\) 20.0930i 0.00121528i
\(650\) 1974.11 328.653i 0.119125 0.0198321i
\(651\) 0 0
\(652\) −1022.64 + 2087.84i −0.0614261 + 0.125408i
\(653\) −15515.3 15515.3i −0.929800 0.929800i 0.0678930 0.997693i \(-0.478372\pi\)
−0.997693 + 0.0678930i \(0.978372\pi\)
\(654\) 0 0
\(655\) 5937.40i 0.354188i
\(656\) 3173.69 2462.47i 0.188890 0.146560i
\(657\) 0 0
\(658\) −4587.17 + 6419.59i −0.271773 + 0.380337i
\(659\) 10830.2 10830.2i 0.640189 0.640189i −0.310413 0.950602i \(-0.600467\pi\)
0.950602 + 0.310413i \(0.100467\pi\)
\(660\) 0 0
\(661\) 4221.15 + 4221.15i 0.248387 + 0.248387i 0.820308 0.571922i \(-0.193802\pi\)
−0.571922 + 0.820308i \(0.693802\pi\)
\(662\) −2676.89 16079.2i −0.157161 0.944014i
\(663\) 0 0
\(664\) −9154.31 + 4940.63i −0.535024 + 0.288755i
\(665\) 22550.3 1.31498
\(666\) 0 0
\(667\) 29055.8 29055.8i 1.68672 1.68672i
\(668\) −9428.57 + 3228.85i −0.546111 + 0.187018i
\(669\) 0 0
\(670\) 10880.2 15226.5i 0.627371 0.877985i
\(671\) −368.761 −0.0212159
\(672\) 0 0
\(673\) 610.423 0.0349630 0.0174815 0.999847i \(-0.494435\pi\)
0.0174815 + 0.999847i \(0.494435\pi\)
\(674\) −1540.05 + 2155.26i −0.0880129 + 0.123171i
\(675\) 0 0
\(676\) 5896.57 2019.30i 0.335490 0.114890i
\(677\) 6186.42 6186.42i 0.351202 0.351202i −0.509355 0.860557i \(-0.670116\pi\)
0.860557 + 0.509355i \(0.170116\pi\)
\(678\) 0 0
\(679\) 29884.8 1.68906
\(680\) −9193.49 17034.3i −0.518462 0.960638i
\(681\) 0 0
\(682\) 51.3054 + 308.175i 0.00288062 + 0.0173030i
\(683\) −23478.3 23478.3i −1.31533 1.31533i −0.917425 0.397908i \(-0.869736\pi\)
−0.397908 0.917425i \(-0.630264\pi\)
\(684\) 0 0
\(685\) −12760.3 + 12760.3i −0.711744 + 0.711744i
\(686\) −10416.2 + 14577.1i −0.579726 + 0.811307i
\(687\) 0 0
\(688\) 2191.45 17366.5i 0.121436 0.962345i
\(689\) 13260.3i 0.733206i
\(690\) 0 0
\(691\) 19296.9 + 19296.9i 1.06235 + 1.06235i 0.997922 + 0.0644325i \(0.0205237\pi\)
0.0644325 + 0.997922i \(0.479476\pi\)
\(692\) 5448.96 11124.7i 0.299333 0.611122i
\(693\) 0 0
\(694\) 3130.51 521.171i 0.171228 0.0285063i
\(695\) 29603.8i 1.61573i
\(696\) 0 0
\(697\) 5209.98i 0.283131i
\(698\) 260.286 + 1563.46i 0.0141146 + 0.0847818i
\(699\) 0 0
\(700\) 4260.43 1459.00i 0.230042 0.0787788i
\(701\) 5595.13 + 5595.13i 0.301462 + 0.301462i 0.841586 0.540123i \(-0.181622\pi\)
−0.540123 + 0.841586i \(0.681622\pi\)
\(702\) 0 0
\(703\) 19149.1i 1.02734i
\(704\) −60.0163 289.503i −0.00321300 0.0154987i
\(705\) 0 0
\(706\) 11588.3 + 8280.53i 0.617751 + 0.441419i
\(707\) 35234.8 35234.8i 1.87432 1.87432i
\(708\) 0 0
\(709\) −7035.82 7035.82i −0.372688 0.372688i 0.495767 0.868455i \(-0.334887\pi\)
−0.868455 + 0.495767i \(0.834887\pi\)
\(710\) 10024.9 1668.95i 0.529896 0.0882178i
\(711\) 0 0
\(712\) −21794.9 6515.57i −1.14719 0.342951i
\(713\) −33218.2 −1.74479
\(714\) 0 0
\(715\) −158.457 + 158.457i −0.00828805 + 0.00828805i
\(716\) −3464.48 1696.93i −0.180829 0.0885717i
\(717\) 0 0
\(718\) −7484.61 5348.19i −0.389030 0.277984i
\(719\) 20454.1 1.06093 0.530465 0.847707i \(-0.322017\pi\)
0.530465 + 0.847707i \(0.322017\pi\)
\(720\) 0 0
\(721\) −29336.2 −1.51531
\(722\) 3507.14 + 2506.05i 0.180778 + 0.129177i
\(723\) 0 0
\(724\) −11234.1 + 22935.7i −0.576673 + 1.17734i
\(725\) 3143.86 3143.86i 0.161048 0.161048i
\(726\) 0 0
\(727\) −4127.12 −0.210545 −0.105273 0.994443i \(-0.533572\pi\)
−0.105273 + 0.994443i \(0.533572\pi\)
\(728\) −22462.2 + 12123.0i −1.14355 + 0.617180i
\(729\) 0 0
\(730\) 26546.0 4419.42i 1.34591 0.224069i
\(731\) −16053.4 16053.4i −0.812251 0.812251i
\(732\) 0 0
\(733\) 4302.46 4302.46i 0.216801 0.216801i −0.590348 0.807149i \(-0.701009\pi\)
0.807149 + 0.590348i \(0.201009\pi\)
\(734\) −13414.4 9585.35i −0.674569 0.482019i
\(735\) 0 0
\(736\) 31412.0 1239.66i 1.57318 0.0620847i
\(737\) 370.738i 0.0185296i
\(738\) 0 0
\(739\) −12198.1 12198.1i −0.607190 0.607190i 0.335021 0.942211i \(-0.391257\pi\)
−0.942211 + 0.335021i \(0.891257\pi\)
\(740\) 7002.85 + 20449.0i 0.347878 + 1.01584i
\(741\) 0 0
\(742\) 4900.14 + 29433.6i 0.242439 + 1.45625i
\(743\) 15022.3i 0.741742i −0.928684 0.370871i \(-0.879059\pi\)
0.928684 0.370871i \(-0.120941\pi\)
\(744\) 0 0
\(745\) 207.040i 0.0101817i
\(746\) −12576.0 + 2093.67i −0.617213 + 0.102755i
\(747\) 0 0
\(748\) −344.376 168.678i −0.0168337 0.00824531i
\(749\) 14506.3 + 14506.3i 0.707677 + 0.707677i
\(750\) 0 0
\(751\) 20203.5i 0.981673i −0.871252 0.490836i \(-0.836691\pi\)
0.871252 0.490836i \(-0.163309\pi\)
\(752\) −4708.45 + 3653.30i −0.228324 + 0.177157i
\(753\) 0 0
\(754\) −14651.1 + 20503.8i −0.707642 + 0.990322i
\(755\) −16143.8 + 16143.8i −0.778191 + 0.778191i
\(756\) 0 0
\(757\) −8332.94 8332.94i −0.400087 0.400087i 0.478177 0.878264i \(-0.341298\pi\)
−0.878264 + 0.478177i \(0.841298\pi\)
\(758\) 104.568 + 628.108i 0.00501067 + 0.0300975i
\(759\) 0 0
\(760\) 16319.1 + 4878.59i 0.778890 + 0.232849i
\(761\) 13643.0 0.649878 0.324939 0.945735i \(-0.394656\pi\)
0.324939 + 0.945735i \(0.394656\pi\)
\(762\) 0 0
\(763\) −21551.0 + 21551.0i −1.02254 + 1.02254i
\(764\) −12113.4 35372.3i −0.573622 1.67503i
\(765\) 0 0
\(766\) −54.0513 + 75.6431i −0.00254955 + 0.00356801i
\(767\) 1310.23 0.0616814
\(768\) 0 0
\(769\) −18855.2 −0.884180 −0.442090 0.896971i \(-0.645763\pi\)
−0.442090 + 0.896971i \(0.645763\pi\)
\(770\) −293.167 + 410.277i −0.0137208 + 0.0192018i
\(771\) 0 0
\(772\) 2652.60 + 7745.85i 0.123665 + 0.361113i
\(773\) −9480.13 + 9480.13i −0.441108 + 0.441108i −0.892384 0.451276i \(-0.850969\pi\)
0.451276 + 0.892384i \(0.350969\pi\)
\(774\) 0 0
\(775\) −3594.25 −0.166592
\(776\) 21626.9 + 6465.35i 1.00046 + 0.299089i
\(777\) 0 0
\(778\) −230.459 1384.29i −0.0106200 0.0637909i
\(779\) 3241.69 + 3241.69i 0.149096 + 0.149096i
\(780\) 0 0
\(781\) 142.362 142.362i 0.00652255 0.00652255i
\(782\) 23704.7 33174.0i 1.08399 1.51701i
\(783\) 0 0
\(784\) −28035.2 + 21752.6i −1.27711 + 0.990915i
\(785\) 5252.39i 0.238810i
\(786\) 0 0
\(787\) 491.764 + 491.764i 0.0222738 + 0.0222738i 0.718156 0.695882i \(-0.244986\pi\)
−0.695882 + 0.718156i \(0.744986\pi\)
\(788\) −37232.5 18236.8i −1.68319 0.824441i
\(789\) 0 0
\(790\) −28462.3 + 4738.45i −1.28183 + 0.213401i
\(791\) 41831.2i 1.88034i
\(792\) 0 0
\(793\) 24046.3i 1.07681i
\(794\) 876.326 + 5263.81i 0.0391683 + 0.235272i
\(795\) 0 0
\(796\) −6330.69 18486.2i −0.281891 0.823149i
\(797\) 22555.1 + 22555.1i 1.00244 + 1.00244i 0.999997 + 0.00244147i \(0.000777144\pi\)
0.00244147 + 0.999997i \(0.499223\pi\)
\(798\) 0 0
\(799\) 7729.47i 0.342239i
\(800\) 3398.81 134.132i 0.150208 0.00592785i
\(801\) 0 0
\(802\) 35184.3 + 25141.2i 1.54913 + 1.10694i
\(803\) 376.978 376.978i 0.0165669 0.0165669i
\(804\) 0 0
\(805\) −37912.2 37912.2i −1.65991 1.65991i
\(806\) 20095.6 3345.54i 0.878209 0.146205i
\(807\) 0 0
\(808\) 33121.3 17875.8i 1.44208 0.778301i
\(809\) 2649.70 0.115153 0.0575764 0.998341i \(-0.481663\pi\)
0.0575764 + 0.998341i \(0.481663\pi\)
\(810\) 0 0
\(811\) 14726.8 14726.8i 0.637644 0.637644i −0.312330 0.949974i \(-0.601109\pi\)
0.949974 + 0.312330i \(0.101109\pi\)
\(812\) −24943.8 + 50925.6i −1.07803 + 2.20091i
\(813\) 0 0
\(814\) 348.396 + 248.949i 0.0150016 + 0.0107195i
\(815\) 2994.92 0.128721
\(816\) 0 0
\(817\) 19977.1 0.855458
\(818\) 19998.5 + 14290.1i 0.854805 + 0.610808i
\(819\) 0 0
\(820\) −4647.23 2276.26i −0.197913 0.0969394i
\(821\) 19231.4 19231.4i 0.817518 0.817518i −0.168230 0.985748i \(-0.553805\pi\)
0.985748 + 0.168230i \(0.0538051\pi\)
\(822\) 0 0
\(823\) 285.189 0.0120790 0.00603952 0.999982i \(-0.498078\pi\)
0.00603952 + 0.999982i \(0.498078\pi\)
\(824\) −21229.9 6346.66i −0.897545 0.268321i
\(825\) 0 0
\(826\) 2908.28 484.174i 0.122508 0.0203954i
\(827\) 7276.50 + 7276.50i 0.305960 + 0.305960i 0.843340 0.537380i \(-0.180586\pi\)
−0.537380 + 0.843340i \(0.680586\pi\)
\(828\) 0 0
\(829\) 14705.2 14705.2i 0.616084 0.616084i −0.328441 0.944525i \(-0.606523\pi\)
0.944525 + 0.328441i \(0.106523\pi\)
\(830\) 10903.2 + 7790.97i 0.455970 + 0.325817i
\(831\) 0 0
\(832\) −18878.0 + 3913.56i −0.786632 + 0.163075i
\(833\) 46023.1i 1.91429i
\(834\) 0 0
\(835\) 9078.26 + 9078.26i 0.376247 + 0.376247i
\(836\) 319.226 109.320i 0.0132065 0.00452264i
\(837\) 0 0
\(838\) −3542.61 21279.3i −0.146035 0.877187i
\(839\) 42053.0i 1.73043i 0.501400 + 0.865216i \(0.332819\pi\)
−0.501400 + 0.865216i \(0.667181\pi\)
\(840\) 0 0
\(841\) 31596.6i 1.29553i
\(842\) −4853.13 + 807.957i −0.198634 + 0.0330689i
\(843\) 0 0
\(844\) 13037.4 26617.4i 0.531714 1.08555i
\(845\) −5677.48 5677.48i −0.231138 0.231138i
\(846\) 0 0
\(847\) 39863.3i 1.61714i
\(848\) −2821.62 + 22360.4i −0.114263 + 0.905496i
\(849\) 0 0
\(850\) 2564.87 3589.45i 0.103499 0.144844i
\(851\) −32194.0 + 32194.0i −1.29682 + 1.29682i
\(852\) 0 0
\(853\) −21450.1 21450.1i −0.861004 0.861004i 0.130450 0.991455i \(-0.458358\pi\)
−0.991455 + 0.130450i \(0.958358\pi\)
\(854\) 8885.91 + 53374.8i 0.356054 + 2.13870i
\(855\) 0 0
\(856\) 7359.54 + 13636.2i 0.293860 + 0.544481i
\(857\) −24889.9 −0.992093 −0.496046 0.868296i \(-0.665215\pi\)
−0.496046 + 0.868296i \(0.665215\pi\)
\(858\) 0 0
\(859\) −21885.6 + 21885.6i −0.869296 + 0.869296i −0.992395 0.123098i \(-0.960717\pi\)
0.123098 + 0.992395i \(0.460717\pi\)
\(860\) −21333.2 + 7305.63i −0.845878 + 0.289675i
\(861\) 0 0
\(862\) −8497.21 + 11891.6i −0.335750 + 0.469870i
\(863\) 45740.0 1.80418 0.902089 0.431549i \(-0.142033\pi\)
0.902089 + 0.431549i \(0.142033\pi\)
\(864\) 0 0
\(865\) −15957.8 −0.627263
\(866\) 13197.1 18468.9i 0.517848 0.724711i
\(867\) 0 0
\(868\) 43369.2 14852.0i 1.69591 0.580771i
\(869\) −404.191 + 404.191i −0.0157782 + 0.0157782i
\(870\) 0 0
\(871\) −24175.2 −0.940466
\(872\) −20258.3 + 10933.5i −0.786733 + 0.424604i
\(873\) 0 0
\(874\) 5891.84 + 35390.4i 0.228026 + 1.36968i
\(875\) −31390.7 31390.7i −1.21280 1.21280i
\(876\) 0 0
\(877\) 10214.3 10214.3i 0.393286 0.393286i −0.482571 0.875857i \(-0.660297\pi\)
0.875857 + 0.482571i \(0.160297\pi\)
\(878\) 4685.38 6557.03i 0.180095 0.252037i
\(879\) 0 0
\(880\) −300.918 + 233.483i −0.0115272 + 0.00894398i
\(881\) 29167.7i 1.11542i 0.830036 + 0.557709i \(0.188320\pi\)
−0.830036 + 0.557709i \(0.811680\pi\)
\(882\) 0 0
\(883\) 2295.54 + 2295.54i 0.0874871 + 0.0874871i 0.749496 0.662009i \(-0.230296\pi\)
−0.662009 + 0.749496i \(0.730296\pi\)
\(884\) −10999.2 + 22456.2i −0.418489 + 0.854392i
\(885\) 0 0
\(886\) −46355.8 + 7717.38i −1.75774 + 0.292630i
\(887\) 25089.5i 0.949742i −0.880055 0.474871i \(-0.842495\pi\)
0.880055 0.474871i \(-0.157505\pi\)
\(888\) 0 0
\(889\) 69670.3i 2.62842i
\(890\) 4812.41 + 28906.6i 0.181250 + 1.08871i
\(891\) 0 0
\(892\) −22727.1 + 7782.99i −0.853093 + 0.292145i
\(893\) −4809.33 4809.33i −0.180222 0.180222i
\(894\) 0 0
\(895\) 4969.64i 0.185605i
\(896\) −40456.8 + 15662.9i −1.50844 + 0.583996i
\(897\) 0 0
\(898\) 33082.1 + 23639.0i 1.22936 + 0.878447i
\(899\) 32003.0 32003.0i 1.18728 1.18728i
\(900\) 0 0
\(901\) 20669.7 + 20669.7i 0.764269 + 0.764269i
\(902\) −101.123 + 16.8350i −0.00373283 + 0.000621447i
\(903\) 0 0
\(904\) 9049.86 30272.2i 0.332958 1.11376i
\(905\) 32900.2 1.20844
\(906\) 0 0
\(907\) 20254.3 20254.3i 0.741492 0.741492i −0.231373 0.972865i \(-0.574322\pi\)
0.972865 + 0.231373i \(0.0743219\pi\)
\(908\) 22266.6 + 10906.4i 0.813813 + 0.398613i
\(909\) 0 0
\(910\) 26753.5 + 19116.9i 0.974582 + 0.696395i
\(911\) −17166.4 −0.624310 −0.312155 0.950031i \(-0.601051\pi\)
−0.312155 + 0.950031i \(0.601051\pi\)
\(912\) 0 0
\(913\) 265.474 0.00962312
\(914\) −289.801 207.080i −0.0104877 0.00749408i
\(915\) 0 0
\(916\) 8993.94 18362.2i 0.324419 0.662339i
\(917\) 12204.0 12204.0i 0.439490 0.439490i
\(918\) 0 0
\(919\) 23560.5 0.845690 0.422845 0.906202i \(-0.361031\pi\)
0.422845 + 0.906202i \(0.361031\pi\)
\(920\) −19234.1 35638.1i −0.689271 1.27712i
\(921\) 0 0
\(922\) −706.282 + 117.583i −0.0252279 + 0.00419998i
\(923\) −9283.18 9283.18i −0.331051 0.331051i
\(924\) 0 0
\(925\) −3483.42 + 3483.42i −0.123821 + 0.123821i
\(926\) −3660.96 2615.97i −0.129921 0.0928359i
\(927\) 0 0
\(928\) −29068.6 + 31457.2i −1.02826 + 1.11275i
\(929\) 10039.3i 0.354553i 0.984161 + 0.177276i \(0.0567287\pi\)
−0.984161 + 0.177276i \(0.943271\pi\)
\(930\) 0 0
\(931\) −28635.9 28635.9i −1.00806 1.00806i
\(932\) 2876.25 + 8398.93i 0.101089 + 0.295189i
\(933\) 0 0
\(934\) −7526.43 45208.8i −0.263675 1.58381i
\(935\) 493.992i 0.0172784i
\(936\) 0 0
\(937\) 6962.35i 0.242743i 0.992607 + 0.121371i \(0.0387292\pi\)
−0.992607 + 0.121371i \(0.961271\pi\)
\(938\) −53661.0 + 8933.55i −1.86790 + 0.310971i
\(939\) 0 0
\(940\) 6894.59 + 3377.03i 0.239230 + 0.117177i
\(941\) −7675.75 7675.75i −0.265911 0.265911i 0.561539 0.827450i \(-0.310209\pi\)
−0.827450 + 0.561539i \(0.810209\pi\)
\(942\) 0 0
\(943\) 10900.0i 0.376409i
\(944\) 2209.39 + 278.799i 0.0761755 + 0.00961242i
\(945\) 0 0
\(946\) −259.713 + 363.460i −0.00892600 + 0.0124916i
\(947\) 7623.19 7623.19i 0.261584 0.261584i −0.564113 0.825697i \(-0.690782\pi\)
0.825697 + 0.564113i \(0.190782\pi\)
\(948\) 0 0
\(949\) −24582.1 24582.1i −0.840851 0.840851i
\(950\) 637.502 + 3829.27i 0.0217719 + 0.130777i
\(951\) 0 0
\(952\) −16116.3 + 53909.9i −0.548670 + 1.83532i
\(953\) −6874.60 −0.233673 −0.116836 0.993151i \(-0.537275\pi\)
−0.116836 + 0.993151i \(0.537275\pi\)
\(954\) 0 0
\(955\) −34058.0 + 34058.0i −1.15402 + 1.15402i
\(956\) 1222.90 + 3570.98i 0.0413717 + 0.120809i
\(957\) 0 0
\(958\) −11638.1 + 16287.1i −0.392494 + 0.549282i
\(959\) 52456.2 1.76632
\(960\) 0 0
\(961\) −6796.76 −0.228148
\(962\) 16233.5 22718.3i 0.544065 0.761401i
\(963\) 0 0
\(964\) −3905.21 11403.6i −0.130476 0.381001i
\(965\) 7458.05 7458.05i 0.248791 0.248791i
\(966\) 0 0
\(967\) 41309.2 1.37375 0.686874 0.726777i \(-0.258982\pi\)
0.686874 + 0.726777i \(0.258982\pi\)
\(968\) 8624.11 28848.0i 0.286353 0.957863i
\(969\) 0 0
\(970\) −4775.32 28683.8i −0.158068 0.949466i
\(971\) −29768.1 29768.1i −0.983835 0.983835i 0.0160360 0.999871i \(-0.494895\pi\)
−0.999871 + 0.0160360i \(0.994895\pi\)
\(972\) 0 0
\(973\) −60849.1 + 60849.1i −2.00486 + 2.00486i
\(974\) 26619.0 37252.4i 0.875696 1.22551i
\(975\) 0 0
\(976\) −5116.72 + 40548.4i −0.167810 + 1.32984i
\(977\) 38173.7i 1.25004i 0.780610 + 0.625018i \(0.214908\pi\)
−0.780610 + 0.625018i \(0.785092\pi\)
\(978\) 0 0
\(979\) 410.500 + 410.500i 0.0134011 + 0.0134011i
\(980\) 41052.0 + 20107.6i 1.33812 + 0.655423i
\(981\) 0 0
\(982\) 12068.0 2009.09i 0.392163 0.0652878i
\(983\) 22215.4i 0.720815i 0.932795 + 0.360408i \(0.117362\pi\)
−0.932795 + 0.360408i \(0.882638\pi\)
\(984\) 0 0
\(985\) 53408.4i 1.72765i
\(986\) 9122.83 + 54797.9i 0.294655 + 1.76990i
\(987\) 0 0
\(988\) −7128.60 20816.2i −0.229546 0.670295i
\(989\) −33585.9 33585.9i −1.07985 1.07985i
\(990\) 0 0
\(991\) 11237.5i 0.360213i 0.983647 + 0.180107i \(0.0576442\pi\)
−0.983647 + 0.180107i \(0.942356\pi\)
\(992\) 34598.3 1365.40i 1.10736 0.0437011i
\(993\) 0 0
\(994\) −24036.0 17175.1i −0.766979 0.548051i
\(995\) −17799.4 + 17799.4i −0.567114 + 0.567114i
\(996\) 0 0
\(997\) −10953.4 10953.4i −0.347941 0.347941i 0.511401 0.859342i \(-0.329127\pi\)
−0.859342 + 0.511401i \(0.829127\pi\)
\(998\) 2867.17 477.331i 0.0909406 0.0151399i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.107.9 yes 48
3.2 odd 2 inner 144.4.l.a.107.16 yes 48
4.3 odd 2 576.4.l.a.143.6 48
8.3 odd 2 1152.4.l.a.287.19 48
8.5 even 2 1152.4.l.b.287.19 48
12.11 even 2 576.4.l.a.143.19 48
16.3 odd 4 inner 144.4.l.a.35.16 yes 48
16.5 even 4 1152.4.l.a.863.6 48
16.11 odd 4 1152.4.l.b.863.6 48
16.13 even 4 576.4.l.a.431.19 48
24.5 odd 2 1152.4.l.b.287.6 48
24.11 even 2 1152.4.l.a.287.6 48
48.5 odd 4 1152.4.l.a.863.19 48
48.11 even 4 1152.4.l.b.863.19 48
48.29 odd 4 576.4.l.a.431.6 48
48.35 even 4 inner 144.4.l.a.35.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.9 48 48.35 even 4 inner
144.4.l.a.35.16 yes 48 16.3 odd 4 inner
144.4.l.a.107.9 yes 48 1.1 even 1 trivial
144.4.l.a.107.16 yes 48 3.2 odd 2 inner
576.4.l.a.143.6 48 4.3 odd 2
576.4.l.a.143.19 48 12.11 even 2
576.4.l.a.431.6 48 48.29 odd 4
576.4.l.a.431.19 48 16.13 even 4
1152.4.l.a.287.6 48 24.11 even 2
1152.4.l.a.287.19 48 8.3 odd 2
1152.4.l.a.863.6 48 16.5 even 4
1152.4.l.a.863.19 48 48.5 odd 4
1152.4.l.b.287.6 48 24.5 odd 2
1152.4.l.b.287.19 48 8.5 even 2
1152.4.l.b.863.6 48 16.11 odd 4
1152.4.l.b.863.19 48 48.11 even 4