Properties

Label 143.2.h.b.53.1
Level $143$
Weight $2$
Character 143.53
Analytic conductor $1.142$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [143,2,Mod(14,143)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("143.14"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(143, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14186074890\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: 16.0.273503893564697265625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 7 x^{14} - 9 x^{13} + 19 x^{12} - 16 x^{11} + 49 x^{10} - 32 x^{9} + 98 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 53.1
Root \(-0.208288 + 0.151330i\) of defining polynomial
Character \(\chi\) \(=\) 143.53
Dual form 143.2.h.b.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.620702 + 1.91032i) q^{2} +(1.77587 - 1.29025i) q^{3} +(-1.64603 - 1.19591i) q^{4} +(-0.772191 - 2.37656i) q^{5} +(1.36250 + 4.19336i) q^{6} +(3.01248 + 2.18870i) q^{7} +(0.0562420 - 0.0408622i) q^{8} +(0.561939 - 1.72947i) q^{9} +5.01930 q^{10} +(3.29749 + 0.355767i) q^{11} -4.46618 q^{12} +(-0.309017 + 0.951057i) q^{13} +(-6.05098 + 4.39629i) q^{14} +(-4.43767 - 3.22415i) q^{15} +(-1.21431 - 3.73725i) q^{16} +(-1.47843 - 4.55015i) q^{17} +(2.95505 + 2.14697i) q^{18} +(-5.41545 + 3.93455i) q^{19} +(-1.57111 + 4.83537i) q^{20} +8.17376 q^{21} +(-2.72639 + 6.07845i) q^{22} -3.70084 q^{23} +(0.0471564 - 0.145132i) q^{24} +(-1.00667 + 0.731388i) q^{25} +(-1.62502 - 1.18065i) q^{26} +(0.801459 + 2.46664i) q^{27} +(-2.34116 - 7.20534i) q^{28} +(-7.25458 - 5.27076i) q^{29} +(8.91365 - 6.47614i) q^{30} +(-0.439024 + 1.35118i) q^{31} +8.03213 q^{32} +(6.31495 - 3.62278i) q^{33} +9.60994 q^{34} +(2.87536 - 8.84944i) q^{35} +(-2.99327 + 2.17474i) q^{36} +(-1.63048 - 1.18461i) q^{37} +(-4.15489 - 12.7874i) q^{38} +(0.678324 + 2.08767i) q^{39} +(-0.140541 - 0.102109i) q^{40} +(-3.08783 + 2.24344i) q^{41} +(-5.07347 + 15.6145i) q^{42} +4.32275 q^{43} +(-5.00231 - 4.52912i) q^{44} -4.54411 q^{45} +(2.29712 - 7.06981i) q^{46} +(-1.69194 + 1.22927i) q^{47} +(-6.97845 - 5.07014i) q^{48} +(2.12154 + 6.52943i) q^{49} +(-0.772347 - 2.37704i) q^{50} +(-8.49634 - 6.17295i) q^{51} +(1.64603 - 1.19591i) q^{52} +(-0.660210 + 2.03192i) q^{53} -5.20954 q^{54} +(-1.70079 - 8.11140i) q^{55} +0.258863 q^{56} +(-4.54060 + 13.9745i) q^{57} +(14.5718 - 10.5870i) q^{58} +(5.98775 + 4.35035i) q^{59} +(3.44874 + 10.6141i) q^{60} +(3.30982 + 10.1866i) q^{61} +(-2.30868 - 1.67736i) q^{62} +(5.47812 - 3.98008i) q^{63} +(-2.55694 + 7.86946i) q^{64} +2.49886 q^{65} +(3.00098 + 14.3123i) q^{66} +1.03598 q^{67} +(-3.00804 + 9.25779i) q^{68} +(-6.57223 + 4.77501i) q^{69} +(15.1206 + 10.9857i) q^{70} +(-1.56941 - 4.83014i) q^{71} +(-0.0390654 - 0.120231i) q^{72} +(-4.73341 - 3.43903i) q^{73} +(3.27503 - 2.37945i) q^{74} +(-0.844047 + 2.59771i) q^{75} +13.6194 q^{76} +(9.15496 + 8.28895i) q^{77} -4.40916 q^{78} +(3.55898 - 10.9534i) q^{79} +(-7.94413 + 5.77175i) q^{80} +(9.01939 + 6.55297i) q^{81} +(-2.36907 - 7.29125i) q^{82} +(0.539768 + 1.66123i) q^{83} +(-13.4543 - 9.77511i) q^{84} +(-9.67208 + 7.02717i) q^{85} +(-2.68314 + 8.25786i) q^{86} -19.6838 q^{87} +(0.199995 - 0.114734i) q^{88} -4.32737 q^{89} +(2.82054 - 8.68072i) q^{90} +(-3.01248 + 2.18870i) q^{91} +(6.09171 + 4.42589i) q^{92} +(0.963703 + 2.96597i) q^{93} +(-1.29811 - 3.99516i) q^{94} +(13.5325 + 9.83191i) q^{95} +(14.2641 - 10.3634i) q^{96} +(4.24142 - 13.0537i) q^{97} -13.7902 q^{98} +(2.46827 - 5.50299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 5 q^{3} - 8 q^{4} + 5 q^{5} - 4 q^{6} + 9 q^{7} - 4 q^{8} - 7 q^{9} - 12 q^{10} + 6 q^{11} - 14 q^{12} + 4 q^{13} - q^{14} - 10 q^{15} + 10 q^{16} - 6 q^{17} + 20 q^{18} + 2 q^{19} - 21 q^{20}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/143\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(79\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.620702 + 1.91032i −0.438903 + 1.35080i 0.450131 + 0.892962i \(0.351377\pi\)
−0.889034 + 0.457841i \(0.848623\pi\)
\(3\) 1.77587 1.29025i 1.02530 0.744925i 0.0579388 0.998320i \(-0.481547\pi\)
0.967363 + 0.253395i \(0.0815472\pi\)
\(4\) −1.64603 1.19591i −0.823017 0.597957i
\(5\) −0.772191 2.37656i −0.345334 1.06283i −0.961405 0.275138i \(-0.911276\pi\)
0.616070 0.787691i \(-0.288724\pi\)
\(6\) 1.36250 + 4.19336i 0.556240 + 1.71193i
\(7\) 3.01248 + 2.18870i 1.13861 + 0.827250i 0.986925 0.161179i \(-0.0515296\pi\)
0.151687 + 0.988429i \(0.451530\pi\)
\(8\) 0.0562420 0.0408622i 0.0198846 0.0144470i
\(9\) 0.561939 1.72947i 0.187313 0.576490i
\(10\) 5.01930 1.58724
\(11\) 3.29749 + 0.355767i 0.994230 + 0.107268i
\(12\) −4.46618 −1.28927
\(13\) −0.309017 + 0.951057i −0.0857059 + 0.263776i
\(14\) −6.05098 + 4.39629i −1.61719 + 1.17496i
\(15\) −4.43767 3.22415i −1.14580 0.832473i
\(16\) −1.21431 3.73725i −0.303577 0.934314i
\(17\) −1.47843 4.55015i −0.358573 1.10357i −0.953909 0.300097i \(-0.902981\pi\)
0.595336 0.803477i \(-0.297019\pi\)
\(18\) 2.95505 + 2.14697i 0.696512 + 0.506046i
\(19\) −5.41545 + 3.93455i −1.24239 + 0.902648i −0.997755 0.0669673i \(-0.978668\pi\)
−0.244634 + 0.969616i \(0.578668\pi\)
\(20\) −1.57111 + 4.83537i −0.351310 + 1.08122i
\(21\) 8.17376 1.78366
\(22\) −2.72639 + 6.07845i −0.581268 + 1.29593i
\(23\) −3.70084 −0.771679 −0.385840 0.922566i \(-0.626088\pi\)
−0.385840 + 0.922566i \(0.626088\pi\)
\(24\) 0.0471564 0.145132i 0.00962575 0.0296250i
\(25\) −1.00667 + 0.731388i −0.201334 + 0.146278i
\(26\) −1.62502 1.18065i −0.318692 0.231544i
\(27\) 0.801459 + 2.46664i 0.154241 + 0.474704i
\(28\) −2.34116 7.20534i −0.442437 1.36168i
\(29\) −7.25458 5.27076i −1.34714 0.978755i −0.999149 0.0412582i \(-0.986863\pi\)
−0.347993 0.937497i \(-0.613137\pi\)
\(30\) 8.91365 6.47614i 1.62740 1.18238i
\(31\) −0.439024 + 1.35118i −0.0788511 + 0.242679i −0.982710 0.185152i \(-0.940722\pi\)
0.903859 + 0.427831i \(0.140722\pi\)
\(32\) 8.03213 1.41989
\(33\) 6.31495 3.62278i 1.09929 0.630645i
\(34\) 9.60994 1.64809
\(35\) 2.87536 8.84944i 0.486024 1.49583i
\(36\) −2.99327 + 2.17474i −0.498878 + 0.362456i
\(37\) −1.63048 1.18461i −0.268049 0.194749i 0.445639 0.895213i \(-0.352976\pi\)
−0.713688 + 0.700464i \(0.752976\pi\)
\(38\) −4.15489 12.7874i −0.674013 2.07440i
\(39\) 0.678324 + 2.08767i 0.108619 + 0.334294i
\(40\) −0.140541 0.102109i −0.0222215 0.0161449i
\(41\) −3.08783 + 2.24344i −0.482237 + 0.350366i −0.802191 0.597067i \(-0.796333\pi\)
0.319954 + 0.947433i \(0.396333\pi\)
\(42\) −5.07347 + 15.6145i −0.782853 + 2.40937i
\(43\) 4.32275 0.659214 0.329607 0.944118i \(-0.393084\pi\)
0.329607 + 0.944118i \(0.393084\pi\)
\(44\) −5.00231 4.52912i −0.754127 0.682790i
\(45\) −4.54411 −0.677396
\(46\) 2.29712 7.06981i 0.338692 1.04239i
\(47\) −1.69194 + 1.22927i −0.246795 + 0.179307i −0.704305 0.709897i \(-0.748741\pi\)
0.457510 + 0.889204i \(0.348741\pi\)
\(48\) −6.97845 5.07014i −1.00725 0.731811i
\(49\) 2.12154 + 6.52943i 0.303077 + 0.932776i
\(50\) −0.772347 2.37704i −0.109226 0.336164i
\(51\) −8.49634 6.17295i −1.18973 0.864386i
\(52\) 1.64603 1.19591i 0.228264 0.165843i
\(53\) −0.660210 + 2.03192i −0.0906868 + 0.279105i −0.986106 0.166120i \(-0.946876\pi\)
0.895419 + 0.445225i \(0.146876\pi\)
\(54\) −5.20954 −0.708929
\(55\) −1.70079 8.11140i −0.229334 1.09374i
\(56\) 0.258863 0.0345920
\(57\) −4.54060 + 13.9745i −0.601418 + 1.85097i
\(58\) 14.5718 10.5870i 1.91337 1.39014i
\(59\) 5.98775 + 4.35035i 0.779539 + 0.566368i 0.904840 0.425751i \(-0.139990\pi\)
−0.125302 + 0.992119i \(0.539990\pi\)
\(60\) 3.44874 + 10.6141i 0.445230 + 1.37028i
\(61\) 3.30982 + 10.1866i 0.423779 + 1.30426i 0.904159 + 0.427196i \(0.140499\pi\)
−0.480380 + 0.877060i \(0.659501\pi\)
\(62\) −2.30868 1.67736i −0.293203 0.213025i
\(63\) 5.47812 3.98008i 0.690178 0.501443i
\(64\) −2.55694 + 7.86946i −0.319618 + 0.983683i
\(65\) 2.49886 0.309946
\(66\) 3.00098 + 14.3123i 0.369396 + 1.76172i
\(67\) 1.03598 0.126565 0.0632825 0.997996i \(-0.479843\pi\)
0.0632825 + 0.997996i \(0.479843\pi\)
\(68\) −3.00804 + 9.25779i −0.364778 + 1.12267i
\(69\) −6.57223 + 4.77501i −0.791204 + 0.574843i
\(70\) 15.1206 + 10.9857i 1.80725 + 1.31305i
\(71\) −1.56941 4.83014i −0.186255 0.573233i 0.813713 0.581267i \(-0.197443\pi\)
−0.999968 + 0.00803398i \(0.997443\pi\)
\(72\) −0.0390654 0.120231i −0.00460390 0.0141693i
\(73\) −4.73341 3.43903i −0.554004 0.402508i 0.275256 0.961371i \(-0.411238\pi\)
−0.829260 + 0.558864i \(0.811238\pi\)
\(74\) 3.27503 2.37945i 0.380714 0.276605i
\(75\) −0.844047 + 2.59771i −0.0974621 + 0.299957i
\(76\) 13.6194 1.56225
\(77\) 9.15496 + 8.28895i 1.04330 + 0.944613i
\(78\) −4.40916 −0.499239
\(79\) 3.55898 10.9534i 0.400416 1.23235i −0.524246 0.851567i \(-0.675653\pi\)
0.924663 0.380787i \(-0.124347\pi\)
\(80\) −7.94413 + 5.77175i −0.888181 + 0.645301i
\(81\) 9.01939 + 6.55297i 1.00215 + 0.728108i
\(82\) −2.36907 7.29125i −0.261620 0.805184i
\(83\) 0.539768 + 1.66123i 0.0592472 + 0.182344i 0.976300 0.216422i \(-0.0694386\pi\)
−0.917053 + 0.398766i \(0.869439\pi\)
\(84\) −13.4543 9.77511i −1.46798 1.06655i
\(85\) −9.67208 + 7.02717i −1.04908 + 0.762204i
\(86\) −2.68314 + 8.25786i −0.289331 + 0.890468i
\(87\) −19.6838 −2.11033
\(88\) 0.199995 0.114734i 0.0213195 0.0122306i
\(89\) −4.32737 −0.458700 −0.229350 0.973344i \(-0.573660\pi\)
−0.229350 + 0.973344i \(0.573660\pi\)
\(90\) 2.82054 8.68072i 0.297311 0.915029i
\(91\) −3.01248 + 2.18870i −0.315794 + 0.229438i
\(92\) 6.09171 + 4.42589i 0.635105 + 0.461431i
\(93\) 0.963703 + 2.96597i 0.0999313 + 0.307557i
\(94\) −1.29811 3.99516i −0.133890 0.412070i
\(95\) 13.5325 + 9.83191i 1.38840 + 1.00873i
\(96\) 14.2641 10.3634i 1.45582 1.05771i
\(97\) 4.24142 13.0537i 0.430651 1.32541i −0.466827 0.884348i \(-0.654603\pi\)
0.897478 0.441059i \(-0.145397\pi\)
\(98\) −13.7902 −1.39302
\(99\) 2.46827 5.50299i 0.248071 0.553071i
\(100\) 2.53169 0.253169
\(101\) −5.08483 + 15.6495i −0.505960 + 1.55718i 0.293192 + 0.956054i \(0.405283\pi\)
−0.799151 + 0.601130i \(0.794717\pi\)
\(102\) 17.0660 12.3992i 1.68979 1.22770i
\(103\) −7.40442 5.37962i −0.729579 0.530070i 0.159851 0.987141i \(-0.448899\pi\)
−0.889430 + 0.457071i \(0.848899\pi\)
\(104\) 0.0214825 + 0.0661165i 0.00210654 + 0.00648325i
\(105\) −6.31170 19.4254i −0.615959 1.89573i
\(106\) −3.47183 2.52243i −0.337214 0.245000i
\(107\) 7.59770 5.52005i 0.734497 0.533644i −0.156486 0.987680i \(-0.550016\pi\)
0.890983 + 0.454037i \(0.150016\pi\)
\(108\) 1.63066 5.01864i 0.156910 0.482919i
\(109\) 4.22727 0.404899 0.202449 0.979293i \(-0.435110\pi\)
0.202449 + 0.979293i \(0.435110\pi\)
\(110\) 16.5511 + 1.78570i 1.57808 + 0.170260i
\(111\) −4.42396 −0.419904
\(112\) 4.52164 13.9162i 0.427255 1.31495i
\(113\) 13.1632 9.56364i 1.23829 0.899672i 0.240809 0.970573i \(-0.422587\pi\)
0.997483 + 0.0709007i \(0.0225874\pi\)
\(114\) −23.8776 17.3481i −2.23634 1.62479i
\(115\) 2.85776 + 8.79527i 0.266487 + 0.820163i
\(116\) 5.63791 + 17.3517i 0.523467 + 1.61106i
\(117\) 1.47117 + 1.06887i 0.136010 + 0.0988171i
\(118\) −12.0272 + 8.73827i −1.10719 + 0.804423i
\(119\) 5.50515 16.9431i 0.504656 1.55317i
\(120\) −0.381329 −0.0348104
\(121\) 10.7469 + 2.34627i 0.976987 + 0.213298i
\(122\) −21.5141 −1.94779
\(123\) −2.58900 + 7.96812i −0.233442 + 0.718461i
\(124\) 2.33854 1.69905i 0.210007 0.152579i
\(125\) −7.59258 5.51633i −0.679101 0.493396i
\(126\) 4.20297 + 12.9354i 0.374431 + 1.15238i
\(127\) −5.64177 17.3636i −0.500626 1.54077i −0.808002 0.589180i \(-0.799451\pi\)
0.307376 0.951588i \(-0.400549\pi\)
\(128\) −0.449869 0.326849i −0.0397632 0.0288896i
\(129\) 7.67667 5.57742i 0.675893 0.491065i
\(130\) −1.55105 + 4.77364i −0.136036 + 0.418676i
\(131\) 2.65205 0.231711 0.115855 0.993266i \(-0.463039\pi\)
0.115855 + 0.993266i \(0.463039\pi\)
\(132\) −14.7272 1.58892i −1.28184 0.138298i
\(133\) −24.9255 −2.16131
\(134\) −0.643034 + 1.97905i −0.0555497 + 0.170964i
\(135\) 5.24323 3.80943i 0.451265 0.327863i
\(136\) −0.269079 0.195498i −0.0230734 0.0167638i
\(137\) 2.77703 + 8.54682i 0.237258 + 0.730204i 0.996814 + 0.0797626i \(0.0254162\pi\)
−0.759556 + 0.650442i \(0.774584\pi\)
\(138\) −5.04241 15.5190i −0.429239 1.32106i
\(139\) 16.5432 + 12.0193i 1.40317 + 1.01947i 0.994271 + 0.106888i \(0.0340888\pi\)
0.408904 + 0.912578i \(0.365911\pi\)
\(140\) −15.3161 + 11.1278i −1.29445 + 0.940471i
\(141\) −1.41861 + 4.36605i −0.119469 + 0.367688i
\(142\) 10.2013 0.856072
\(143\) −1.35733 + 3.02616i −0.113506 + 0.253060i
\(144\) −7.14583 −0.595486
\(145\) −6.92435 + 21.3110i −0.575036 + 1.76978i
\(146\) 9.50769 6.90774i 0.786862 0.571689i
\(147\) 12.1922 + 8.85814i 1.00559 + 0.730607i
\(148\) 1.26713 + 3.89982i 0.104157 + 0.320563i
\(149\) 6.19656 + 19.0711i 0.507642 + 1.56236i 0.796283 + 0.604925i \(0.206797\pi\)
−0.288640 + 0.957438i \(0.593203\pi\)
\(150\) −4.43856 3.22481i −0.362407 0.263304i
\(151\) 3.77602 2.74344i 0.307288 0.223258i −0.423444 0.905922i \(-0.639179\pi\)
0.730732 + 0.682664i \(0.239179\pi\)
\(152\) −0.143801 + 0.442574i −0.0116638 + 0.0358975i
\(153\) −8.70014 −0.703365
\(154\) −21.5171 + 12.3440i −1.73390 + 0.994707i
\(155\) 3.55016 0.285156
\(156\) 1.38012 4.24759i 0.110498 0.340079i
\(157\) 1.79264 1.30243i 0.143068 0.103945i −0.513949 0.857821i \(-0.671818\pi\)
0.657017 + 0.753876i \(0.271818\pi\)
\(158\) 18.7155 + 13.5976i 1.48892 + 1.08177i
\(159\) 1.44923 + 4.46026i 0.114931 + 0.353722i
\(160\) −6.20234 19.0888i −0.490338 1.50910i
\(161\) −11.1487 8.10003i −0.878643 0.638371i
\(162\) −18.1166 + 13.1625i −1.42338 + 1.03414i
\(163\) −2.54510 + 7.83300i −0.199347 + 0.613528i 0.800551 + 0.599265i \(0.204540\pi\)
−0.999898 + 0.0142633i \(0.995460\pi\)
\(164\) 7.76562 0.606393
\(165\) −13.4861 12.2104i −1.04989 0.950577i
\(166\) −3.50853 −0.272315
\(167\) −1.87514 + 5.77110i −0.145103 + 0.446581i −0.997024 0.0770888i \(-0.975438\pi\)
0.851921 + 0.523670i \(0.175438\pi\)
\(168\) 0.459709 0.333998i 0.0354673 0.0257685i
\(169\) −0.809017 0.587785i −0.0622321 0.0452143i
\(170\) −7.42071 22.8386i −0.569142 1.75164i
\(171\) 3.76154 + 11.5768i 0.287652 + 0.885302i
\(172\) −7.11540 5.16964i −0.542544 0.394181i
\(173\) −2.76776 + 2.01090i −0.210429 + 0.152886i −0.688008 0.725703i \(-0.741514\pi\)
0.477579 + 0.878589i \(0.341514\pi\)
\(174\) 12.2178 37.6025i 0.926227 2.85064i
\(175\) −4.63336 −0.350249
\(176\) −2.67457 12.7556i −0.201604 0.961487i
\(177\) 16.2465 1.22116
\(178\) 2.68601 8.26668i 0.201325 0.619614i
\(179\) 21.1505 15.3667i 1.58086 1.14856i 0.665158 0.746702i \(-0.268364\pi\)
0.915701 0.401859i \(-0.131636\pi\)
\(180\) 7.47976 + 5.43436i 0.557508 + 0.405054i
\(181\) 5.09611 + 15.6842i 0.378791 + 1.16580i 0.940885 + 0.338725i \(0.109996\pi\)
−0.562095 + 0.827073i \(0.690004\pi\)
\(182\) −2.31127 7.11335i −0.171323 0.527277i
\(183\) 19.0210 + 13.8196i 1.40607 + 1.02157i
\(184\) −0.208143 + 0.151225i −0.0153445 + 0.0111484i
\(185\) −1.55626 + 4.78967i −0.114418 + 0.352143i
\(186\) −6.26414 −0.459309
\(187\) −3.25633 15.5301i −0.238126 1.13567i
\(188\) 4.25509 0.310334
\(189\) −2.98434 + 9.18485i −0.217079 + 0.668100i
\(190\) −27.1818 + 19.7487i −1.97197 + 1.43272i
\(191\) 9.58360 + 6.96289i 0.693445 + 0.503817i 0.877791 0.479044i \(-0.159017\pi\)
−0.184346 + 0.982861i \(0.559017\pi\)
\(192\) 5.61275 + 17.2743i 0.405065 + 1.24666i
\(193\) −7.45016 22.9292i −0.536274 1.65048i −0.740879 0.671638i \(-0.765591\pi\)
0.204605 0.978845i \(-0.434409\pi\)
\(194\) 22.3042 + 16.2050i 1.60135 + 1.16345i
\(195\) 4.43767 3.22415i 0.317788 0.230886i
\(196\) 4.31651 13.2849i 0.308322 0.948918i
\(197\) −7.32955 −0.522209 −0.261104 0.965311i \(-0.584087\pi\)
−0.261104 + 0.965311i \(0.584087\pi\)
\(198\) 8.98043 + 8.13092i 0.638211 + 0.577839i
\(199\) 3.03177 0.214916 0.107458 0.994210i \(-0.465729\pi\)
0.107458 + 0.994210i \(0.465729\pi\)
\(200\) −0.0267310 + 0.0822695i −0.00189017 + 0.00581733i
\(201\) 1.83977 1.33667i 0.129767 0.0942814i
\(202\) −26.7395 19.4274i −1.88138 1.36690i
\(203\) −10.3182 31.7561i −0.724196 2.22884i
\(204\) 6.60295 + 20.3218i 0.462299 + 1.42281i
\(205\) 7.71605 + 5.60604i 0.538912 + 0.391543i
\(206\) 14.8728 10.8057i 1.03623 0.752868i
\(207\) −2.07965 + 6.40050i −0.144545 + 0.444865i
\(208\) 3.92958 0.272467
\(209\) −19.2572 + 11.0475i −1.33205 + 0.764172i
\(210\) 41.0265 2.83110
\(211\) −2.40547 + 7.40328i −0.165600 + 0.509663i −0.999080 0.0428860i \(-0.986345\pi\)
0.833480 + 0.552549i \(0.186345\pi\)
\(212\) 3.51673 2.55505i 0.241530 0.175482i
\(213\) −9.01916 6.55280i −0.617983 0.448991i
\(214\) 5.82918 + 17.9404i 0.398475 + 1.22638i
\(215\) −3.33799 10.2733i −0.227649 0.700632i
\(216\) 0.145868 + 0.105979i 0.00992505 + 0.00721097i
\(217\) −4.27987 + 3.10951i −0.290537 + 0.211087i
\(218\) −2.62387 + 8.07545i −0.177711 + 0.546938i
\(219\) −12.8431 −0.867859
\(220\) −6.90097 + 15.3856i −0.465264 + 1.03730i
\(221\) 4.78431 0.321828
\(222\) 2.74596 8.45120i 0.184297 0.567208i
\(223\) −7.98218 + 5.79939i −0.534526 + 0.388356i −0.822048 0.569418i \(-0.807169\pi\)
0.287522 + 0.957774i \(0.407169\pi\)
\(224\) 24.1967 + 17.5799i 1.61671 + 1.17461i
\(225\) 0.699227 + 2.15200i 0.0466151 + 0.143467i
\(226\) 10.0992 + 31.0822i 0.671790 + 2.06756i
\(227\) −14.6099 10.6147i −0.969694 0.704524i −0.0143124 0.999898i \(-0.504556\pi\)
−0.955382 + 0.295373i \(0.904556\pi\)
\(228\) 24.1863 17.5724i 1.60178 1.16376i
\(229\) 2.74537 8.44938i 0.181419 0.558351i −0.818449 0.574579i \(-0.805166\pi\)
0.999868 + 0.0162282i \(0.00516583\pi\)
\(230\) −18.5756 −1.22484
\(231\) 26.9529 + 2.90795i 1.77337 + 0.191329i
\(232\) −0.623387 −0.0409274
\(233\) 2.32449 7.15405i 0.152282 0.468677i −0.845593 0.533828i \(-0.820753\pi\)
0.997875 + 0.0651510i \(0.0207529\pi\)
\(234\) −2.95505 + 2.14697i −0.193178 + 0.140352i
\(235\) 4.22793 + 3.07177i 0.275800 + 0.200380i
\(236\) −4.65339 14.3217i −0.302910 0.932261i
\(237\) −7.81231 24.0438i −0.507464 1.56181i
\(238\) 28.9498 + 21.0332i 1.87654 + 1.36338i
\(239\) −16.4100 + 11.9226i −1.06148 + 0.771208i −0.974361 0.224990i \(-0.927765\pi\)
−0.0871157 + 0.996198i \(0.527765\pi\)
\(240\) −6.66079 + 20.4998i −0.429952 + 1.32326i
\(241\) 3.18069 0.204886 0.102443 0.994739i \(-0.467334\pi\)
0.102443 + 0.994739i \(0.467334\pi\)
\(242\) −11.1527 + 19.0737i −0.716925 + 1.22610i
\(243\) 16.6915 1.07076
\(244\) 6.73419 20.7257i 0.431112 1.32683i
\(245\) 13.8793 10.0839i 0.886719 0.644239i
\(246\) −13.6147 9.89166i −0.868042 0.630669i
\(247\) −2.06852 6.36624i −0.131617 0.405074i
\(248\) 0.0305205 + 0.0939324i 0.00193805 + 0.00596472i
\(249\) 3.10196 + 2.25371i 0.196579 + 0.142823i
\(250\) 15.2507 11.0803i 0.964540 0.700779i
\(251\) −4.63052 + 14.2513i −0.292276 + 0.899533i 0.691847 + 0.722044i \(0.256797\pi\)
−0.984123 + 0.177489i \(0.943203\pi\)
\(252\) −13.7770 −0.867870
\(253\) −12.2035 1.31664i −0.767227 0.0827763i
\(254\) 36.6719 2.30100
\(255\) −8.10959 + 24.9588i −0.507842 + 1.56298i
\(256\) −12.4847 + 9.07067i −0.780294 + 0.566917i
\(257\) −5.24407 3.81004i −0.327116 0.237664i 0.412090 0.911143i \(-0.364799\pi\)
−0.739206 + 0.673479i \(0.764799\pi\)
\(258\) 5.88977 + 18.1268i 0.366681 + 1.12853i
\(259\) −2.31903 7.13724i −0.144097 0.443486i
\(260\) −4.11321 2.98842i −0.255091 0.185334i
\(261\) −13.1922 + 9.58473i −0.816579 + 0.593280i
\(262\) −1.64613 + 5.06628i −0.101698 + 0.312996i
\(263\) −7.61604 −0.469625 −0.234813 0.972041i \(-0.575448\pi\)
−0.234813 + 0.972041i \(0.575448\pi\)
\(264\) 0.207131 0.461796i 0.0127480 0.0284216i
\(265\) 5.33878 0.327959
\(266\) 15.4713 47.6158i 0.948606 2.91951i
\(267\) −7.68486 + 5.58338i −0.470306 + 0.341697i
\(268\) −1.70526 1.23894i −0.104165 0.0756804i
\(269\) −4.93817 15.1981i −0.301085 0.926646i −0.981109 0.193456i \(-0.938030\pi\)
0.680024 0.733190i \(-0.261970\pi\)
\(270\) 4.02276 + 12.3808i 0.244817 + 0.753471i
\(271\) −24.0038 17.4398i −1.45813 1.05939i −0.983846 0.179018i \(-0.942708\pi\)
−0.474282 0.880373i \(-0.657292\pi\)
\(272\) −15.2098 + 11.0506i −0.922230 + 0.670039i
\(273\) −2.52583 + 7.77370i −0.152870 + 0.470486i
\(274\) −18.0509 −1.09050
\(275\) −3.57969 + 2.05360i −0.215863 + 0.123837i
\(276\) 16.5286 0.994906
\(277\) 4.24920 13.0777i 0.255310 0.785762i −0.738459 0.674298i \(-0.764446\pi\)
0.993769 0.111464i \(-0.0355539\pi\)
\(278\) −33.2292 + 24.1424i −1.99296 + 1.44797i
\(279\) 2.09012 + 1.51856i 0.125132 + 0.0909137i
\(280\) −0.199892 0.615204i −0.0119458 0.0367654i
\(281\) 0.642463 + 1.97730i 0.0383261 + 0.117956i 0.968389 0.249444i \(-0.0802480\pi\)
−0.930063 + 0.367400i \(0.880248\pi\)
\(282\) −7.46003 5.42003i −0.444238 0.322758i
\(283\) 1.05800 0.768682i 0.0628915 0.0456934i −0.555895 0.831252i \(-0.687624\pi\)
0.618787 + 0.785559i \(0.287624\pi\)
\(284\) −3.19314 + 9.82746i −0.189478 + 0.583152i
\(285\) 36.7175 2.17496
\(286\) −4.93845 4.47129i −0.292016 0.264393i
\(287\) −14.2122 −0.838921
\(288\) 4.51356 13.8913i 0.265964 0.818554i
\(289\) −4.76484 + 3.46186i −0.280285 + 0.203639i
\(290\) −36.4129 26.4555i −2.13824 1.55352i
\(291\) −9.31035 28.6543i −0.545782 1.67974i
\(292\) 3.67858 + 11.3215i 0.215273 + 0.662541i
\(293\) 3.49936 + 2.54243i 0.204435 + 0.148530i 0.685292 0.728268i \(-0.259675\pi\)
−0.480858 + 0.876799i \(0.659675\pi\)
\(294\) −24.4896 + 17.7928i −1.42826 + 1.03769i
\(295\) 5.71519 17.5895i 0.332751 1.02410i
\(296\) −0.140107 −0.00814356
\(297\) 1.76525 + 8.41884i 0.102430 + 0.488510i
\(298\) −40.2781 −2.33325
\(299\) 1.14362 3.51971i 0.0661374 0.203550i
\(300\) 4.49596 3.26651i 0.259575 0.188592i
\(301\) 13.0222 + 9.46120i 0.750588 + 0.545334i
\(302\) 2.89708 + 8.91629i 0.166708 + 0.513075i
\(303\) 11.1617 + 34.3523i 0.641224 + 1.97349i
\(304\) 21.2804 + 15.4611i 1.22052 + 0.886758i
\(305\) 21.6532 15.7320i 1.23986 0.900809i
\(306\) 5.40019 16.6201i 0.308709 0.950107i
\(307\) 12.6012 0.719186 0.359593 0.933109i \(-0.382915\pi\)
0.359593 + 0.933109i \(0.382915\pi\)
\(308\) −5.15652 24.5924i −0.293820 1.40128i
\(309\) −20.0904 −1.14290
\(310\) −2.20359 + 6.78196i −0.125156 + 0.385190i
\(311\) −2.00166 + 1.45429i −0.113504 + 0.0824655i −0.643089 0.765791i \(-0.722348\pi\)
0.529585 + 0.848257i \(0.322348\pi\)
\(312\) 0.123457 + 0.0896967i 0.00698937 + 0.00507808i
\(313\) 8.82902 + 27.1729i 0.499046 + 1.53591i 0.810555 + 0.585662i \(0.199166\pi\)
−0.311509 + 0.950243i \(0.600834\pi\)
\(314\) 1.37537 + 4.23295i 0.0776165 + 0.238879i
\(315\) −13.6891 9.94568i −0.771291 0.560376i
\(316\) −18.9575 + 13.7734i −1.06644 + 0.774817i
\(317\) 0.853586 2.62707i 0.0479422 0.147551i −0.924220 0.381861i \(-0.875283\pi\)
0.972162 + 0.234310i \(0.0752832\pi\)
\(318\) −9.42009 −0.528252
\(319\) −22.0467 19.9612i −1.23438 1.11761i
\(320\) 20.6767 1.15586
\(321\) 6.37032 19.6058i 0.355557 1.09429i
\(322\) 22.3937 16.2700i 1.24795 0.906691i
\(323\) 25.9092 + 18.8241i 1.44163 + 1.04740i
\(324\) −7.00943 21.5728i −0.389413 1.19849i
\(325\) −0.384514 1.18341i −0.0213290 0.0656438i
\(326\) −13.3838 9.72392i −0.741262 0.538558i
\(327\) 7.50710 5.45422i 0.415143 0.301619i
\(328\) −0.0819937 + 0.252351i −0.00452735 + 0.0139337i
\(329\) −7.78744 −0.429335
\(330\) 31.6966 18.1838i 1.74484 1.00099i
\(331\) −9.21192 −0.506333 −0.253166 0.967423i \(-0.581472\pi\)
−0.253166 + 0.967423i \(0.581472\pi\)
\(332\) 1.09822 3.37996i 0.0602725 0.185500i
\(333\) −2.96497 + 2.15418i −0.162480 + 0.118048i
\(334\) −9.86077 7.16427i −0.539557 0.392011i
\(335\) −0.799973 2.46206i −0.0437072 0.134517i
\(336\) −9.92545 30.5474i −0.541478 1.66650i
\(337\) −4.80726 3.49268i −0.261868 0.190258i 0.449102 0.893480i \(-0.351744\pi\)
−0.710970 + 0.703222i \(0.751744\pi\)
\(338\) 1.62502 1.18065i 0.0883894 0.0642186i
\(339\) 11.0368 33.9677i 0.599435 1.84487i
\(340\) 24.3245 1.31918
\(341\) −1.92838 + 4.29930i −0.104428 + 0.232820i
\(342\) −24.4503 −1.32212
\(343\) 0.154819 0.476484i 0.00835944 0.0257277i
\(344\) 0.243120 0.176637i 0.0131082 0.00952364i
\(345\) 16.4231 + 11.9321i 0.884190 + 0.642402i
\(346\) −2.12351 6.53548i −0.114160 0.351350i
\(347\) 3.07132 + 9.45256i 0.164877 + 0.507440i 0.999027 0.0440976i \(-0.0140412\pi\)
−0.834150 + 0.551538i \(0.814041\pi\)
\(348\) 32.4002 + 23.5401i 1.73683 + 1.26188i
\(349\) −10.7060 + 7.77835i −0.573078 + 0.416366i −0.836222 0.548391i \(-0.815241\pi\)
0.263144 + 0.964757i \(0.415241\pi\)
\(350\) 2.87594 8.85123i 0.153725 0.473118i
\(351\) −2.59357 −0.138435
\(352\) 26.4859 + 2.85757i 1.41170 + 0.152309i
\(353\) 26.8587 1.42955 0.714773 0.699357i \(-0.246530\pi\)
0.714773 + 0.699357i \(0.246530\pi\)
\(354\) −10.0843 + 31.0361i −0.535972 + 1.64955i
\(355\) −10.2672 + 7.45959i −0.544929 + 0.395914i
\(356\) 7.12300 + 5.17516i 0.377518 + 0.274283i
\(357\) −12.0844 37.1918i −0.639572 1.96840i
\(358\) 16.2273 + 49.9424i 0.857638 + 2.63954i
\(359\) 21.3232 + 15.4922i 1.12540 + 0.817649i 0.985018 0.172449i \(-0.0551680\pi\)
0.140379 + 0.990098i \(0.455168\pi\)
\(360\) −0.255570 + 0.185682i −0.0134697 + 0.00978632i
\(361\) 7.97504 24.5447i 0.419739 1.29182i
\(362\) −33.1251 −1.74102
\(363\) 22.1124 9.69943i 1.16060 0.509088i
\(364\) 7.57614 0.397098
\(365\) −4.51795 + 13.9048i −0.236480 + 0.727812i
\(366\) −38.2063 + 27.7585i −1.99707 + 1.45096i
\(367\) −2.30166 1.67225i −0.120146 0.0872908i 0.526090 0.850429i \(-0.323658\pi\)
−0.646235 + 0.763138i \(0.723658\pi\)
\(368\) 4.49396 + 13.8310i 0.234264 + 0.720990i
\(369\) 2.14479 + 6.60097i 0.111653 + 0.343633i
\(370\) −8.18385 5.94591i −0.425458 0.309113i
\(371\) −6.43612 + 4.67612i −0.334147 + 0.242772i
\(372\) 1.96076 6.03460i 0.101661 0.312879i
\(373\) −17.1648 −0.888758 −0.444379 0.895839i \(-0.646576\pi\)
−0.444379 + 0.895839i \(0.646576\pi\)
\(374\) 31.6887 + 3.41890i 1.63858 + 0.176787i
\(375\) −20.6009 −1.06383
\(376\) −0.0449276 + 0.138273i −0.00231696 + 0.00713088i
\(377\) 7.25458 5.27076i 0.373630 0.271458i
\(378\) −15.6937 11.4021i −0.807195 0.586461i
\(379\) 0.392027 + 1.20654i 0.0201371 + 0.0619756i 0.960620 0.277865i \(-0.0896268\pi\)
−0.940483 + 0.339841i \(0.889627\pi\)
\(380\) −10.5168 32.3673i −0.539499 1.66041i
\(381\) −32.4224 23.5562i −1.66105 1.20682i
\(382\) −19.2499 + 13.9859i −0.984913 + 0.715581i
\(383\) −4.61002 + 14.1882i −0.235561 + 0.724982i 0.761486 + 0.648182i \(0.224470\pi\)
−0.997046 + 0.0768002i \(0.975530\pi\)
\(384\) −1.22063 −0.0622898
\(385\) 12.6298 28.1580i 0.643674 1.43506i
\(386\) 48.4266 2.46485
\(387\) 2.42912 7.47607i 0.123479 0.380030i
\(388\) −22.5927 + 16.4145i −1.14697 + 0.833322i
\(389\) −24.6712 17.9247i −1.25088 0.908818i −0.252608 0.967569i \(-0.581288\pi\)
−0.998273 + 0.0587505i \(0.981288\pi\)
\(390\) 3.40471 + 10.4786i 0.172404 + 0.530606i
\(391\) 5.47145 + 16.8394i 0.276703 + 0.851605i
\(392\) 0.386127 + 0.280538i 0.0195024 + 0.0141693i
\(393\) 4.70971 3.42181i 0.237574 0.172607i
\(394\) 4.54947 14.0018i 0.229199 0.705401i
\(395\) −28.7796 −1.44806
\(396\) −10.6440 + 6.10626i −0.534879 + 0.306851i
\(397\) 20.3234 1.02000 0.510002 0.860173i \(-0.329645\pi\)
0.510002 + 0.860173i \(0.329645\pi\)
\(398\) −1.88182 + 5.79166i −0.0943273 + 0.290310i
\(399\) −44.2645 + 32.1601i −2.21600 + 1.61002i
\(400\) 3.95579 + 2.87405i 0.197790 + 0.143703i
\(401\) 3.68041 + 11.3271i 0.183791 + 0.565650i 0.999925 0.0122120i \(-0.00388731\pi\)
−0.816135 + 0.577862i \(0.803887\pi\)
\(402\) 1.41152 + 4.34423i 0.0704005 + 0.216670i
\(403\) −1.14938 0.835074i −0.0572547 0.0415980i
\(404\) 27.0853 19.6786i 1.34754 0.979047i
\(405\) 8.60883 26.4952i 0.427776 1.31656i
\(406\) 67.0691 3.32858
\(407\) −4.95503 4.48631i −0.245612 0.222378i
\(408\) −0.730092 −0.0361449
\(409\) −4.91465 + 15.1257i −0.243014 + 0.747919i 0.752943 + 0.658085i \(0.228633\pi\)
−0.995957 + 0.0898334i \(0.971367\pi\)
\(410\) −15.4987 + 11.2605i −0.765427 + 0.556115i
\(411\) 15.9592 + 11.5950i 0.787209 + 0.571941i
\(412\) 5.75436 + 17.7101i 0.283497 + 0.872513i
\(413\) 8.51639 + 26.2107i 0.419064 + 1.28975i
\(414\) −10.9362 7.94560i −0.537484 0.390505i
\(415\) 3.53122 2.56558i 0.173341 0.125939i
\(416\) −2.48206 + 7.63901i −0.121693 + 0.374533i
\(417\) 44.8865 2.19810
\(418\) −9.15136 43.6446i −0.447608 2.13473i
\(419\) −28.9938 −1.41644 −0.708220 0.705992i \(-0.750501\pi\)
−0.708220 + 0.705992i \(0.750501\pi\)
\(420\) −12.8418 + 39.5231i −0.626618 + 1.92853i
\(421\) −8.08489 + 5.87402i −0.394033 + 0.286282i −0.767106 0.641520i \(-0.778304\pi\)
0.373073 + 0.927802i \(0.378304\pi\)
\(422\) −12.6496 9.19047i −0.615772 0.447385i
\(423\) 1.17521 + 3.61693i 0.0571408 + 0.175861i
\(424\) 0.0458971 + 0.141257i 0.00222896 + 0.00686003i
\(425\) 4.81622 + 3.49919i 0.233621 + 0.169736i
\(426\) 18.1162 13.1622i 0.877732 0.637710i
\(427\) −12.3245 + 37.9311i −0.596427 + 1.83561i
\(428\) −19.1076 −0.923600
\(429\) 1.49404 + 7.12538i 0.0721330 + 0.344017i
\(430\) 21.6972 1.04633
\(431\) 8.81274 27.1228i 0.424495 1.30646i −0.478982 0.877825i \(-0.658994\pi\)
0.903477 0.428636i \(-0.141006\pi\)
\(432\) 8.24523 5.99051i 0.396699 0.288219i
\(433\) 0.808774 + 0.587609i 0.0388672 + 0.0282387i 0.607049 0.794664i \(-0.292353\pi\)
−0.568182 + 0.822903i \(0.692353\pi\)
\(434\) −3.28365 10.1060i −0.157620 0.485105i
\(435\) 15.1997 + 46.7797i 0.728768 + 2.24292i
\(436\) −6.95822 5.05545i −0.333239 0.242112i
\(437\) 20.0417 14.5612i 0.958726 0.696555i
\(438\) 7.97177 24.5346i 0.380906 1.17231i
\(439\) −18.2738 −0.872163 −0.436082 0.899907i \(-0.643634\pi\)
−0.436082 + 0.899907i \(0.643634\pi\)
\(440\) −0.427105 0.386703i −0.0203615 0.0184354i
\(441\) 12.4846 0.594506
\(442\) −2.96963 + 9.13959i −0.141251 + 0.434726i
\(443\) 24.7637 17.9918i 1.17656 0.854818i 0.184777 0.982780i \(-0.440844\pi\)
0.991779 + 0.127962i \(0.0408436\pi\)
\(444\) 7.28199 + 5.29068i 0.345588 + 0.251084i
\(445\) 3.34155 + 10.2842i 0.158405 + 0.487520i
\(446\) −6.12417 18.8482i −0.289988 0.892490i
\(447\) 35.6107 + 25.8727i 1.68433 + 1.22374i
\(448\) −24.9266 + 18.1103i −1.17767 + 0.855629i
\(449\) −3.93439 + 12.1088i −0.185676 + 0.571451i −0.999959 0.00901637i \(-0.997130\pi\)
0.814284 + 0.580467i \(0.197130\pi\)
\(450\) −4.54503 −0.214255
\(451\) −10.9802 + 6.29916i −0.517038 + 0.296616i
\(452\) −33.1044 −1.55710
\(453\) 3.16602 9.74401i 0.148753 0.457814i
\(454\) 29.3460 21.3211i 1.37727 1.00065i
\(455\) 7.52778 + 5.46925i 0.352908 + 0.256403i
\(456\) 0.315658 + 0.971496i 0.0147820 + 0.0454945i
\(457\) 1.81411 + 5.58326i 0.0848606 + 0.261174i 0.984479 0.175503i \(-0.0561552\pi\)
−0.899618 + 0.436677i \(0.856155\pi\)
\(458\) 14.4370 + 10.4891i 0.674597 + 0.490123i
\(459\) 10.0387 7.29352i 0.468565 0.340432i
\(460\) 5.81442 17.8950i 0.271099 0.834356i
\(461\) 21.3679 0.995202 0.497601 0.867406i \(-0.334214\pi\)
0.497601 + 0.867406i \(0.334214\pi\)
\(462\) −22.2848 + 49.6837i −1.03678 + 2.31150i
\(463\) −36.3173 −1.68781 −0.843905 0.536493i \(-0.819749\pi\)
−0.843905 + 0.536493i \(0.819749\pi\)
\(464\) −10.8889 + 33.5125i −0.505504 + 1.55578i
\(465\) 6.30465 4.58059i 0.292371 0.212420i
\(466\) 12.2237 + 8.88106i 0.566254 + 0.411407i
\(467\) −3.17350 9.76702i −0.146852 0.451964i 0.850393 0.526149i \(-0.176364\pi\)
−0.997244 + 0.0741850i \(0.976364\pi\)
\(468\) −1.14333 3.51880i −0.0528503 0.162656i
\(469\) 3.12087 + 2.26744i 0.144108 + 0.104701i
\(470\) −8.49236 + 6.17006i −0.391723 + 0.284604i
\(471\) 1.50305 4.62591i 0.0692568 0.213150i
\(472\) 0.514528 0.0236831
\(473\) 14.2542 + 1.53789i 0.655410 + 0.0707124i
\(474\) 50.7806 2.33243
\(475\) 2.57388 7.92159i 0.118098 0.363467i
\(476\) −29.3242 + 21.3052i −1.34407 + 0.976524i
\(477\) 3.14314 + 2.28363i 0.143915 + 0.104560i
\(478\) −12.5903 38.7489i −0.575865 1.77233i
\(479\) −1.80992 5.57036i −0.0826973 0.254516i 0.901155 0.433496i \(-0.142720\pi\)
−0.983853 + 0.178980i \(0.942720\pi\)
\(480\) −35.6439 25.8968i −1.62691 1.18202i
\(481\) 1.63048 1.18461i 0.0743433 0.0540136i
\(482\) −1.97426 + 6.07615i −0.0899251 + 0.276761i
\(483\) −30.2498 −1.37641
\(484\) −14.8838 16.7144i −0.676534 0.759744i
\(485\) −34.2982 −1.55740
\(486\) −10.3605 + 31.8862i −0.469960 + 1.44639i
\(487\) 9.44177 6.85985i 0.427848 0.310849i −0.352940 0.935646i \(-0.614818\pi\)
0.780788 + 0.624796i \(0.214818\pi\)
\(488\) 0.602397 + 0.437667i 0.0272692 + 0.0198122i
\(489\) 5.58675 + 17.1942i 0.252641 + 0.777550i
\(490\) 10.6487 + 32.7732i 0.481057 + 1.48054i
\(491\) −5.73719 4.16832i −0.258916 0.188113i 0.450753 0.892649i \(-0.351156\pi\)
−0.709669 + 0.704535i \(0.751156\pi\)
\(492\) 13.7908 10.0196i 0.621736 0.451718i
\(493\) −13.2573 + 40.8019i −0.597081 + 1.83763i
\(494\) 13.4455 0.604942
\(495\) −14.9842 1.61664i −0.673488 0.0726628i
\(496\) 5.58280 0.250675
\(497\) 5.84391 17.9857i 0.262135 0.806769i
\(498\) −6.23071 + 4.52688i −0.279205 + 0.202854i
\(499\) −17.2359 12.5226i −0.771585 0.560589i 0.130857 0.991401i \(-0.458227\pi\)
−0.902442 + 0.430812i \(0.858227\pi\)
\(500\) 5.90059 + 18.1601i 0.263882 + 0.812146i
\(501\) 4.11613 + 12.6682i 0.183895 + 0.565971i
\(502\) −24.3504 17.6916i −1.08681 0.789615i
\(503\) 7.83054 5.68922i 0.349146 0.253670i −0.399364 0.916792i \(-0.630769\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(504\) 0.145465 0.447696i 0.00647954 0.0199420i
\(505\) 41.1184 1.82975
\(506\) 10.0899 22.4954i 0.448552 1.00004i
\(507\) −2.19510 −0.0974879
\(508\) −11.4788 + 35.3281i −0.509289 + 1.56743i
\(509\) 8.58768 6.23931i 0.380642 0.276553i −0.380968 0.924588i \(-0.624409\pi\)
0.761610 + 0.648036i \(0.224409\pi\)
\(510\) −42.6457 30.9839i −1.88838 1.37199i
\(511\) −6.73234 20.7200i −0.297821 0.916600i
\(512\) −9.92231 30.5377i −0.438508 1.34959i
\(513\) −14.0454 10.2046i −0.620118 0.450542i
\(514\) 10.5334 7.65298i 0.464609 0.337558i
\(515\) −7.06737 + 21.7511i −0.311426 + 0.958469i
\(516\) −19.3062 −0.849907
\(517\) −6.01649 + 3.45156i −0.264605 + 0.151799i
\(518\) 15.0739 0.662308
\(519\) −2.32064 + 7.14219i −0.101865 + 0.313508i
\(520\) 0.140541 0.102109i 0.00616313 0.00447778i
\(521\) 8.19142 + 5.95141i 0.358872 + 0.260736i 0.752582 0.658499i \(-0.228808\pi\)
−0.393709 + 0.919235i \(0.628808\pi\)
\(522\) −10.1215 31.1507i −0.443005 1.36343i
\(523\) 0.335960 + 1.03398i 0.0146905 + 0.0452127i 0.958133 0.286323i \(-0.0924332\pi\)
−0.943443 + 0.331536i \(0.892433\pi\)
\(524\) −4.36537 3.17163i −0.190702 0.138553i
\(525\) −8.22827 + 5.97819i −0.359111 + 0.260910i
\(526\) 4.72729 14.5491i 0.206120 0.634371i
\(527\) 6.79713 0.296088
\(528\) −21.2076 19.2014i −0.922940 0.835634i
\(529\) −9.30376 −0.404511
\(530\) −3.31379 + 10.1988i −0.143942 + 0.443008i
\(531\) 10.8886 7.91100i 0.472523 0.343308i
\(532\) 41.0282 + 29.8087i 1.77880 + 1.29237i
\(533\) −1.17944 3.62996i −0.0510874 0.157231i
\(534\) −5.89606 18.1462i −0.255147 0.785263i
\(535\) −18.9856 13.7938i −0.820819 0.596360i
\(536\) 0.0582655 0.0423324i 0.00251669 0.00182848i
\(537\) 17.7337 54.5787i 0.765265 2.35524i
\(538\) 32.0985 1.38386
\(539\) 4.67280 + 22.2855i 0.201272 + 0.959905i
\(540\) −13.1863 −0.567447
\(541\) −4.47556 + 13.7744i −0.192420 + 0.592207i 0.807577 + 0.589762i \(0.200778\pi\)
−0.999997 + 0.00244499i \(0.999222\pi\)
\(542\) 48.2149 35.0301i 2.07101 1.50467i
\(543\) 29.2866 + 21.2779i 1.25681 + 0.913124i
\(544\) −11.8750 36.5474i −0.509135 1.56696i
\(545\) −3.26426 10.0463i −0.139825 0.430338i
\(546\) −13.2825 9.65031i −0.568439 0.412995i
\(547\) 10.6661 7.74939i 0.456050 0.331340i −0.335929 0.941887i \(-0.609050\pi\)
0.791980 + 0.610547i \(0.209050\pi\)
\(548\) 5.65018 17.3895i 0.241364 0.742841i
\(549\) 19.4773 0.831270
\(550\) −1.70113 8.11304i −0.0725366 0.345941i
\(551\) 60.0249 2.55715
\(552\) −0.174518 + 0.537112i −0.00742799 + 0.0228610i
\(553\) 34.6950 25.2074i 1.47538 1.07193i
\(554\) 22.3451 + 16.2347i 0.949354 + 0.689746i
\(555\) 3.41614 + 10.5138i 0.145007 + 0.446286i
\(556\) −12.8566 39.5684i −0.545240 1.67808i
\(557\) 2.51831 + 1.82966i 0.106704 + 0.0775250i 0.639858 0.768493i \(-0.278993\pi\)
−0.533154 + 0.846018i \(0.678993\pi\)
\(558\) −4.19828 + 3.05023i −0.177727 + 0.129126i
\(559\) −1.33580 + 4.11118i −0.0564985 + 0.173884i
\(560\) −36.5642 −1.54512
\(561\) −25.8205 23.3780i −1.09014 0.987018i
\(562\) −4.17606 −0.176156
\(563\) −2.92988 + 9.01726i −0.123480 + 0.380032i −0.993621 0.112770i \(-0.964028\pi\)
0.870141 + 0.492803i \(0.164028\pi\)
\(564\) 7.55651 5.49012i 0.318186 0.231176i
\(565\) −32.8931 23.8982i −1.38382 1.00541i
\(566\) 0.811729 + 2.49824i 0.0341195 + 0.105009i
\(567\) 12.8283 + 39.4814i 0.538738 + 1.65806i
\(568\) −0.285637 0.207528i −0.0119851 0.00870766i
\(569\) −26.9186 + 19.5575i −1.12849 + 0.819893i −0.985474 0.169827i \(-0.945679\pi\)
−0.143013 + 0.989721i \(0.545679\pi\)
\(570\) −22.7907 + 70.1424i −0.954595 + 2.93794i
\(571\) −40.1844 −1.68167 −0.840833 0.541295i \(-0.817934\pi\)
−0.840833 + 0.541295i \(0.817934\pi\)
\(572\) 5.85325 3.35791i 0.244736 0.140401i
\(573\) 26.0031 1.08630
\(574\) 8.82156 27.1500i 0.368205 1.13322i
\(575\) 3.72553 2.70675i 0.155365 0.112879i
\(576\) 12.1732 + 8.84431i 0.507215 + 0.368513i
\(577\) 1.37412 + 4.22912i 0.0572055 + 0.176061i 0.975576 0.219660i \(-0.0704948\pi\)
−0.918371 + 0.395721i \(0.870495\pi\)
\(578\) −3.65573 11.2512i −0.152058 0.467987i
\(579\) −42.8150 31.1069i −1.77933 1.29276i
\(580\) 36.8838 26.7976i 1.53152 1.11271i
\(581\) −2.00990 + 6.18583i −0.0833846 + 0.256631i
\(582\) 60.5180 2.50855
\(583\) −2.89992 + 6.46534i −0.120103 + 0.267767i
\(584\) −0.406743 −0.0168311
\(585\) 1.40421 4.32171i 0.0580568 0.178681i
\(586\) −7.02892 + 5.10681i −0.290362 + 0.210960i
\(587\) 21.6033 + 15.6957i 0.891663 + 0.647831i 0.936311 0.351172i \(-0.114217\pi\)
−0.0446484 + 0.999003i \(0.514217\pi\)
\(588\) −9.47518 29.1616i −0.390750 1.20260i
\(589\) −2.93877 9.04459i −0.121090 0.372676i
\(590\) 30.0543 + 21.8357i 1.23732 + 0.898963i
\(591\) −13.0164 + 9.45694i −0.535422 + 0.389006i
\(592\) −2.44729 + 7.53198i −0.100583 + 0.309563i
\(593\) −42.3130 −1.73759 −0.868794 0.495174i \(-0.835104\pi\)
−0.868794 + 0.495174i \(0.835104\pi\)
\(594\) −17.1784 1.85338i −0.704838 0.0760452i
\(595\) −44.5173 −1.82503
\(596\) 12.6076 38.8022i 0.516427 1.58940i
\(597\) 5.38404 3.91173i 0.220354 0.160097i
\(598\) 6.01394 + 4.36938i 0.245928 + 0.178677i
\(599\) 9.39743 + 28.9223i 0.383969 + 1.18173i 0.937226 + 0.348724i \(0.113385\pi\)
−0.553257 + 0.833011i \(0.686615\pi\)
\(600\) 0.0586772 + 0.180590i 0.00239549 + 0.00737255i
\(601\) 29.5173 + 21.4455i 1.20403 + 0.874782i 0.994675 0.103057i \(-0.0328623\pi\)
0.209359 + 0.977839i \(0.432862\pi\)
\(602\) −26.1569 + 19.0041i −1.06607 + 0.774549i
\(603\) 0.582156 1.79169i 0.0237072 0.0729634i
\(604\) −9.49638 −0.386402
\(605\) −2.72257 27.3523i −0.110688 1.11203i
\(606\) −72.5520 −2.94723
\(607\) 13.0077 40.0336i 0.527966 1.62491i −0.230409 0.973094i \(-0.574006\pi\)
0.758375 0.651819i \(-0.225994\pi\)
\(608\) −43.4976 + 31.6028i −1.76406 + 1.28166i
\(609\) −59.2971 43.0819i −2.40284 1.74577i
\(610\) 16.6130 + 51.1294i 0.672639 + 2.07017i
\(611\) −0.646264 1.98900i −0.0261450 0.0804661i
\(612\) 14.3207 + 10.4046i 0.578881 + 0.420582i
\(613\) 10.1316 7.36102i 0.409211 0.297309i −0.364072 0.931371i \(-0.618614\pi\)
0.773282 + 0.634062i \(0.218614\pi\)
\(614\) −7.82157 + 24.0723i −0.315653 + 0.971479i
\(615\) 20.9359 0.844218
\(616\) 0.853598 + 0.0920949i 0.0343925 + 0.00371061i
\(617\) −19.3317 −0.778266 −0.389133 0.921182i \(-0.627225\pi\)
−0.389133 + 0.921182i \(0.627225\pi\)
\(618\) 12.4701 38.3791i 0.501622 1.54383i
\(619\) 25.2779 18.3655i 1.01601 0.738171i 0.0505449 0.998722i \(-0.483904\pi\)
0.965460 + 0.260551i \(0.0839042\pi\)
\(620\) −5.84369 4.24569i −0.234688 0.170511i
\(621\) −2.96607 9.12863i −0.119024 0.366319i
\(622\) −1.53574 4.72651i −0.0615774 0.189516i
\(623\) −13.0361 9.47130i −0.522281 0.379460i
\(624\) 6.97845 5.07014i 0.279361 0.202968i
\(625\) −9.16954 + 28.2209i −0.366782 + 1.12884i
\(626\) −57.3893 −2.29374
\(627\) −19.9443 + 44.4655i −0.796498 + 1.77578i
\(628\) −4.50834 −0.179902
\(629\) −2.97961 + 9.17028i −0.118805 + 0.365643i
\(630\) 27.4963 19.9772i 1.09548 0.795912i
\(631\) −1.06248 0.771934i −0.0422965 0.0307302i 0.566436 0.824106i \(-0.308322\pi\)
−0.608733 + 0.793375i \(0.708322\pi\)
\(632\) −0.247416 0.761469i −0.00984169 0.0302896i
\(633\) 5.28026 + 16.2510i 0.209871 + 0.645918i
\(634\) 4.48873 + 3.26125i 0.178270 + 0.129521i
\(635\) −36.9090 + 26.8160i −1.46469 + 1.06416i
\(636\) 2.94861 9.07490i 0.116920 0.359843i
\(637\) −6.86545 −0.272019
\(638\) 51.8168 29.7264i 2.05145 1.17688i
\(639\) −9.23550 −0.365351
\(640\) −0.429391 + 1.32153i −0.0169732 + 0.0522380i
\(641\) −14.1055 + 10.2482i −0.557133 + 0.404781i −0.830409 0.557155i \(-0.811893\pi\)
0.273275 + 0.961936i \(0.411893\pi\)
\(642\) 33.4994 + 24.3388i 1.32212 + 0.960575i
\(643\) 13.5143 + 41.5928i 0.532953 + 1.64026i 0.748031 + 0.663664i \(0.231000\pi\)
−0.215078 + 0.976597i \(0.569000\pi\)
\(644\) 8.66426 + 26.6658i 0.341419 + 1.05078i
\(645\) −19.1829 13.9372i −0.755327 0.548777i
\(646\) −52.0421 + 37.8108i −2.04757 + 1.48765i
\(647\) −9.46654 + 29.1350i −0.372168 + 1.14542i 0.573201 + 0.819415i \(0.305701\pi\)
−0.945369 + 0.326001i \(0.894299\pi\)
\(648\) 0.775037 0.0304463
\(649\) 18.1968 + 16.4755i 0.714288 + 0.646719i
\(650\) 2.49937 0.0980333
\(651\) −3.58848 + 11.0442i −0.140643 + 0.432856i
\(652\) 13.5569 9.84967i 0.530930 0.385743i
\(653\) −23.2868 16.9188i −0.911282 0.662085i 0.0300567 0.999548i \(-0.490431\pi\)
−0.941339 + 0.337463i \(0.890431\pi\)
\(654\) 5.75967 + 17.7264i 0.225221 + 0.693158i
\(655\) −2.04789 6.30276i −0.0800177 0.246269i
\(656\) 12.1339 + 8.81577i 0.473748 + 0.344198i
\(657\) −8.60758 + 6.25377i −0.335814 + 0.243983i
\(658\) 4.83368 14.8765i 0.188436 0.579947i
\(659\) 0.456631 0.0177878 0.00889390 0.999960i \(-0.497169\pi\)
0.00889390 + 0.999960i \(0.497169\pi\)
\(660\) 7.59602 + 36.2269i 0.295675 + 1.41013i
\(661\) 22.3114 0.867815 0.433907 0.900958i \(-0.357135\pi\)
0.433907 + 0.900958i \(0.357135\pi\)
\(662\) 5.71786 17.5977i 0.222231 0.683956i
\(663\) 8.49634 6.17295i 0.329971 0.239738i
\(664\) 0.0982393 + 0.0713750i 0.00381243 + 0.00276989i
\(665\) 19.2472 + 59.2369i 0.746376 + 2.29711i
\(666\) −2.27482 7.00117i −0.0881474 0.271290i
\(667\) 26.8481 + 19.5063i 1.03956 + 0.755285i
\(668\) 9.98829 7.25692i 0.386459 0.280779i
\(669\) −6.69269 + 20.5980i −0.258754 + 0.796364i
\(670\) 5.19989 0.200889
\(671\) 7.29004 + 34.7676i 0.281429 + 1.34219i
\(672\) 65.6527 2.53261
\(673\) 5.53169 17.0248i 0.213231 0.656257i −0.786044 0.618171i \(-0.787874\pi\)
0.999274 0.0380860i \(-0.0121261\pi\)
\(674\) 9.65603 7.01552i 0.371936 0.270228i
\(675\) −2.61087 1.89691i −0.100493 0.0730121i
\(676\) 0.628729 + 1.93503i 0.0241819 + 0.0744242i
\(677\) −2.57836 7.93539i −0.0990946 0.304982i 0.889205 0.457510i \(-0.151259\pi\)
−0.988299 + 0.152528i \(0.951259\pi\)
\(678\) 58.0387 + 42.1676i 2.22896 + 1.61944i
\(679\) 41.3479 30.0410i 1.58679 1.15287i
\(680\) −0.256831 + 0.790445i −0.00984902 + 0.0303122i
\(681\) −39.6410 −1.51905
\(682\) −7.01611 6.35242i −0.268661 0.243247i
\(683\) 2.69359 0.103067 0.0515336 0.998671i \(-0.483589\pi\)
0.0515336 + 0.998671i \(0.483589\pi\)
\(684\) 7.65327 23.5543i 0.292630 0.900622i
\(685\) 18.1676 13.1996i 0.694150 0.504329i
\(686\) 0.814143 + 0.591509i 0.0310841 + 0.0225839i
\(687\) −6.02637 18.5472i −0.229920 0.707622i
\(688\) −5.24915 16.1552i −0.200122 0.615912i
\(689\) −1.72845 1.25579i −0.0658488 0.0478419i
\(690\) −32.9880 + 23.9672i −1.25583 + 0.912415i
\(691\) 4.05908 12.4926i 0.154415 0.475239i −0.843687 0.536836i \(-0.819619\pi\)
0.998101 + 0.0615969i \(0.0196193\pi\)
\(692\) 6.96068 0.264605
\(693\) 19.4800 11.1753i 0.739984 0.424516i
\(694\) −19.9638 −0.757817
\(695\) 15.7901 48.5971i 0.598954 1.84339i
\(696\) −1.10706 + 0.804324i −0.0419629 + 0.0304878i
\(697\) 14.7731 + 10.7333i 0.559572 + 0.406553i
\(698\) −8.21395 25.2799i −0.310903 0.956860i
\(699\) −5.10249 15.7039i −0.192994 0.593975i
\(700\) 7.62667 + 5.54110i 0.288261 + 0.209434i
\(701\) −22.2654 + 16.1768i −0.840954 + 0.610989i −0.922637 0.385669i \(-0.873971\pi\)
0.0816828 + 0.996658i \(0.473971\pi\)
\(702\) 1.60984 4.95457i 0.0607594 0.186998i
\(703\) 13.4907 0.508810
\(704\) −11.2312 + 25.0398i −0.423291 + 0.943723i
\(705\) 11.4716 0.432046
\(706\) −16.6713 + 51.3089i −0.627431 + 1.93104i
\(707\) −49.5700 + 36.0147i −1.86427 + 1.35447i
\(708\) −26.7423 19.4294i −1.00504 0.730203i
\(709\) −10.9015 33.5514i −0.409414 1.26005i −0.917152 0.398536i \(-0.869518\pi\)
0.507738 0.861511i \(-0.330482\pi\)
\(710\) −7.87733 24.2439i −0.295631 0.909859i
\(711\) −16.9436 12.3103i −0.635436 0.461672i
\(712\) −0.243380 + 0.176826i −0.00912105 + 0.00662683i
\(713\) 1.62476 5.00050i 0.0608477 0.187270i
\(714\) 78.5493 2.93963
\(715\) 8.23997 + 0.889012i 0.308157 + 0.0332472i
\(716\) −53.1916 −1.98786
\(717\) −13.7591 + 42.3460i −0.513842 + 1.58144i
\(718\) −42.8306 + 31.1182i −1.59842 + 1.16132i
\(719\) 36.4440 + 26.4781i 1.35913 + 0.987467i 0.998500 + 0.0547591i \(0.0174391\pi\)
0.360632 + 0.932708i \(0.382561\pi\)
\(720\) 5.51795 + 16.9825i 0.205642 + 0.632900i
\(721\) −10.5313 32.4121i −0.392207 1.20709i
\(722\) 41.9381 + 30.4698i 1.56078 + 1.13397i
\(723\) 5.64850 4.10388i 0.210070 0.152625i
\(724\) 10.3686 31.9112i 0.385346 1.18597i
\(725\) 11.1579 0.414395
\(726\) 4.80387 + 48.2622i 0.178289 + 1.79118i
\(727\) 37.9510 1.40752 0.703762 0.710436i \(-0.251502\pi\)
0.703762 + 0.710436i \(0.251502\pi\)
\(728\) −0.0799931 + 0.246193i −0.00296474 + 0.00912454i
\(729\) 2.58391 1.87732i 0.0957004 0.0695304i
\(730\) −23.7584 17.2615i −0.879338 0.638877i
\(731\) −6.39091 19.6692i −0.236376 0.727491i
\(732\) −14.7822 45.4950i −0.546367 1.68154i
\(733\) 8.89969 + 6.46600i 0.328718 + 0.238827i 0.739886 0.672732i \(-0.234879\pi\)
−0.411169 + 0.911559i \(0.634879\pi\)
\(734\) 4.62319 3.35894i 0.170645 0.123981i
\(735\) 11.6372 35.8156i 0.429245 1.32108i
\(736\) −29.7257 −1.09570
\(737\) 3.41613 + 0.368567i 0.125835 + 0.0135763i
\(738\) −13.9413 −0.513185
\(739\) 9.51924 29.2972i 0.350171 1.07771i −0.608586 0.793488i \(-0.708263\pi\)
0.958757 0.284227i \(-0.0917370\pi\)
\(740\) 8.28968 6.02281i 0.304735 0.221403i
\(741\) −11.8875 8.63674i −0.436697 0.317279i
\(742\) −4.93799 15.1976i −0.181279 0.557920i
\(743\) 1.48222 + 4.56181i 0.0543774 + 0.167356i 0.974557 0.224140i \(-0.0719574\pi\)
−0.920179 + 0.391497i \(0.871957\pi\)
\(744\) 0.175397 + 0.127433i 0.00643036 + 0.00467193i
\(745\) 40.5386 29.4530i 1.48522 1.07907i
\(746\) 10.6542 32.7903i 0.390078 1.20054i
\(747\) 3.17637 0.116217
\(748\) −13.2126 + 29.4573i −0.483100 + 1.07707i
\(749\) 34.9697 1.27776
\(750\) 12.7870 39.3544i 0.466916 1.43702i
\(751\) 24.8694 18.0687i 0.907498 0.659336i −0.0328825 0.999459i \(-0.510469\pi\)
0.940381 + 0.340123i \(0.110469\pi\)
\(752\) 6.64862 + 4.83050i 0.242450 + 0.176150i
\(753\) 10.1645 + 31.2830i 0.370414 + 1.14002i
\(754\) 5.56593 + 17.1302i 0.202699 + 0.623844i
\(755\) −9.43576 6.85548i −0.343402 0.249496i
\(756\) 15.8966 11.5496i 0.578154 0.420054i
\(757\) −13.8013 + 42.4759i −0.501616 + 1.54381i 0.304771 + 0.952426i \(0.401420\pi\)
−0.806387 + 0.591389i \(0.798580\pi\)
\(758\) −2.54821 −0.0925550
\(759\) −23.3707 + 13.4073i −0.848301 + 0.486656i
\(760\) 1.16285 0.0421809
\(761\) −3.69663 + 11.3770i −0.134003 + 0.412418i −0.995434 0.0954572i \(-0.969569\pi\)
0.861431 + 0.507875i \(0.169569\pi\)
\(762\) 65.1247 47.3159i 2.35922 1.71407i
\(763\) 12.7346 + 9.25221i 0.461022 + 0.334952i
\(764\) −7.44791 22.9223i −0.269456 0.829300i
\(765\) 6.71817 + 20.6764i 0.242896 + 0.747557i
\(766\) −24.2426 17.6133i −0.875920 0.636393i
\(767\) −5.98775 + 4.35035i −0.216205 + 0.157082i
\(768\) −10.4679 + 32.2168i −0.377726 + 1.16252i
\(769\) −30.6046 −1.10363 −0.551816 0.833966i \(-0.686065\pi\)
−0.551816 + 0.833966i \(0.686065\pi\)
\(770\) 45.9515 + 41.6047i 1.65598 + 1.49933i
\(771\) −14.2287 −0.512435
\(772\) −15.1582 + 46.6521i −0.545555 + 1.67904i
\(773\) −16.5720 + 12.0402i −0.596052 + 0.433057i −0.844475 0.535594i \(-0.820088\pi\)
0.248423 + 0.968652i \(0.420088\pi\)
\(774\) 12.7740 + 9.28082i 0.459150 + 0.333592i
\(775\) −0.546283 1.68129i −0.0196231 0.0603936i
\(776\) −0.294859 0.907483i −0.0105848 0.0325767i
\(777\) −13.3271 9.68271i −0.478108 0.347365i
\(778\) 49.5555 36.0042i 1.77665 1.29081i
\(779\) 7.89504 24.2984i 0.282869 0.870581i
\(780\) −11.1604 −0.399605
\(781\) −3.45670 16.4857i −0.123691 0.589904i
\(782\) −35.5649 −1.27180
\(783\) 7.18680 22.1187i 0.256835 0.790458i
\(784\) 21.8260 15.8575i 0.779498 0.566339i
\(785\) −4.47956 3.25459i −0.159882 0.116161i
\(786\) 3.61343 + 11.1210i 0.128887 + 0.396673i
\(787\) −16.6413 51.2166i −0.593198 1.82567i −0.563501 0.826116i \(-0.690546\pi\)
−0.0296971 0.999559i \(-0.509454\pi\)
\(788\) 12.0647 + 8.76551i 0.429787 + 0.312258i
\(789\) −13.5251 + 9.82659i −0.481508 + 0.349836i
\(790\) 17.8636 54.9784i 0.635557 1.95604i
\(791\) 60.5859 2.15419
\(792\) −0.0860435 0.410358i −0.00305742 0.0145814i
\(793\) −10.7108 −0.380351
\(794\) −12.6148 + 38.8243i −0.447682 + 1.37782i
\(795\) 9.48100 6.88835i 0.336256 0.244305i
\(796\) −4.99039 3.62573i −0.176880 0.128511i
\(797\) −5.42038 16.6822i −0.192000 0.590915i −0.999999 0.00173037i \(-0.999449\pi\)
0.807999 0.589184i \(-0.200551\pi\)
\(798\) −33.9611 104.521i −1.20221 3.70002i
\(799\) 8.09478 + 5.88120i 0.286373 + 0.208062i
\(800\) −8.08570 + 5.87461i −0.285873 + 0.207699i
\(801\) −2.43172 + 7.48405i −0.0859204 + 0.264436i
\(802\) −23.9229 −0.844748
\(803\) −14.3849 13.0241i −0.507632 0.459612i
\(804\) −4.62686 −0.163177
\(805\) −10.6412 + 32.7504i −0.375055 + 1.15430i
\(806\) 2.30868 1.67736i 0.0813199 0.0590824i
\(807\) −28.3789 20.6185i −0.998985 0.725805i
\(808\) 0.353492 + 1.08794i 0.0124358 + 0.0382735i
\(809\) −13.6769 42.0932i −0.480855 1.47992i −0.837896 0.545830i \(-0.816214\pi\)
0.357041 0.934089i \(-0.383786\pi\)
\(810\) 45.2710 + 32.8913i 1.59066 + 1.15568i
\(811\) −3.99395 + 2.90178i −0.140247 + 0.101895i −0.655696 0.755025i \(-0.727625\pi\)
0.515450 + 0.856920i \(0.327625\pi\)
\(812\) −20.9935 + 64.6114i −0.736728 + 2.26741i
\(813\) −65.1294 −2.28419
\(814\) 11.6459 6.68106i 0.408189 0.234171i
\(815\) 20.5809 0.720917
\(816\) −12.7527 + 39.2489i −0.446435 + 1.37398i
\(817\) −23.4096 + 17.0081i −0.819000 + 0.595038i
\(818\) −25.8445 18.7771i −0.903632 0.656527i
\(819\) 2.09245 + 6.43991i 0.0731163 + 0.225029i
\(820\) −5.99654 18.4555i −0.209408 0.644493i
\(821\) 9.60190 + 6.97619i 0.335109 + 0.243471i 0.742595 0.669740i \(-0.233595\pi\)
−0.407486 + 0.913211i \(0.633595\pi\)
\(822\) −32.0562 + 23.2902i −1.11809 + 0.812338i
\(823\) −8.91888 + 27.4495i −0.310893 + 0.956829i 0.666520 + 0.745487i \(0.267783\pi\)
−0.977412 + 0.211342i \(0.932217\pi\)
\(824\) −0.636263 −0.0221653
\(825\) −3.70741 + 8.26563i −0.129076 + 0.287772i
\(826\) −55.3572 −1.92612
\(827\) −10.0817 + 31.0284i −0.350576 + 1.07896i 0.607955 + 0.793972i \(0.291990\pi\)
−0.958531 + 0.284990i \(0.908010\pi\)
\(828\) 11.0776 8.04835i 0.384974 0.279700i
\(829\) 19.2155 + 13.9609i 0.667383 + 0.484882i 0.869148 0.494552i \(-0.164668\pi\)
−0.201765 + 0.979434i \(0.564668\pi\)
\(830\) 2.70926 + 8.33823i 0.0940396 + 0.289424i
\(831\) −9.32742 28.7069i −0.323565 0.995830i
\(832\) −6.69417 4.86360i −0.232078 0.168615i
\(833\) 26.5734 19.3067i 0.920712 0.668937i
\(834\) −27.8612 + 85.7479i −0.964753 + 2.96921i
\(835\) 15.1633 0.524749
\(836\) 44.9098 + 4.84533i 1.55324 + 0.167579i
\(837\) −3.68472 −0.127363
\(838\) 17.9965 55.3875i 0.621679 1.91333i
\(839\) −14.3197 + 10.4039i −0.494371 + 0.359182i −0.806863 0.590739i \(-0.798836\pi\)
0.312492 + 0.949920i \(0.398836\pi\)
\(840\) −1.14875 0.834614i −0.0396356 0.0287969i
\(841\) 15.8865 + 48.8936i 0.547810 + 1.68599i
\(842\) −6.20297 19.0908i −0.213768 0.657912i
\(843\) 3.69214 + 2.68250i 0.127164 + 0.0923900i
\(844\) 12.8132 9.30932i 0.441048 0.320440i
\(845\) −0.772191 + 2.37656i −0.0265642 + 0.0817561i
\(846\) −7.63897 −0.262633
\(847\) 27.2395 + 30.5897i 0.935959 + 1.05108i
\(848\) 8.39549 0.288302
\(849\) 0.887084 2.73016i 0.0304447 0.0936990i
\(850\) −9.67403 + 7.02860i −0.331817 + 0.241079i
\(851\) 6.03414 + 4.38406i 0.206848 + 0.150284i
\(852\) 7.00926 + 21.5723i 0.240133 + 0.739054i
\(853\) 11.4052 + 35.1015i 0.390506 + 1.20185i 0.932406 + 0.361411i \(0.117705\pi\)
−0.541900 + 0.840443i \(0.682295\pi\)
\(854\) −64.8108 47.0878i −2.21778 1.61131i
\(855\) 24.6084 17.8790i 0.841589 0.611450i
\(856\) 0.201748 0.620918i 0.00689562 0.0212225i
\(857\) −5.51696 −0.188456 −0.0942278 0.995551i \(-0.530038\pi\)
−0.0942278 + 0.995551i \(0.530038\pi\)
\(858\) −14.5391 1.56863i −0.496358 0.0535522i
\(859\) −42.1789 −1.43913 −0.719563 0.694427i \(-0.755658\pi\)
−0.719563 + 0.694427i \(0.755658\pi\)
\(860\) −6.79151 + 20.9021i −0.231589 + 0.712756i
\(861\) −25.2391 + 18.3373i −0.860147 + 0.624934i
\(862\) 46.3433 + 33.6704i 1.57846 + 1.14682i
\(863\) −5.38361 16.5690i −0.183260 0.564016i 0.816654 0.577128i \(-0.195826\pi\)
−0.999914 + 0.0131111i \(0.995826\pi\)
\(864\) 6.43742 + 19.8123i 0.219005 + 0.674030i
\(865\) 6.91625 + 5.02495i 0.235160 + 0.170853i
\(866\) −1.62453 + 1.18029i −0.0552038 + 0.0401079i
\(867\) −3.99510 + 12.2957i −0.135681 + 0.417582i
\(868\) 10.7635 0.365338
\(869\) 15.6325 34.8526i 0.530298 1.18229i
\(870\) −98.7989 −3.34960
\(871\) −0.320135 + 0.985274i −0.0108474 + 0.0333847i
\(872\) 0.237750 0.172735i 0.00805123 0.00584956i
\(873\) −20.1926 14.6708i −0.683417 0.496532i
\(874\) 15.3766 + 47.3243i 0.520121 + 1.60077i
\(875\) −10.7989 33.2357i −0.365071 1.12357i
\(876\) 21.1403 + 15.3593i 0.714263 + 0.518943i
\(877\) 34.7012 25.2119i 1.17178 0.851346i 0.180556 0.983565i \(-0.442210\pi\)
0.991221 + 0.132219i \(0.0422102\pi\)
\(878\) 11.3426 34.9090i 0.382795 1.17812i
\(879\) 9.49478 0.320251
\(880\) −28.2491 + 16.2060i −0.952276 + 0.546305i
\(881\) 4.49892 0.151572 0.0757862 0.997124i \(-0.475853\pi\)
0.0757862 + 0.997124i \(0.475853\pi\)
\(882\) −7.74924 + 23.8497i −0.260930 + 0.803061i
\(883\) 18.0899 13.1431i 0.608773 0.442299i −0.240209 0.970721i \(-0.577216\pi\)
0.848982 + 0.528422i \(0.177216\pi\)
\(884\) −7.87514 5.72163i −0.264870 0.192439i
\(885\) −12.5454 38.6108i −0.421710 1.29789i
\(886\) 18.9994 + 58.4742i 0.638298 + 1.96448i
\(887\) −14.7374 10.7074i −0.494834 0.359518i 0.312206 0.950014i \(-0.398932\pi\)
−0.807040 + 0.590497i \(0.798932\pi\)
\(888\) −0.248813 + 0.180773i −0.00834960 + 0.00606634i
\(889\) 21.0079 64.6556i 0.704582 2.16848i
\(890\) −21.7204 −0.728068
\(891\) 27.4100 + 24.8171i 0.918269 + 0.831405i
\(892\) 20.0745 0.672145
\(893\) 4.32600 13.3141i 0.144764 0.445538i
\(894\) −71.5289 + 51.9688i −2.39229 + 1.73810i
\(895\) −52.8521 38.3993i −1.76665 1.28355i
\(896\) −0.639849 1.96925i −0.0213759 0.0657881i
\(897\) −2.51037 7.72612i −0.0838188 0.257968i
\(898\) −20.6897 15.0319i −0.690424 0.501622i
\(899\) 10.3067 7.48823i 0.343747 0.249747i
\(900\) 1.42265 4.37848i 0.0474218 0.145949i
\(901\) 10.2216 0.340531
\(902\) −5.21800 24.8857i −0.173740 0.828602i
\(903\) 35.3331 1.17581
\(904\) 0.349535 1.07576i 0.0116253 0.0357791i
\(905\) 33.3393 24.2224i 1.10823 0.805180i
\(906\) 16.6491 + 12.0963i 0.553128 + 0.401871i
\(907\) 2.69620 + 8.29806i 0.0895259 + 0.275532i 0.985788 0.167991i \(-0.0537281\pi\)
−0.896263 + 0.443524i \(0.853728\pi\)
\(908\) 11.3541 + 34.9444i 0.376800 + 1.15967i
\(909\) 24.2080 + 17.5881i 0.802928 + 0.583361i
\(910\) −15.1206 + 10.9857i −0.501242 + 0.364173i
\(911\) 7.72518 23.7757i 0.255947 0.787723i −0.737695 0.675134i \(-0.764086\pi\)
0.993642 0.112589i \(-0.0359142\pi\)
\(912\) 57.7401 1.91197
\(913\) 1.18887 + 5.66993i 0.0393457 + 0.187647i
\(914\) −11.7919 −0.390040
\(915\) 18.1552 55.8759i 0.600192 1.84720i
\(916\) −14.6237 + 10.6247i −0.483181 + 0.351051i
\(917\) 7.98926 + 5.80454i 0.263829 + 0.191683i
\(918\) 7.70197 + 23.7042i 0.254203 + 0.782356i
\(919\) 8.31023 + 25.5763i 0.274129 + 0.843683i 0.989448 + 0.144885i \(0.0462813\pi\)
−0.715319 + 0.698798i \(0.753719\pi\)
\(920\) 0.520120 + 0.377890i 0.0171479 + 0.0124586i
\(921\) 22.3781 16.2586i 0.737383 0.535740i
\(922\) −13.2631 + 40.8196i −0.436797 + 1.34432i
\(923\) 5.07871 0.167168
\(924\) −40.8877 37.0199i −1.34511 1.21787i
\(925\) 2.50776 0.0824547
\(926\) 22.5422 69.3779i 0.740784 2.27990i
\(927\) −13.4647 + 9.78269i −0.442240 + 0.321306i
\(928\) −58.2697 42.3354i −1.91280 1.38973i
\(929\) −6.51334 20.0460i −0.213696 0.657688i −0.999244 0.0388869i \(-0.987619\pi\)
0.785548 0.618801i \(-0.212381\pi\)
\(930\) 4.83711 + 14.8871i 0.158615 + 0.488167i
\(931\) −37.1795 27.0125i −1.21851 0.885298i
\(932\) −12.3818 + 8.99592i −0.405580 + 0.294671i
\(933\) −1.67830 + 5.16529i −0.0549452 + 0.169104i
\(934\) 20.6280 0.674968
\(935\) −34.3936 + 19.7310i −1.12479 + 0.645273i
\(936\) 0.126418 0.00413211
\(937\) 8.34057 25.6696i 0.272475 0.838591i −0.717402 0.696659i \(-0.754669\pi\)
0.989877 0.141931i \(-0.0453311\pi\)
\(938\) −6.26868 + 4.55446i −0.204680 + 0.148709i
\(939\) 50.7391 + 36.8641i 1.65581 + 1.20301i
\(940\) −3.28574 10.1125i −0.107169 0.329832i
\(941\) −12.4874 38.4324i −0.407079 1.25286i −0.919147 0.393915i \(-0.871121\pi\)
0.512068 0.858945i \(-0.328879\pi\)
\(942\) 7.90403 + 5.74262i 0.257527 + 0.187105i
\(943\) 11.4276 8.30261i 0.372132 0.270370i
\(944\) 8.98741 27.6604i 0.292515 0.900270i
\(945\) 24.1328 0.785041
\(946\) −11.7855 + 26.2756i −0.383180 + 0.854294i
\(947\) −16.4284 −0.533851 −0.266926 0.963717i \(-0.586008\pi\)
−0.266926 + 0.963717i \(0.586008\pi\)
\(948\) −15.8950 + 48.9198i −0.516246 + 1.58884i
\(949\) 4.73341 3.43903i 0.153653 0.111636i
\(950\) 13.5352 + 9.83389i 0.439140 + 0.319054i
\(951\) −1.87371 5.76668i −0.0607591 0.186997i
\(952\) −0.382712 1.17787i −0.0124038 0.0381749i
\(953\) −27.0151 19.6276i −0.875104 0.635800i 0.0568477 0.998383i \(-0.481895\pi\)
−0.931952 + 0.362583i \(0.881895\pi\)
\(954\) −6.31342 + 4.58697i −0.204404 + 0.148509i
\(955\) 9.14736 28.1527i 0.296002 0.910999i
\(956\) 41.2699 1.33476
\(957\) −64.9071 7.00285i −2.09815 0.226370i
\(958\) 11.7646 0.380097
\(959\) −10.3406 + 31.8252i −0.333917 + 1.02769i
\(960\) 36.7192 26.6781i 1.18511 0.861031i
\(961\) 23.4466 + 17.0349i 0.756342 + 0.549514i
\(962\) 1.25095 + 3.85003i 0.0403322 + 0.124130i
\(963\) −5.27732 16.2419i −0.170059 0.523389i
\(964\) −5.23552 3.80383i −0.168625 0.122513i
\(965\) −48.7398 + 35.4115i −1.56899 + 1.13994i
\(966\) 18.7761 57.7869i 0.604111 1.85926i
\(967\) 27.0812 0.870874 0.435437 0.900219i \(-0.356594\pi\)
0.435437 + 0.900219i \(0.356594\pi\)
\(968\) 0.700299 0.307181i 0.0225085 0.00987318i
\(969\) 70.2993 2.25834
\(970\) 21.2890 65.5207i 0.683547 2.10374i
\(971\) −29.6429 + 21.5368i −0.951285 + 0.691149i −0.951110 0.308851i \(-0.900056\pi\)
−0.000174553 1.00000i \(0.500056\pi\)
\(972\) −27.4748 19.9616i −0.881256 0.640270i
\(973\) 23.5294 + 72.4160i 0.754318 + 2.32155i
\(974\) 7.24401 + 22.2948i 0.232113 + 0.714371i
\(975\) −2.20974 1.60547i −0.0707684 0.0514163i
\(976\) 34.0507 24.7393i 1.08994 0.791884i
\(977\) 7.28492 22.4207i 0.233065 0.717301i −0.764307 0.644853i \(-0.776919\pi\)
0.997372 0.0724482i \(-0.0230812\pi\)
\(978\) −36.3143 −1.16120
\(979\) −14.2694 1.53953i −0.456053 0.0492037i
\(980\) −34.9054 −1.11501
\(981\) 2.37546 7.31093i 0.0758427 0.233420i
\(982\) 11.5239 8.37262i 0.367743 0.267181i
\(983\) −15.1803 11.0292i −0.484177 0.351776i 0.318763 0.947834i \(-0.396732\pi\)
−0.802941 + 0.596059i \(0.796732\pi\)
\(984\) 0.179985 + 0.553936i 0.00573770 + 0.0176588i
\(985\) 5.65981 + 17.4191i 0.180337 + 0.555019i
\(986\) −69.7160 50.6517i −2.22021 1.61308i
\(987\) −13.8295 + 10.0477i −0.440198 + 0.319823i
\(988\) −4.20863 + 12.9528i −0.133894 + 0.412084i
\(989\) −15.9978 −0.508701
\(990\) 12.3890 27.6211i 0.393749 0.877857i
\(991\) 25.3916 0.806589 0.403295 0.915070i \(-0.367865\pi\)
0.403295 + 0.915070i \(0.367865\pi\)
\(992\) −3.52630 + 10.8528i −0.111960 + 0.344578i
\(993\) −16.3592 + 11.8857i −0.519144 + 0.377180i
\(994\) 30.7312 + 22.3275i 0.974734 + 0.708186i
\(995\) −2.34110 7.20518i −0.0742180 0.228419i
\(996\) −2.41070 7.41936i −0.0763859 0.235092i
\(997\) −18.9197 13.7460i −0.599192 0.435339i 0.246400 0.969168i \(-0.420752\pi\)
−0.845592 + 0.533830i \(0.820752\pi\)
\(998\) 34.6206 25.1533i 1.09590 0.796215i
\(999\) 1.61524 4.97121i 0.0511040 0.157282i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 143.2.h.b.53.1 yes 16
11.4 even 5 1573.2.a.o.1.1 8
11.5 even 5 inner 143.2.h.b.27.1 16
11.7 odd 10 1573.2.a.n.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.2.h.b.27.1 16 11.5 even 5 inner
143.2.h.b.53.1 yes 16 1.1 even 1 trivial
1573.2.a.n.1.8 8 11.7 odd 10
1573.2.a.o.1.1 8 11.4 even 5