Properties

Label 143.2
Level 143
Weight 2
Dimension 715
Nonzero newspaces 12
Newform subspaces 19
Sturm bound 3360
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 143 = 11 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 19 \)
Sturm bound: \(3360\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(143))\).

Total New Old
Modular forms 960 915 45
Cusp forms 721 715 6
Eisenstein series 239 200 39

Trace form

\( 715 q - 47 q^{2} - 50 q^{3} - 59 q^{4} - 56 q^{5} - 64 q^{6} - 48 q^{7} - 45 q^{8} - 41 q^{9} - 32 q^{10} - 51 q^{11} - 80 q^{12} - 41 q^{13} - 104 q^{14} - 46 q^{15} - 31 q^{16} - 44 q^{17} - 29 q^{18}+ \cdots + 87 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(143))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
143.2.a \(\chi_{143}(1, \cdot)\) 143.2.a.a 1 1
143.2.a.b 4
143.2.a.c 6
143.2.b \(\chi_{143}(12, \cdot)\) 143.2.b.a 12 1
143.2.e \(\chi_{143}(100, \cdot)\) 143.2.e.a 6 2
143.2.e.b 6
143.2.e.c 12
143.2.g \(\chi_{143}(21, \cdot)\) 143.2.g.a 24 2
143.2.h \(\chi_{143}(14, \cdot)\) 143.2.h.a 4 4
143.2.h.b 16
143.2.h.c 28
143.2.j \(\chi_{143}(23, \cdot)\) 143.2.j.a 4 2
143.2.j.b 16
143.2.n \(\chi_{143}(25, \cdot)\) 143.2.n.a 48 4
143.2.o \(\chi_{143}(32, \cdot)\) 143.2.o.a 48 4
143.2.q \(\chi_{143}(3, \cdot)\) 143.2.q.a 96 8
143.2.s \(\chi_{143}(8, \cdot)\) 143.2.s.a 96 8
143.2.u \(\chi_{143}(4, \cdot)\) 143.2.u.a 96 8
143.2.w \(\chi_{143}(2, \cdot)\) 143.2.w.a 192 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(143))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(143)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)