Properties

Label 143.2.e
Level $143$
Weight $2$
Character orbit 143.e
Rep. character $\chi_{143}(100,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $3$
Sturm bound $28$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(28\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(143, [\chi])\).

Total New Old
Modular forms 32 24 8
Cusp forms 24 24 0
Eisenstein series 8 0 8

Trace form

\( 24 q - 2 q^{2} - 2 q^{3} - 12 q^{4} - 8 q^{5} + 6 q^{6} - 2 q^{7} - 14 q^{9} + 6 q^{10} - 4 q^{12} - 10 q^{13} + 8 q^{14} - 16 q^{15} - 8 q^{16} + 8 q^{17} + 28 q^{18} + 2 q^{19} + 14 q^{20} - 20 q^{21}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(143, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
143.2.e.a 143.e 13.c $6$ $1.142$ 6.0.1714608.1 None 143.2.e.a \(-3\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{2}+(-\beta _{3}+\beta _{5})q^{3}-\beta _{4}q^{4}+\cdots\)
143.2.e.b 143.e 13.c $6$ $1.142$ 6.0.3518667.1 None 143.2.e.b \(1\) \(-1\) \(-2\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(-3+\beta _{2}-2\beta _{3}+\cdots)q^{4}+\cdots\)
143.2.e.c 143.e 13.c $12$ $1.142$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 143.2.e.c \(0\) \(-1\) \(-12\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{6}q^{2}+(\beta _{6}+\beta _{8})q^{3}+(-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)