Defining parameters
Level: | \( N \) | \(=\) | \( 143 = 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 143.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(143, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 24 | 8 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(143, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
143.2.e.a | $6$ | $1.142$ | 6.0.1714608.1 | None | \(-3\) | \(0\) | \(6\) | \(0\) | \(q+(-1-\beta _{4})q^{2}+(-\beta _{3}+\beta _{5})q^{3}-\beta _{4}q^{4}+\cdots\) |
143.2.e.b | $6$ | $1.142$ | 6.0.3518667.1 | None | \(1\) | \(-1\) | \(-2\) | \(-5\) | \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(-3+\beta _{2}-2\beta _{3}+\cdots)q^{4}+\cdots\) |
143.2.e.c | $12$ | $1.142$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(-1\) | \(-12\) | \(3\) | \(q-\beta _{6}q^{2}+(\beta _{6}+\beta _{8})q^{3}+(-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\) |