Newspace parameters
Level: | \( N \) | \(=\) | \( 143 = 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 143.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.14186074890\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
Defining polynomial: |
\( x^{12} + 9x^{10} - 2x^{9} + 59x^{8} - 13x^{7} + 175x^{6} - 50x^{5} + 380x^{4} - 64x^{3} + 280x^{2} + 48x + 144 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 9x^{10} - 2x^{9} + 59x^{8} - 13x^{7} + 175x^{6} - 50x^{5} + 380x^{4} - 64x^{3} + 280x^{2} + 48x + 144 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 433477 \nu^{11} + 1209797 \nu^{10} - 3549502 \nu^{9} + 8605189 \nu^{8} - 25150864 \nu^{7} + 55816400 \nu^{6} - 68042765 \nu^{5} + \cdots - 736079934 ) / 321804478 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 6513113 \nu^{11} + 23332617 \nu^{10} + 26020485 \nu^{9} + 178582811 \nu^{8} + 134283553 \nu^{7} + 1222140490 \nu^{6} - 896911294 \nu^{5} + \cdots + 5403214872 ) / 3861653736 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 7065514 \nu^{11} + 107212017 \nu^{10} + 28665066 \nu^{9} + 964117505 \nu^{8} + 21141184 \nu^{7} + 5746960873 \nu^{6} + 1240962365 \nu^{5} + \cdots + 6598596768 ) / 3861653736 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 8004451 \nu^{11} + 19111125 \nu^{10} - 66838335 \nu^{9} + 173491463 \nu^{8} - 467890835 \nu^{7} + 1128351970 \nu^{6} - 1347413182 \nu^{5} + \cdots + 792512880 ) / 3861653736 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 6270543 \nu^{11} - 14271937 \nu^{10} + 52640327 \nu^{9} - 139070707 \nu^{8} + 367287379 \nu^{7} - 905086370 \nu^{6} + 1075242122 \nu^{5} + \cdots - 3736832616 ) / 1287217912 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 6370375 \nu^{11} + 1733908 \nu^{10} + 52494187 \nu^{9} + 1457258 \nu^{8} + 341431369 \nu^{7} + 17788581 \nu^{6} + 891550025 \nu^{5} + \cdots + 384213648 ) / 1287217912 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 26508257 \nu^{11} + 24694089 \nu^{10} + 156505095 \nu^{9} + 156404459 \nu^{8} + 773028499 \nu^{7} + 1155926710 \nu^{6} - 94460776 \nu^{5} + \cdots + 5595887088 ) / 3861653736 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 15688761 \nu^{11} - 26880018 \nu^{10} - 140572891 \nu^{9} - 151808712 \nu^{8} - 808207929 \nu^{7} - 854883141 \nu^{6} + \cdots + 3212162936 ) / 1287217912 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 52748602 \nu^{11} - 7877727 \nu^{10} + 529245270 \nu^{9} - 169452311 \nu^{8} + 3481751012 \nu^{7} - 1189783075 \nu^{6} + 11213080081 \nu^{5} + \cdots + 2349022944 ) / 3861653736 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 69931387 \nu^{11} - 2525721 \nu^{10} + 603909759 \nu^{9} - 161095715 \nu^{8} + 3962892875 \nu^{7} - 1008677518 \nu^{6} + 11595511594 \nu^{5} + \cdots + 3069002640 ) / 3861653736 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + 3\beta_{5} - \beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{11} + 4\beta_{7} - \beta_{3} + 1 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{9} - \beta_{8} - 7\beta_{6} - 13\beta_{5} - \beta_{4} - 12 \)
|
\(\nu^{5}\) | \(=\) |
\( 7\beta_{11} - 2\beta_{10} - 18\beta_{7} + \beta_{6} + 8\beta_{5} - \beta_{2} - 18\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -\beta_{11} + 9\beta_{10} + 9\beta_{9} + 9\beta_{8} - \beta_{3} + 41\beta_{2} + 55 \)
|
\(\nu^{7}\) | \(=\) |
\( -\beta_{9} - 19\beta_{8} - 12\beta_{6} - 51\beta_{5} - \beta_{4} + 41\beta_{3} + 86\beta _1 - 50 \)
|
\(\nu^{8}\) | \(=\) |
\( 12\beta_{11} - 61\beta_{10} - 2\beta_{7} + 228\beta_{6} + 330\beta_{5} + 59\beta_{4} - 228\beta_{2} - 2\beta_1 \)
|
\(\nu^{9}\) | \(=\) |
\( -228\beta_{11} + 132\beta_{10} + 14\beta_{9} + 132\beta_{8} + 426\beta_{7} - 228\beta_{3} + 99\beta_{2} + 293 \)
|
\(\nu^{10}\) | \(=\) |
\( -346\beta_{9} - 374\beta_{8} - 1242\beta_{6} - 1737\beta_{5} - 346\beta_{4} + 99\beta_{3} + 32\beta _1 - 1391 \)
|
\(\nu^{11}\) | \(=\) |
\( 1242 \beta_{11} - 819 \beta_{10} - 2160 \beta_{7} + 703 \beta_{6} + 1811 \beta_{5} + 127 \beta_{4} - 703 \beta_{2} - 2160 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/143\mathbb{Z}\right)^\times\).
\(n\) | \(67\) | \(79\) |
\(\chi(n)\) | \(\beta_{5}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100.1 |
|
−1.26732 | + | 2.19506i | 1.49512 | − | 2.58962i | −2.21221 | − | 3.83165i | −3.35258 | 3.78959 | + | 6.56377i | −0.959205 | − | 1.66139i | 6.14501 | −2.97076 | − | 5.14551i | 4.24880 | − | 7.35913i | ||||||||||||||||||||||||||||||||||||||||
100.2 | −0.987312 | + | 1.71007i | 0.285746 | − | 0.494927i | −0.949569 | − | 1.64470i | 1.23039 | 0.564241 | + | 0.977294i | 1.27902 | + | 2.21532i | −0.199164 | 1.33670 | + | 2.31523i | −1.21478 | + | 2.10405i | |||||||||||||||||||||||||||||||||||||||||
100.3 | −0.134198 | + | 0.232438i | −1.17558 | + | 2.03617i | 0.963982 | + | 1.66967i | −2.80787 | −0.315522 | − | 0.546500i | −1.19233 | − | 2.06518i | −1.05425 | −1.26400 | − | 2.18931i | 0.376811 | − | 0.652655i | |||||||||||||||||||||||||||||||||||||||||
100.4 | 0.249477 | − | 0.432106i | 0.120298 | − | 0.208363i | 0.875523 | + | 1.51645i | 0.581470 | −0.0600233 | − | 0.103963i | −0.705086 | − | 1.22125i | 1.87160 | 1.47106 | + | 2.54794i | 0.145063 | − | 0.251257i | |||||||||||||||||||||||||||||||||||||||||
100.5 | 0.910859 | − | 1.57765i | −1.55764 | + | 2.69791i | −0.659327 | − | 1.14199i | 0.0854874 | 2.83757 | + | 4.91482i | 2.25971 | + | 3.91393i | 1.24122 | −3.35247 | − | 5.80665i | 0.0778669 | − | 0.134869i | |||||||||||||||||||||||||||||||||||||||||
100.6 | 1.22850 | − | 2.12782i | 0.332058 | − | 0.575141i | −2.01840 | − | 3.49598i | −1.73689 | −0.815863 | − | 1.41312i | 0.817900 | + | 1.41664i | −5.00442 | 1.27948 | + | 2.21612i | −2.13376 | + | 3.69579i | |||||||||||||||||||||||||||||||||||||||||
133.1 | −1.26732 | − | 2.19506i | 1.49512 | + | 2.58962i | −2.21221 | + | 3.83165i | −3.35258 | 3.78959 | − | 6.56377i | −0.959205 | + | 1.66139i | 6.14501 | −2.97076 | + | 5.14551i | 4.24880 | + | 7.35913i | |||||||||||||||||||||||||||||||||||||||||
133.2 | −0.987312 | − | 1.71007i | 0.285746 | + | 0.494927i | −0.949569 | + | 1.64470i | 1.23039 | 0.564241 | − | 0.977294i | 1.27902 | − | 2.21532i | −0.199164 | 1.33670 | − | 2.31523i | −1.21478 | − | 2.10405i | |||||||||||||||||||||||||||||||||||||||||
133.3 | −0.134198 | − | 0.232438i | −1.17558 | − | 2.03617i | 0.963982 | − | 1.66967i | −2.80787 | −0.315522 | + | 0.546500i | −1.19233 | + | 2.06518i | −1.05425 | −1.26400 | + | 2.18931i | 0.376811 | + | 0.652655i | |||||||||||||||||||||||||||||||||||||||||
133.4 | 0.249477 | + | 0.432106i | 0.120298 | + | 0.208363i | 0.875523 | − | 1.51645i | 0.581470 | −0.0600233 | + | 0.103963i | −0.705086 | + | 1.22125i | 1.87160 | 1.47106 | − | 2.54794i | 0.145063 | + | 0.251257i | |||||||||||||||||||||||||||||||||||||||||
133.5 | 0.910859 | + | 1.57765i | −1.55764 | − | 2.69791i | −0.659327 | + | 1.14199i | 0.0854874 | 2.83757 | − | 4.91482i | 2.25971 | − | 3.91393i | 1.24122 | −3.35247 | + | 5.80665i | 0.0778669 | + | 0.134869i | |||||||||||||||||||||||||||||||||||||||||
133.6 | 1.22850 | + | 2.12782i | 0.332058 | + | 0.575141i | −2.01840 | + | 3.49598i | −1.73689 | −0.815863 | + | 1.41312i | 0.817900 | − | 1.41664i | −5.00442 | 1.27948 | − | 2.21612i | −2.13376 | − | 3.69579i | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 143.2.e.c | ✓ | 12 |
13.c | even | 3 | 1 | inner | 143.2.e.c | ✓ | 12 |
13.c | even | 3 | 1 | 1859.2.a.k | 6 | ||
13.e | even | 6 | 1 | 1859.2.a.l | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
143.2.e.c | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
143.2.e.c | ✓ | 12 | 13.c | even | 3 | 1 | inner |
1859.2.a.k | 6 | 13.c | even | 3 | 1 | ||
1859.2.a.l | 6 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 10 T_{2}^{10} - 2 T_{2}^{9} + 76 T_{2}^{8} - 15 T_{2}^{7} + 235 T_{2}^{6} - 76 T_{2}^{5} + 551 T_{2}^{4} - 114 T_{2}^{3} + 97 T_{2}^{2} + 15 T_{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(143, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 10 T^{10} - 2 T^{9} + 76 T^{8} + \cdots + 9 \)
$3$
\( T^{12} + T^{11} + 13 T^{10} + 2 T^{9} + \cdots + 4 \)
$5$
\( (T^{6} + 6 T^{5} + 6 T^{4} - 15 T^{3} - 14 T^{2} + \cdots - 1)^{2} \)
$7$
\( T^{12} - 3 T^{11} + 25 T^{10} + \cdots + 14884 \)
$11$
\( (T^{2} - T + 1)^{6} \)
$13$
\( T^{12} + 4 T^{11} + 17 T^{10} + \cdots + 4826809 \)
$17$
\( T^{12} + 2 T^{11} + 38 T^{10} + \cdots + 19321 \)
$19$
\( T^{12} - 10 T^{11} + 109 T^{10} + \cdots + 91204 \)
$23$
\( T^{12} + 3 T^{11} + 65 T^{10} + \cdots + 350464 \)
$29$
\( T^{12} + 3 T^{11} + 135 T^{10} + \cdots + 395651881 \)
$31$
\( (T^{6} + 5 T^{5} - 31 T^{4} - 57 T^{3} + \cdots + 120)^{2} \)
$37$
\( T^{12} - 25 T^{11} + 449 T^{10} + \cdots + 26739241 \)
$41$
\( T^{12} - 24 T^{11} + 394 T^{10} + \cdots + 41306329 \)
$43$
\( T^{12} - 8 T^{11} + 107 T^{10} + \cdots + 2096704 \)
$47$
\( (T^{6} + 10 T^{5} - 15 T^{4} - 183 T^{3} + \cdots - 2)^{2} \)
$53$
\( (T^{6} - 10 T^{5} - 156 T^{4} + 1997 T^{3} + \cdots + 121)^{2} \)
$59$
\( T^{12} + 4 T^{11} + 165 T^{10} + \cdots + 338486404 \)
$61$
\( T^{12} - 21 T^{11} + 297 T^{10} + \cdots + 429025 \)
$67$
\( T^{12} - 21 T^{11} + 347 T^{10} + \cdots + 8868484 \)
$71$
\( T^{12} + 3 T^{11} + \cdots + 10252777536 \)
$73$
\( (T^{6} + 13 T^{5} + 49 T^{4} + 5 T^{3} + \cdots + 296)^{2} \)
$79$
\( (T^{6} + 4 T^{5} - 408 T^{4} + \cdots - 1572016)^{2} \)
$83$
\( (T^{6} + 8 T^{5} - 177 T^{4} - 397 T^{3} + \cdots - 12114)^{2} \)
$89$
\( T^{12} + 9 T^{11} + \cdots + 420375876496 \)
$97$
\( T^{12} - 15 T^{11} + 492 T^{10} + \cdots + 58186384 \)
show more
show less