Properties

Label 1425.2.c.m.799.2
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,-2,0,0,-4,0,-16,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.2
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.m.799.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034i q^{2} +1.00000i q^{3} +1.61803 q^{4} +0.618034 q^{6} -2.23607i q^{7} -2.23607i q^{8} -1.00000 q^{9} -4.00000 q^{11} +1.61803i q^{12} -6.47214i q^{13} -1.38197 q^{14} +1.85410 q^{16} +1.23607i q^{17} +0.618034i q^{18} +1.00000 q^{19} +2.23607 q^{21} +2.47214i q^{22} -3.23607i q^{23} +2.23607 q^{24} -4.00000 q^{26} -1.00000i q^{27} -3.61803i q^{28} -7.47214 q^{29} -10.4721 q^{31} -5.61803i q^{32} -4.00000i q^{33} +0.763932 q^{34} -1.61803 q^{36} +2.76393i q^{37} -0.618034i q^{38} +6.47214 q^{39} -5.00000 q^{41} -1.38197i q^{42} -4.00000i q^{43} -6.47214 q^{44} -2.00000 q^{46} +0.472136i q^{47} +1.85410i q^{48} +2.00000 q^{49} -1.23607 q^{51} -10.4721i q^{52} +5.00000i q^{53} -0.618034 q^{54} -5.00000 q^{56} +1.00000i q^{57} +4.61803i q^{58} +14.7082 q^{59} +7.94427 q^{61} +6.47214i q^{62} +2.23607i q^{63} +0.236068 q^{64} -2.47214 q^{66} -10.9443i q^{67} +2.00000i q^{68} +3.23607 q^{69} +9.18034 q^{71} +2.23607i q^{72} -3.47214i q^{73} +1.70820 q^{74} +1.61803 q^{76} +8.94427i q^{77} -4.00000i q^{78} +2.29180 q^{79} +1.00000 q^{81} +3.09017i q^{82} +6.94427i q^{83} +3.61803 q^{84} -2.47214 q^{86} -7.47214i q^{87} +8.94427i q^{88} +9.94427 q^{89} -14.4721 q^{91} -5.23607i q^{92} -10.4721i q^{93} +0.291796 q^{94} +5.61803 q^{96} -1.70820i q^{97} -1.23607i q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} - 4 q^{9} - 16 q^{11} - 10 q^{14} - 6 q^{16} + 4 q^{19} - 16 q^{26} - 12 q^{29} - 24 q^{31} + 12 q^{34} - 2 q^{36} + 8 q^{39} - 20 q^{41} - 8 q^{44} - 8 q^{46} + 8 q^{49} + 4 q^{51}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.618034i − 0.437016i −0.975835 0.218508i \(-0.929881\pi\)
0.975835 0.218508i \(-0.0701190\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.61803 0.809017
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) − 2.23607i − 0.845154i −0.906327 0.422577i \(-0.861126\pi\)
0.906327 0.422577i \(-0.138874\pi\)
\(8\) − 2.23607i − 0.790569i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.61803i 0.467086i
\(13\) − 6.47214i − 1.79505i −0.440966 0.897524i \(-0.645364\pi\)
0.440966 0.897524i \(-0.354636\pi\)
\(14\) −1.38197 −0.369346
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 1.23607i 0.299791i 0.988702 + 0.149895i \(0.0478936\pi\)
−0.988702 + 0.149895i \(0.952106\pi\)
\(18\) 0.618034i 0.145672i
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 2.23607 0.487950
\(22\) 2.47214i 0.527061i
\(23\) − 3.23607i − 0.674767i −0.941367 0.337383i \(-0.890458\pi\)
0.941367 0.337383i \(-0.109542\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) − 1.00000i − 0.192450i
\(28\) − 3.61803i − 0.683744i
\(29\) −7.47214 −1.38754 −0.693770 0.720196i \(-0.744052\pi\)
−0.693770 + 0.720196i \(0.744052\pi\)
\(30\) 0 0
\(31\) −10.4721 −1.88085 −0.940426 0.340000i \(-0.889573\pi\)
−0.940426 + 0.340000i \(0.889573\pi\)
\(32\) − 5.61803i − 0.993137i
\(33\) − 4.00000i − 0.696311i
\(34\) 0.763932 0.131013
\(35\) 0 0
\(36\) −1.61803 −0.269672
\(37\) 2.76393i 0.454388i 0.973850 + 0.227194i \(0.0729551\pi\)
−0.973850 + 0.227194i \(0.927045\pi\)
\(38\) − 0.618034i − 0.100258i
\(39\) 6.47214 1.03637
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) − 1.38197i − 0.213242i
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −6.47214 −0.975711
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 0.472136i 0.0688681i 0.999407 + 0.0344341i \(0.0109629\pi\)
−0.999407 + 0.0344341i \(0.989037\pi\)
\(48\) 1.85410i 0.267617i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −1.23607 −0.173084
\(52\) − 10.4721i − 1.45222i
\(53\) 5.00000i 0.686803i 0.939189 + 0.343401i \(0.111579\pi\)
−0.939189 + 0.343401i \(0.888421\pi\)
\(54\) −0.618034 −0.0841038
\(55\) 0 0
\(56\) −5.00000 −0.668153
\(57\) 1.00000i 0.132453i
\(58\) 4.61803i 0.606378i
\(59\) 14.7082 1.91485 0.957423 0.288690i \(-0.0932198\pi\)
0.957423 + 0.288690i \(0.0932198\pi\)
\(60\) 0 0
\(61\) 7.94427 1.01716 0.508580 0.861015i \(-0.330171\pi\)
0.508580 + 0.861015i \(0.330171\pi\)
\(62\) 6.47214i 0.821962i
\(63\) 2.23607i 0.281718i
\(64\) 0.236068 0.0295085
\(65\) 0 0
\(66\) −2.47214 −0.304299
\(67\) − 10.9443i − 1.33706i −0.743687 0.668528i \(-0.766925\pi\)
0.743687 0.668528i \(-0.233075\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 3.23607 0.389577
\(70\) 0 0
\(71\) 9.18034 1.08951 0.544753 0.838597i \(-0.316623\pi\)
0.544753 + 0.838597i \(0.316623\pi\)
\(72\) 2.23607i 0.263523i
\(73\) − 3.47214i − 0.406383i −0.979139 0.203191i \(-0.934869\pi\)
0.979139 0.203191i \(-0.0651314\pi\)
\(74\) 1.70820 0.198575
\(75\) 0 0
\(76\) 1.61803 0.185601
\(77\) 8.94427i 1.01929i
\(78\) − 4.00000i − 0.452911i
\(79\) 2.29180 0.257847 0.128924 0.991655i \(-0.458848\pi\)
0.128924 + 0.991655i \(0.458848\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 3.09017i 0.341252i
\(83\) 6.94427i 0.762233i 0.924527 + 0.381116i \(0.124460\pi\)
−0.924527 + 0.381116i \(0.875540\pi\)
\(84\) 3.61803 0.394760
\(85\) 0 0
\(86\) −2.47214 −0.266577
\(87\) − 7.47214i − 0.801097i
\(88\) 8.94427i 0.953463i
\(89\) 9.94427 1.05409 0.527045 0.849837i \(-0.323300\pi\)
0.527045 + 0.849837i \(0.323300\pi\)
\(90\) 0 0
\(91\) −14.4721 −1.51709
\(92\) − 5.23607i − 0.545898i
\(93\) − 10.4721i − 1.08591i
\(94\) 0.291796 0.0300965
\(95\) 0 0
\(96\) 5.61803 0.573388
\(97\) − 1.70820i − 0.173442i −0.996233 0.0867209i \(-0.972361\pi\)
0.996233 0.0867209i \(-0.0276388\pi\)
\(98\) − 1.23607i − 0.124862i
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −14.1803 −1.41100 −0.705498 0.708712i \(-0.749277\pi\)
−0.705498 + 0.708712i \(0.749277\pi\)
\(102\) 0.763932i 0.0756405i
\(103\) − 16.9443i − 1.66957i −0.550577 0.834784i \(-0.685592\pi\)
0.550577 0.834784i \(-0.314408\pi\)
\(104\) −14.4721 −1.41911
\(105\) 0 0
\(106\) 3.09017 0.300144
\(107\) − 16.2361i − 1.56960i −0.619749 0.784800i \(-0.712766\pi\)
0.619749 0.784800i \(-0.287234\pi\)
\(108\) − 1.61803i − 0.155695i
\(109\) 7.70820 0.738312 0.369156 0.929367i \(-0.379647\pi\)
0.369156 + 0.929367i \(0.379647\pi\)
\(110\) 0 0
\(111\) −2.76393 −0.262341
\(112\) − 4.14590i − 0.391751i
\(113\) 12.4721i 1.17328i 0.809848 + 0.586640i \(0.199550\pi\)
−0.809848 + 0.586640i \(0.800450\pi\)
\(114\) 0.618034 0.0578842
\(115\) 0 0
\(116\) −12.0902 −1.12254
\(117\) 6.47214i 0.598349i
\(118\) − 9.09017i − 0.836818i
\(119\) 2.76393 0.253369
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 4.90983i − 0.444515i
\(123\) − 5.00000i − 0.450835i
\(124\) −16.9443 −1.52164
\(125\) 0 0
\(126\) 1.38197 0.123115
\(127\) 10.7639i 0.955145i 0.878592 + 0.477572i \(0.158483\pi\)
−0.878592 + 0.477572i \(0.841517\pi\)
\(128\) − 11.3820i − 1.00603i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −6.94427 −0.606724 −0.303362 0.952875i \(-0.598109\pi\)
−0.303362 + 0.952875i \(0.598109\pi\)
\(132\) − 6.47214i − 0.563327i
\(133\) − 2.23607i − 0.193892i
\(134\) −6.76393 −0.584315
\(135\) 0 0
\(136\) 2.76393 0.237005
\(137\) 4.29180i 0.366673i 0.983050 + 0.183336i \(0.0586898\pi\)
−0.983050 + 0.183336i \(0.941310\pi\)
\(138\) − 2.00000i − 0.170251i
\(139\) 15.7639 1.33708 0.668540 0.743677i \(-0.266920\pi\)
0.668540 + 0.743677i \(0.266920\pi\)
\(140\) 0 0
\(141\) −0.472136 −0.0397610
\(142\) − 5.67376i − 0.476132i
\(143\) 25.8885i 2.16491i
\(144\) −1.85410 −0.154508
\(145\) 0 0
\(146\) −2.14590 −0.177596
\(147\) 2.00000i 0.164957i
\(148\) 4.47214i 0.367607i
\(149\) 19.4164 1.59065 0.795327 0.606181i \(-0.207299\pi\)
0.795327 + 0.606181i \(0.207299\pi\)
\(150\) 0 0
\(151\) 11.7082 0.952800 0.476400 0.879229i \(-0.341941\pi\)
0.476400 + 0.879229i \(0.341941\pi\)
\(152\) − 2.23607i − 0.181369i
\(153\) − 1.23607i − 0.0999302i
\(154\) 5.52786 0.445448
\(155\) 0 0
\(156\) 10.4721 0.838442
\(157\) 7.00000i 0.558661i 0.960195 + 0.279330i \(0.0901125\pi\)
−0.960195 + 0.279330i \(0.909888\pi\)
\(158\) − 1.41641i − 0.112683i
\(159\) −5.00000 −0.396526
\(160\) 0 0
\(161\) −7.23607 −0.570282
\(162\) − 0.618034i − 0.0485573i
\(163\) 11.1803i 0.875712i 0.899045 + 0.437856i \(0.144262\pi\)
−0.899045 + 0.437856i \(0.855738\pi\)
\(164\) −8.09017 −0.631736
\(165\) 0 0
\(166\) 4.29180 0.333108
\(167\) − 24.5967i − 1.90335i −0.307102 0.951677i \(-0.599359\pi\)
0.307102 0.951677i \(-0.400641\pi\)
\(168\) − 5.00000i − 0.385758i
\(169\) −28.8885 −2.22220
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) − 6.47214i − 0.493496i
\(173\) 13.4721i 1.02427i 0.858906 + 0.512134i \(0.171145\pi\)
−0.858906 + 0.512134i \(0.828855\pi\)
\(174\) −4.61803 −0.350092
\(175\) 0 0
\(176\) −7.41641 −0.559033
\(177\) 14.7082i 1.10554i
\(178\) − 6.14590i − 0.460655i
\(179\) −22.1246 −1.65367 −0.826836 0.562444i \(-0.809861\pi\)
−0.826836 + 0.562444i \(0.809861\pi\)
\(180\) 0 0
\(181\) 10.4721 0.778388 0.389194 0.921156i \(-0.372754\pi\)
0.389194 + 0.921156i \(0.372754\pi\)
\(182\) 8.94427i 0.662994i
\(183\) 7.94427i 0.587257i
\(184\) −7.23607 −0.533450
\(185\) 0 0
\(186\) −6.47214 −0.474560
\(187\) − 4.94427i − 0.361561i
\(188\) 0.763932i 0.0557155i
\(189\) −2.23607 −0.162650
\(190\) 0 0
\(191\) 7.41641 0.536632 0.268316 0.963331i \(-0.413533\pi\)
0.268316 + 0.963331i \(0.413533\pi\)
\(192\) 0.236068i 0.0170367i
\(193\) 3.23607i 0.232937i 0.993194 + 0.116469i \(0.0371574\pi\)
−0.993194 + 0.116469i \(0.962843\pi\)
\(194\) −1.05573 −0.0757969
\(195\) 0 0
\(196\) 3.23607 0.231148
\(197\) − 22.6525i − 1.61392i −0.590605 0.806961i \(-0.701111\pi\)
0.590605 0.806961i \(-0.298889\pi\)
\(198\) − 2.47214i − 0.175687i
\(199\) −1.76393 −0.125042 −0.0625209 0.998044i \(-0.519914\pi\)
−0.0625209 + 0.998044i \(0.519914\pi\)
\(200\) 0 0
\(201\) 10.9443 0.771949
\(202\) 8.76393i 0.616628i
\(203\) 16.7082i 1.17269i
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) −10.4721 −0.729628
\(207\) 3.23607i 0.224922i
\(208\) − 12.0000i − 0.832050i
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 5.81966 0.400642 0.200321 0.979730i \(-0.435802\pi\)
0.200321 + 0.979730i \(0.435802\pi\)
\(212\) 8.09017i 0.555635i
\(213\) 9.18034i 0.629027i
\(214\) −10.0344 −0.685940
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) 23.4164i 1.58961i
\(218\) − 4.76393i − 0.322654i
\(219\) 3.47214 0.234625
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 1.70820i 0.114647i
\(223\) − 9.23607i − 0.618493i −0.950982 0.309246i \(-0.899923\pi\)
0.950982 0.309246i \(-0.100077\pi\)
\(224\) −12.5623 −0.839354
\(225\) 0 0
\(226\) 7.70820 0.512742
\(227\) 28.1246i 1.86670i 0.358973 + 0.933348i \(0.383127\pi\)
−0.358973 + 0.933348i \(0.616873\pi\)
\(228\) 1.61803i 0.107157i
\(229\) 4.47214 0.295527 0.147764 0.989023i \(-0.452793\pi\)
0.147764 + 0.989023i \(0.452793\pi\)
\(230\) 0 0
\(231\) −8.94427 −0.588490
\(232\) 16.7082i 1.09695i
\(233\) − 2.94427i − 0.192886i −0.995339 0.0964428i \(-0.969254\pi\)
0.995339 0.0964428i \(-0.0307465\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) 23.7984 1.54914
\(237\) 2.29180i 0.148868i
\(238\) − 1.70820i − 0.110726i
\(239\) −0.291796 −0.0188747 −0.00943736 0.999955i \(-0.503004\pi\)
−0.00943736 + 0.999955i \(0.503004\pi\)
\(240\) 0 0
\(241\) −16.1803 −1.04227 −0.521134 0.853475i \(-0.674491\pi\)
−0.521134 + 0.853475i \(0.674491\pi\)
\(242\) − 3.09017i − 0.198644i
\(243\) 1.00000i 0.0641500i
\(244\) 12.8541 0.822900
\(245\) 0 0
\(246\) −3.09017 −0.197022
\(247\) − 6.47214i − 0.411812i
\(248\) 23.4164i 1.48694i
\(249\) −6.94427 −0.440075
\(250\) 0 0
\(251\) 3.70820 0.234060 0.117030 0.993128i \(-0.462663\pi\)
0.117030 + 0.993128i \(0.462663\pi\)
\(252\) 3.61803i 0.227915i
\(253\) 12.9443i 0.813799i
\(254\) 6.65248 0.417413
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) − 13.0000i − 0.810918i −0.914113 0.405459i \(-0.867112\pi\)
0.914113 0.405459i \(-0.132888\pi\)
\(258\) − 2.47214i − 0.153908i
\(259\) 6.18034 0.384028
\(260\) 0 0
\(261\) 7.47214 0.462514
\(262\) 4.29180i 0.265148i
\(263\) 10.2918i 0.634619i 0.948322 + 0.317310i \(0.102779\pi\)
−0.948322 + 0.317310i \(0.897221\pi\)
\(264\) −8.94427 −0.550482
\(265\) 0 0
\(266\) −1.38197 −0.0847338
\(267\) 9.94427i 0.608580i
\(268\) − 17.7082i − 1.08170i
\(269\) −20.4721 −1.24821 −0.624104 0.781341i \(-0.714536\pi\)
−0.624104 + 0.781341i \(0.714536\pi\)
\(270\) 0 0
\(271\) 3.18034 0.193192 0.0965959 0.995324i \(-0.469205\pi\)
0.0965959 + 0.995324i \(0.469205\pi\)
\(272\) 2.29180i 0.138961i
\(273\) − 14.4721i − 0.875894i
\(274\) 2.65248 0.160242
\(275\) 0 0
\(276\) 5.23607 0.315174
\(277\) 5.58359i 0.335486i 0.985831 + 0.167743i \(0.0536478\pi\)
−0.985831 + 0.167743i \(0.946352\pi\)
\(278\) − 9.74265i − 0.584325i
\(279\) 10.4721 0.626950
\(280\) 0 0
\(281\) 7.88854 0.470591 0.235296 0.971924i \(-0.424394\pi\)
0.235296 + 0.971924i \(0.424394\pi\)
\(282\) 0.291796i 0.0173762i
\(283\) − 9.88854i − 0.587813i −0.955834 0.293906i \(-0.905045\pi\)
0.955834 0.293906i \(-0.0949554\pi\)
\(284\) 14.8541 0.881429
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) 11.1803i 0.659955i
\(288\) 5.61803i 0.331046i
\(289\) 15.4721 0.910126
\(290\) 0 0
\(291\) 1.70820 0.100137
\(292\) − 5.61803i − 0.328771i
\(293\) − 2.00000i − 0.116841i −0.998292 0.0584206i \(-0.981394\pi\)
0.998292 0.0584206i \(-0.0186065\pi\)
\(294\) 1.23607 0.0720889
\(295\) 0 0
\(296\) 6.18034 0.359225
\(297\) 4.00000i 0.232104i
\(298\) − 12.0000i − 0.695141i
\(299\) −20.9443 −1.21124
\(300\) 0 0
\(301\) −8.94427 −0.515539
\(302\) − 7.23607i − 0.416389i
\(303\) − 14.1803i − 0.814639i
\(304\) 1.85410 0.106340
\(305\) 0 0
\(306\) −0.763932 −0.0436711
\(307\) − 3.05573i − 0.174400i −0.996191 0.0871998i \(-0.972208\pi\)
0.996191 0.0871998i \(-0.0277919\pi\)
\(308\) 14.4721i 0.824626i
\(309\) 16.9443 0.963926
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) − 14.4721i − 0.819323i
\(313\) 30.9443i 1.74907i 0.484959 + 0.874537i \(0.338834\pi\)
−0.484959 + 0.874537i \(0.661166\pi\)
\(314\) 4.32624 0.244144
\(315\) 0 0
\(316\) 3.70820 0.208603
\(317\) − 7.94427i − 0.446195i −0.974796 0.223097i \(-0.928383\pi\)
0.974796 0.223097i \(-0.0716168\pi\)
\(318\) 3.09017i 0.173288i
\(319\) 29.8885 1.67344
\(320\) 0 0
\(321\) 16.2361 0.906209
\(322\) 4.47214i 0.249222i
\(323\) 1.23607i 0.0687767i
\(324\) 1.61803 0.0898908
\(325\) 0 0
\(326\) 6.90983 0.382700
\(327\) 7.70820i 0.426265i
\(328\) 11.1803i 0.617331i
\(329\) 1.05573 0.0582042
\(330\) 0 0
\(331\) −26.3607 −1.44891 −0.724457 0.689320i \(-0.757909\pi\)
−0.724457 + 0.689320i \(0.757909\pi\)
\(332\) 11.2361i 0.616659i
\(333\) − 2.76393i − 0.151463i
\(334\) −15.2016 −0.831796
\(335\) 0 0
\(336\) 4.14590 0.226177
\(337\) − 8.47214i − 0.461507i −0.973012 0.230753i \(-0.925881\pi\)
0.973012 0.230753i \(-0.0741190\pi\)
\(338\) 17.8541i 0.971135i
\(339\) −12.4721 −0.677393
\(340\) 0 0
\(341\) 41.8885 2.26839
\(342\) 0.618034i 0.0334195i
\(343\) − 20.1246i − 1.08663i
\(344\) −8.94427 −0.482243
\(345\) 0 0
\(346\) 8.32624 0.447621
\(347\) − 1.70820i − 0.0917012i −0.998948 0.0458506i \(-0.985400\pi\)
0.998948 0.0458506i \(-0.0145998\pi\)
\(348\) − 12.0902i − 0.648101i
\(349\) 17.8328 0.954569 0.477284 0.878749i \(-0.341621\pi\)
0.477284 + 0.878749i \(0.341621\pi\)
\(350\) 0 0
\(351\) −6.47214 −0.345457
\(352\) 22.4721i 1.19777i
\(353\) 26.4721i 1.40897i 0.709719 + 0.704485i \(0.248822\pi\)
−0.709719 + 0.704485i \(0.751178\pi\)
\(354\) 9.09017 0.483137
\(355\) 0 0
\(356\) 16.0902 0.852777
\(357\) 2.76393i 0.146283i
\(358\) 13.6738i 0.722681i
\(359\) 25.2361 1.33191 0.665954 0.745992i \(-0.268025\pi\)
0.665954 + 0.745992i \(0.268025\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 6.47214i − 0.340168i
\(363\) 5.00000i 0.262432i
\(364\) −23.4164 −1.22735
\(365\) 0 0
\(366\) 4.90983 0.256641
\(367\) 33.3050i 1.73850i 0.494369 + 0.869252i \(0.335399\pi\)
−0.494369 + 0.869252i \(0.664601\pi\)
\(368\) − 6.00000i − 0.312772i
\(369\) 5.00000 0.260290
\(370\) 0 0
\(371\) 11.1803 0.580454
\(372\) − 16.9443i − 0.878520i
\(373\) − 12.1803i − 0.630674i −0.948980 0.315337i \(-0.897882\pi\)
0.948980 0.315337i \(-0.102118\pi\)
\(374\) −3.05573 −0.158008
\(375\) 0 0
\(376\) 1.05573 0.0544450
\(377\) 48.3607i 2.49070i
\(378\) 1.38197i 0.0710807i
\(379\) −6.76393 −0.347440 −0.173720 0.984795i \(-0.555579\pi\)
−0.173720 + 0.984795i \(0.555579\pi\)
\(380\) 0 0
\(381\) −10.7639 −0.551453
\(382\) − 4.58359i − 0.234517i
\(383\) − 16.1246i − 0.823929i −0.911200 0.411965i \(-0.864843\pi\)
0.911200 0.411965i \(-0.135157\pi\)
\(384\) 11.3820 0.580834
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 4.00000i 0.203331i
\(388\) − 2.76393i − 0.140317i
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) − 4.47214i − 0.225877i
\(393\) − 6.94427i − 0.350292i
\(394\) −14.0000 −0.705310
\(395\) 0 0
\(396\) 6.47214 0.325237
\(397\) 22.3607i 1.12225i 0.827731 + 0.561125i \(0.189631\pi\)
−0.827731 + 0.561125i \(0.810369\pi\)
\(398\) 1.09017i 0.0546453i
\(399\) 2.23607 0.111943
\(400\) 0 0
\(401\) −20.8328 −1.04034 −0.520171 0.854062i \(-0.674132\pi\)
−0.520171 + 0.854062i \(0.674132\pi\)
\(402\) − 6.76393i − 0.337354i
\(403\) 67.7771i 3.37622i
\(404\) −22.9443 −1.14152
\(405\) 0 0
\(406\) 10.3262 0.512483
\(407\) − 11.0557i − 0.548012i
\(408\) 2.76393i 0.136835i
\(409\) −8.76393 −0.433349 −0.216674 0.976244i \(-0.569521\pi\)
−0.216674 + 0.976244i \(0.569521\pi\)
\(410\) 0 0
\(411\) −4.29180 −0.211699
\(412\) − 27.4164i − 1.35071i
\(413\) − 32.8885i − 1.61834i
\(414\) 2.00000 0.0982946
\(415\) 0 0
\(416\) −36.3607 −1.78273
\(417\) 15.7639i 0.771963i
\(418\) 2.47214i 0.120916i
\(419\) −39.3050 −1.92017 −0.960086 0.279704i \(-0.909764\pi\)
−0.960086 + 0.279704i \(0.909764\pi\)
\(420\) 0 0
\(421\) 11.5279 0.561834 0.280917 0.959732i \(-0.409361\pi\)
0.280917 + 0.959732i \(0.409361\pi\)
\(422\) − 3.59675i − 0.175087i
\(423\) − 0.472136i − 0.0229560i
\(424\) 11.1803 0.542965
\(425\) 0 0
\(426\) 5.67376 0.274895
\(427\) − 17.7639i − 0.859657i
\(428\) − 26.2705i − 1.26983i
\(429\) −25.8885 −1.24991
\(430\) 0 0
\(431\) −5.18034 −0.249528 −0.124764 0.992186i \(-0.539817\pi\)
−0.124764 + 0.992186i \(0.539817\pi\)
\(432\) − 1.85410i − 0.0892055i
\(433\) 19.5279i 0.938449i 0.883079 + 0.469225i \(0.155467\pi\)
−0.883079 + 0.469225i \(0.844533\pi\)
\(434\) 14.4721 0.694685
\(435\) 0 0
\(436\) 12.4721 0.597307
\(437\) − 3.23607i − 0.154802i
\(438\) − 2.14590i − 0.102535i
\(439\) 16.7639 0.800099 0.400049 0.916494i \(-0.368993\pi\)
0.400049 + 0.916494i \(0.368993\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) − 4.94427i − 0.235175i
\(443\) − 13.4164i − 0.637433i −0.947850 0.318716i \(-0.896748\pi\)
0.947850 0.318716i \(-0.103252\pi\)
\(444\) −4.47214 −0.212238
\(445\) 0 0
\(446\) −5.70820 −0.270291
\(447\) 19.4164i 0.918365i
\(448\) − 0.527864i − 0.0249392i
\(449\) 25.4721 1.20210 0.601052 0.799210i \(-0.294748\pi\)
0.601052 + 0.799210i \(0.294748\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 20.1803i 0.949203i
\(453\) 11.7082i 0.550099i
\(454\) 17.3820 0.815776
\(455\) 0 0
\(456\) 2.23607 0.104713
\(457\) 8.88854i 0.415789i 0.978151 + 0.207894i \(0.0666610\pi\)
−0.978151 + 0.207894i \(0.933339\pi\)
\(458\) − 2.76393i − 0.129150i
\(459\) 1.23607 0.0576947
\(460\) 0 0
\(461\) −1.81966 −0.0847500 −0.0423750 0.999102i \(-0.513492\pi\)
−0.0423750 + 0.999102i \(0.513492\pi\)
\(462\) 5.52786i 0.257180i
\(463\) − 8.58359i − 0.398913i −0.979907 0.199457i \(-0.936082\pi\)
0.979907 0.199457i \(-0.0639177\pi\)
\(464\) −13.8541 −0.643161
\(465\) 0 0
\(466\) −1.81966 −0.0842941
\(467\) − 26.1803i − 1.21148i −0.795662 0.605741i \(-0.792877\pi\)
0.795662 0.605741i \(-0.207123\pi\)
\(468\) 10.4721i 0.484075i
\(469\) −24.4721 −1.13002
\(470\) 0 0
\(471\) −7.00000 −0.322543
\(472\) − 32.8885i − 1.51382i
\(473\) 16.0000i 0.735681i
\(474\) 1.41641 0.0650578
\(475\) 0 0
\(476\) 4.47214 0.204980
\(477\) − 5.00000i − 0.228934i
\(478\) 0.180340i 0.00824855i
\(479\) 38.7639 1.77117 0.885585 0.464478i \(-0.153758\pi\)
0.885585 + 0.464478i \(0.153758\pi\)
\(480\) 0 0
\(481\) 17.8885 0.815647
\(482\) 10.0000i 0.455488i
\(483\) − 7.23607i − 0.329252i
\(484\) 8.09017 0.367735
\(485\) 0 0
\(486\) 0.618034 0.0280346
\(487\) 24.0000i 1.08754i 0.839233 + 0.543772i \(0.183004\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) − 17.7639i − 0.804135i
\(489\) −11.1803 −0.505592
\(490\) 0 0
\(491\) −8.29180 −0.374204 −0.187102 0.982341i \(-0.559909\pi\)
−0.187102 + 0.982341i \(0.559909\pi\)
\(492\) − 8.09017i − 0.364733i
\(493\) − 9.23607i − 0.415972i
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −19.4164 −0.871822
\(497\) − 20.5279i − 0.920801i
\(498\) 4.29180i 0.192320i
\(499\) 31.1803 1.39582 0.697912 0.716184i \(-0.254113\pi\)
0.697912 + 0.716184i \(0.254113\pi\)
\(500\) 0 0
\(501\) 24.5967 1.09890
\(502\) − 2.29180i − 0.102288i
\(503\) 9.52786i 0.424826i 0.977180 + 0.212413i \(0.0681323\pi\)
−0.977180 + 0.212413i \(0.931868\pi\)
\(504\) 5.00000 0.222718
\(505\) 0 0
\(506\) 8.00000 0.355643
\(507\) − 28.8885i − 1.28299i
\(508\) 17.4164i 0.772728i
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) −7.76393 −0.343456
\(512\) − 18.7082i − 0.826794i
\(513\) − 1.00000i − 0.0441511i
\(514\) −8.03444 −0.354384
\(515\) 0 0
\(516\) 6.47214 0.284920
\(517\) − 1.88854i − 0.0830581i
\(518\) − 3.81966i − 0.167826i
\(519\) −13.4721 −0.591361
\(520\) 0 0
\(521\) −35.8328 −1.56986 −0.784932 0.619582i \(-0.787302\pi\)
−0.784932 + 0.619582i \(0.787302\pi\)
\(522\) − 4.61803i − 0.202126i
\(523\) − 41.1246i − 1.79825i −0.437688 0.899127i \(-0.644203\pi\)
0.437688 0.899127i \(-0.355797\pi\)
\(524\) −11.2361 −0.490850
\(525\) 0 0
\(526\) 6.36068 0.277339
\(527\) − 12.9443i − 0.563861i
\(528\) − 7.41641i − 0.322758i
\(529\) 12.5279 0.544690
\(530\) 0 0
\(531\) −14.7082 −0.638282
\(532\) − 3.61803i − 0.156862i
\(533\) 32.3607i 1.40170i
\(534\) 6.14590 0.265959
\(535\) 0 0
\(536\) −24.4721 −1.05704
\(537\) − 22.1246i − 0.954747i
\(538\) 12.6525i 0.545487i
\(539\) −8.00000 −0.344584
\(540\) 0 0
\(541\) 24.8328 1.06765 0.533823 0.845596i \(-0.320755\pi\)
0.533823 + 0.845596i \(0.320755\pi\)
\(542\) − 1.96556i − 0.0844280i
\(543\) 10.4721i 0.449402i
\(544\) 6.94427 0.297733
\(545\) 0 0
\(546\) −8.94427 −0.382780
\(547\) − 7.70820i − 0.329579i −0.986329 0.164790i \(-0.947306\pi\)
0.986329 0.164790i \(-0.0526945\pi\)
\(548\) 6.94427i 0.296645i
\(549\) −7.94427 −0.339053
\(550\) 0 0
\(551\) −7.47214 −0.318324
\(552\) − 7.23607i − 0.307988i
\(553\) − 5.12461i − 0.217921i
\(554\) 3.45085 0.146613
\(555\) 0 0
\(556\) 25.5066 1.08172
\(557\) − 33.8885i − 1.43590i −0.696093 0.717952i \(-0.745080\pi\)
0.696093 0.717952i \(-0.254920\pi\)
\(558\) − 6.47214i − 0.273987i
\(559\) −25.8885 −1.09497
\(560\) 0 0
\(561\) 4.94427 0.208747
\(562\) − 4.87539i − 0.205656i
\(563\) − 23.6525i − 0.996833i −0.866938 0.498417i \(-0.833915\pi\)
0.866938 0.498417i \(-0.166085\pi\)
\(564\) −0.763932 −0.0321673
\(565\) 0 0
\(566\) −6.11146 −0.256884
\(567\) − 2.23607i − 0.0939060i
\(568\) − 20.5279i − 0.861330i
\(569\) 20.8885 0.875693 0.437847 0.899050i \(-0.355741\pi\)
0.437847 + 0.899050i \(0.355741\pi\)
\(570\) 0 0
\(571\) −15.6525 −0.655036 −0.327518 0.944845i \(-0.606212\pi\)
−0.327518 + 0.944845i \(0.606212\pi\)
\(572\) 41.8885i 1.75145i
\(573\) 7.41641i 0.309825i
\(574\) 6.90983 0.288411
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) − 1.41641i − 0.0589658i −0.999565 0.0294829i \(-0.990614\pi\)
0.999565 0.0294829i \(-0.00938606\pi\)
\(578\) − 9.56231i − 0.397739i
\(579\) −3.23607 −0.134486
\(580\) 0 0
\(581\) 15.5279 0.644204
\(582\) − 1.05573i − 0.0437613i
\(583\) − 20.0000i − 0.828315i
\(584\) −7.76393 −0.321274
\(585\) 0 0
\(586\) −1.23607 −0.0510615
\(587\) 12.6525i 0.522224i 0.965309 + 0.261112i \(0.0840891\pi\)
−0.965309 + 0.261112i \(0.915911\pi\)
\(588\) 3.23607i 0.133453i
\(589\) −10.4721 −0.431497
\(590\) 0 0
\(591\) 22.6525 0.931798
\(592\) 5.12461i 0.210620i
\(593\) 13.8885i 0.570334i 0.958478 + 0.285167i \(0.0920491\pi\)
−0.958478 + 0.285167i \(0.907951\pi\)
\(594\) 2.47214 0.101433
\(595\) 0 0
\(596\) 31.4164 1.28687
\(597\) − 1.76393i − 0.0721929i
\(598\) 12.9443i 0.529331i
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) −35.7771 −1.45938 −0.729689 0.683779i \(-0.760335\pi\)
−0.729689 + 0.683779i \(0.760335\pi\)
\(602\) 5.52786i 0.225299i
\(603\) 10.9443i 0.445685i
\(604\) 18.9443 0.770831
\(605\) 0 0
\(606\) −8.76393 −0.356010
\(607\) − 19.1246i − 0.776244i −0.921608 0.388122i \(-0.873124\pi\)
0.921608 0.388122i \(-0.126876\pi\)
\(608\) − 5.61803i − 0.227841i
\(609\) −16.7082 −0.677051
\(610\) 0 0
\(611\) 3.05573 0.123622
\(612\) − 2.00000i − 0.0808452i
\(613\) − 23.0000i − 0.928961i −0.885583 0.464481i \(-0.846241\pi\)
0.885583 0.464481i \(-0.153759\pi\)
\(614\) −1.88854 −0.0762154
\(615\) 0 0
\(616\) 20.0000 0.805823
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) − 10.4721i − 0.421251i
\(619\) −30.7082 −1.23427 −0.617133 0.786858i \(-0.711706\pi\)
−0.617133 + 0.786858i \(0.711706\pi\)
\(620\) 0 0
\(621\) −3.23607 −0.129859
\(622\) − 2.47214i − 0.0991236i
\(623\) − 22.2361i − 0.890869i
\(624\) 12.0000 0.480384
\(625\) 0 0
\(626\) 19.1246 0.764373
\(627\) − 4.00000i − 0.159745i
\(628\) 11.3262i 0.451966i
\(629\) −3.41641 −0.136221
\(630\) 0 0
\(631\) −43.4164 −1.72838 −0.864190 0.503166i \(-0.832169\pi\)
−0.864190 + 0.503166i \(0.832169\pi\)
\(632\) − 5.12461i − 0.203846i
\(633\) 5.81966i 0.231311i
\(634\) −4.90983 −0.194994
\(635\) 0 0
\(636\) −8.09017 −0.320796
\(637\) − 12.9443i − 0.512871i
\(638\) − 18.4721i − 0.731319i
\(639\) −9.18034 −0.363169
\(640\) 0 0
\(641\) 6.94427 0.274282 0.137141 0.990552i \(-0.456209\pi\)
0.137141 + 0.990552i \(0.456209\pi\)
\(642\) − 10.0344i − 0.396028i
\(643\) 17.1803i 0.677526i 0.940872 + 0.338763i \(0.110009\pi\)
−0.940872 + 0.338763i \(0.889991\pi\)
\(644\) −11.7082 −0.461368
\(645\) 0 0
\(646\) 0.763932 0.0300565
\(647\) 17.3050i 0.680328i 0.940366 + 0.340164i \(0.110483\pi\)
−0.940366 + 0.340164i \(0.889517\pi\)
\(648\) − 2.23607i − 0.0878410i
\(649\) −58.8328 −2.30939
\(650\) 0 0
\(651\) −23.4164 −0.917761
\(652\) 18.0902i 0.708466i
\(653\) − 25.8885i − 1.01310i −0.862211 0.506549i \(-0.830921\pi\)
0.862211 0.506549i \(-0.169079\pi\)
\(654\) 4.76393 0.186284
\(655\) 0 0
\(656\) −9.27051 −0.361953
\(657\) 3.47214i 0.135461i
\(658\) − 0.652476i − 0.0254362i
\(659\) −24.9443 −0.971691 −0.485845 0.874045i \(-0.661488\pi\)
−0.485845 + 0.874045i \(0.661488\pi\)
\(660\) 0 0
\(661\) −23.1246 −0.899443 −0.449722 0.893169i \(-0.648477\pi\)
−0.449722 + 0.893169i \(0.648477\pi\)
\(662\) 16.2918i 0.633199i
\(663\) 8.00000i 0.310694i
\(664\) 15.5279 0.602598
\(665\) 0 0
\(666\) −1.70820 −0.0661916
\(667\) 24.1803i 0.936266i
\(668\) − 39.7984i − 1.53985i
\(669\) 9.23607 0.357087
\(670\) 0 0
\(671\) −31.7771 −1.22674
\(672\) − 12.5623i − 0.484601i
\(673\) 34.2492i 1.32021i 0.751173 + 0.660105i \(0.229488\pi\)
−0.751173 + 0.660105i \(0.770512\pi\)
\(674\) −5.23607 −0.201686
\(675\) 0 0
\(676\) −46.7426 −1.79779
\(677\) 5.83282i 0.224173i 0.993698 + 0.112087i \(0.0357534\pi\)
−0.993698 + 0.112087i \(0.964247\pi\)
\(678\) 7.70820i 0.296032i
\(679\) −3.81966 −0.146585
\(680\) 0 0
\(681\) −28.1246 −1.07774
\(682\) − 25.8885i − 0.991324i
\(683\) − 8.34752i − 0.319409i −0.987165 0.159705i \(-0.948946\pi\)
0.987165 0.159705i \(-0.0510542\pi\)
\(684\) −1.61803 −0.0618671
\(685\) 0 0
\(686\) −12.4377 −0.474873
\(687\) 4.47214i 0.170623i
\(688\) − 7.41641i − 0.282748i
\(689\) 32.3607 1.23284
\(690\) 0 0
\(691\) −7.05573 −0.268413 −0.134206 0.990953i \(-0.542848\pi\)
−0.134206 + 0.990953i \(0.542848\pi\)
\(692\) 21.7984i 0.828650i
\(693\) − 8.94427i − 0.339765i
\(694\) −1.05573 −0.0400749
\(695\) 0 0
\(696\) −16.7082 −0.633323
\(697\) − 6.18034i − 0.234097i
\(698\) − 11.0213i − 0.417162i
\(699\) 2.94427 0.111363
\(700\) 0 0
\(701\) 17.3475 0.655207 0.327603 0.944815i \(-0.393759\pi\)
0.327603 + 0.944815i \(0.393759\pi\)
\(702\) 4.00000i 0.150970i
\(703\) 2.76393i 0.104244i
\(704\) −0.944272 −0.0355886
\(705\) 0 0
\(706\) 16.3607 0.615742
\(707\) 31.7082i 1.19251i
\(708\) 23.7984i 0.894398i
\(709\) 40.4164 1.51787 0.758935 0.651166i \(-0.225720\pi\)
0.758935 + 0.651166i \(0.225720\pi\)
\(710\) 0 0
\(711\) −2.29180 −0.0859491
\(712\) − 22.2361i − 0.833332i
\(713\) 33.8885i 1.26914i
\(714\) 1.70820 0.0639279
\(715\) 0 0
\(716\) −35.7984 −1.33785
\(717\) − 0.291796i − 0.0108973i
\(718\) − 15.5967i − 0.582065i
\(719\) 37.5279 1.39955 0.699777 0.714362i \(-0.253283\pi\)
0.699777 + 0.714362i \(0.253283\pi\)
\(720\) 0 0
\(721\) −37.8885 −1.41104
\(722\) − 0.618034i − 0.0230008i
\(723\) − 16.1803i − 0.601753i
\(724\) 16.9443 0.629729
\(725\) 0 0
\(726\) 3.09017 0.114687
\(727\) − 15.7639i − 0.584652i −0.956319 0.292326i \(-0.905571\pi\)
0.956319 0.292326i \(-0.0944292\pi\)
\(728\) 32.3607i 1.19937i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.94427 0.182871
\(732\) 12.8541i 0.475101i
\(733\) 12.4164i 0.458610i 0.973355 + 0.229305i \(0.0736454\pi\)
−0.973355 + 0.229305i \(0.926355\pi\)
\(734\) 20.5836 0.759754
\(735\) 0 0
\(736\) −18.1803 −0.670136
\(737\) 43.7771i 1.61255i
\(738\) − 3.09017i − 0.113751i
\(739\) 4.59675 0.169094 0.0845470 0.996419i \(-0.473056\pi\)
0.0845470 + 0.996419i \(0.473056\pi\)
\(740\) 0 0
\(741\) 6.47214 0.237760
\(742\) − 6.90983i − 0.253668i
\(743\) − 42.1246i − 1.54540i −0.634770 0.772701i \(-0.718905\pi\)
0.634770 0.772701i \(-0.281095\pi\)
\(744\) −23.4164 −0.858487
\(745\) 0 0
\(746\) −7.52786 −0.275615
\(747\) − 6.94427i − 0.254078i
\(748\) − 8.00000i − 0.292509i
\(749\) −36.3050 −1.32655
\(750\) 0 0
\(751\) −20.4721 −0.747039 −0.373519 0.927622i \(-0.621849\pi\)
−0.373519 + 0.927622i \(0.621849\pi\)
\(752\) 0.875388i 0.0319221i
\(753\) 3.70820i 0.135134i
\(754\) 29.8885 1.08848
\(755\) 0 0
\(756\) −3.61803 −0.131587
\(757\) 23.0000i 0.835949i 0.908459 + 0.417975i \(0.137260\pi\)
−0.908459 + 0.417975i \(0.862740\pi\)
\(758\) 4.18034i 0.151837i
\(759\) −12.9443 −0.469847
\(760\) 0 0
\(761\) −25.1246 −0.910766 −0.455383 0.890296i \(-0.650498\pi\)
−0.455383 + 0.890296i \(0.650498\pi\)
\(762\) 6.65248i 0.240994i
\(763\) − 17.2361i − 0.623988i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −9.96556 −0.360070
\(767\) − 95.1935i − 3.43724i
\(768\) − 6.56231i − 0.236797i
\(769\) 5.58359 0.201349 0.100675 0.994919i \(-0.467900\pi\)
0.100675 + 0.994919i \(0.467900\pi\)
\(770\) 0 0
\(771\) 13.0000 0.468184
\(772\) 5.23607i 0.188450i
\(773\) 3.94427i 0.141866i 0.997481 + 0.0709328i \(0.0225976\pi\)
−0.997481 + 0.0709328i \(0.977402\pi\)
\(774\) 2.47214 0.0888591
\(775\) 0 0
\(776\) −3.81966 −0.137118
\(777\) 6.18034i 0.221718i
\(778\) 4.94427i 0.177261i
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) −36.7214 −1.31399
\(782\) − 2.47214i − 0.0884034i
\(783\) 7.47214i 0.267032i
\(784\) 3.70820 0.132436
\(785\) 0 0
\(786\) −4.29180 −0.153083
\(787\) − 19.3475i − 0.689665i −0.938664 0.344832i \(-0.887936\pi\)
0.938664 0.344832i \(-0.112064\pi\)
\(788\) − 36.6525i − 1.30569i
\(789\) −10.2918 −0.366398
\(790\) 0 0
\(791\) 27.8885 0.991602
\(792\) − 8.94427i − 0.317821i
\(793\) − 51.4164i − 1.82585i
\(794\) 13.8197 0.490441
\(795\) 0 0
\(796\) −2.85410 −0.101161
\(797\) − 31.3607i − 1.11085i −0.831566 0.555426i \(-0.812555\pi\)
0.831566 0.555426i \(-0.187445\pi\)
\(798\) − 1.38197i − 0.0489211i
\(799\) −0.583592 −0.0206460
\(800\) 0 0
\(801\) −9.94427 −0.351364
\(802\) 12.8754i 0.454646i
\(803\) 13.8885i 0.490116i
\(804\) 17.7082 0.624520
\(805\) 0 0
\(806\) 41.8885 1.47546
\(807\) − 20.4721i − 0.720653i
\(808\) 31.7082i 1.11549i
\(809\) 16.8328 0.591810 0.295905 0.955217i \(-0.404379\pi\)
0.295905 + 0.955217i \(0.404379\pi\)
\(810\) 0 0
\(811\) 46.7214 1.64061 0.820304 0.571927i \(-0.193804\pi\)
0.820304 + 0.571927i \(0.193804\pi\)
\(812\) 27.0344i 0.948723i
\(813\) 3.18034i 0.111539i
\(814\) −6.83282 −0.239490
\(815\) 0 0
\(816\) −2.29180 −0.0802289
\(817\) − 4.00000i − 0.139942i
\(818\) 5.41641i 0.189380i
\(819\) 14.4721 0.505697
\(820\) 0 0
\(821\) 5.12461 0.178850 0.0894251 0.995994i \(-0.471497\pi\)
0.0894251 + 0.995994i \(0.471497\pi\)
\(822\) 2.65248i 0.0925157i
\(823\) 33.1803i 1.15659i 0.815826 + 0.578297i \(0.196282\pi\)
−0.815826 + 0.578297i \(0.803718\pi\)
\(824\) −37.8885 −1.31991
\(825\) 0 0
\(826\) −20.3262 −0.707240
\(827\) − 36.9443i − 1.28468i −0.766421 0.642339i \(-0.777964\pi\)
0.766421 0.642339i \(-0.222036\pi\)
\(828\) 5.23607i 0.181966i
\(829\) −55.6656 −1.93335 −0.966674 0.256012i \(-0.917591\pi\)
−0.966674 + 0.256012i \(0.917591\pi\)
\(830\) 0 0
\(831\) −5.58359 −0.193693
\(832\) − 1.52786i − 0.0529692i
\(833\) 2.47214i 0.0856544i
\(834\) 9.74265 0.337360
\(835\) 0 0
\(836\) −6.47214 −0.223844
\(837\) 10.4721i 0.361970i
\(838\) 24.2918i 0.839146i
\(839\) 38.2361 1.32006 0.660028 0.751241i \(-0.270544\pi\)
0.660028 + 0.751241i \(0.270544\pi\)
\(840\) 0 0
\(841\) 26.8328 0.925270
\(842\) − 7.12461i − 0.245530i
\(843\) 7.88854i 0.271696i
\(844\) 9.41641 0.324126
\(845\) 0 0
\(846\) −0.291796 −0.0100322
\(847\) − 11.1803i − 0.384161i
\(848\) 9.27051i 0.318351i
\(849\) 9.88854 0.339374
\(850\) 0 0
\(851\) 8.94427 0.306606
\(852\) 14.8541i 0.508893i
\(853\) 36.8885i 1.26304i 0.775360 + 0.631520i \(0.217569\pi\)
−0.775360 + 0.631520i \(0.782431\pi\)
\(854\) −10.9787 −0.375684
\(855\) 0 0
\(856\) −36.3050 −1.24088
\(857\) 32.7771i 1.11964i 0.828613 + 0.559822i \(0.189130\pi\)
−0.828613 + 0.559822i \(0.810870\pi\)
\(858\) 16.0000i 0.546231i
\(859\) 21.2918 0.726467 0.363233 0.931698i \(-0.381673\pi\)
0.363233 + 0.931698i \(0.381673\pi\)
\(860\) 0 0
\(861\) −11.1803 −0.381025
\(862\) 3.20163i 0.109048i
\(863\) − 34.8197i − 1.18528i −0.805469 0.592638i \(-0.798087\pi\)
0.805469 0.592638i \(-0.201913\pi\)
\(864\) −5.61803 −0.191129
\(865\) 0 0
\(866\) 12.0689 0.410117
\(867\) 15.4721i 0.525461i
\(868\) 37.8885i 1.28602i
\(869\) −9.16718 −0.310975
\(870\) 0 0
\(871\) −70.8328 −2.40008
\(872\) − 17.2361i − 0.583687i
\(873\) 1.70820i 0.0578139i
\(874\) −2.00000 −0.0676510
\(875\) 0 0
\(876\) 5.61803 0.189816
\(877\) − 44.9443i − 1.51766i −0.651289 0.758830i \(-0.725771\pi\)
0.651289 0.758830i \(-0.274229\pi\)
\(878\) − 10.3607i − 0.349656i
\(879\) 2.00000 0.0674583
\(880\) 0 0
\(881\) −0.944272 −0.0318133 −0.0159067 0.999873i \(-0.505063\pi\)
−0.0159067 + 0.999873i \(0.505063\pi\)
\(882\) 1.23607i 0.0416206i
\(883\) − 45.6525i − 1.53633i −0.640253 0.768164i \(-0.721171\pi\)
0.640253 0.768164i \(-0.278829\pi\)
\(884\) 12.9443 0.435363
\(885\) 0 0
\(886\) −8.29180 −0.278568
\(887\) − 18.8328i − 0.632344i −0.948702 0.316172i \(-0.897602\pi\)
0.948702 0.316172i \(-0.102398\pi\)
\(888\) 6.18034i 0.207399i
\(889\) 24.0689 0.807244
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) − 14.9443i − 0.500371i
\(893\) 0.472136i 0.0157994i
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) −25.4508 −0.850253
\(897\) − 20.9443i − 0.699309i
\(898\) − 15.7426i − 0.525339i
\(899\) 78.2492 2.60976
\(900\) 0 0
\(901\) −6.18034 −0.205897
\(902\) − 12.3607i − 0.411566i
\(903\) − 8.94427i − 0.297647i
\(904\) 27.8885 0.927559
\(905\) 0 0
\(906\) 7.23607 0.240402
\(907\) − 29.8197i − 0.990146i −0.868852 0.495073i \(-0.835141\pi\)
0.868852 0.495073i \(-0.164859\pi\)
\(908\) 45.5066i 1.51019i
\(909\) 14.1803 0.470332
\(910\) 0 0
\(911\) 11.7639 0.389756 0.194878 0.980827i \(-0.437569\pi\)
0.194878 + 0.980827i \(0.437569\pi\)
\(912\) 1.85410i 0.0613955i
\(913\) − 27.7771i − 0.919287i
\(914\) 5.49342 0.181706
\(915\) 0 0
\(916\) 7.23607 0.239086
\(917\) 15.5279i 0.512775i
\(918\) − 0.763932i − 0.0252135i
\(919\) −41.2918 −1.36209 −0.681045 0.732241i \(-0.738474\pi\)
−0.681045 + 0.732241i \(0.738474\pi\)
\(920\) 0 0
\(921\) 3.05573 0.100690
\(922\) 1.12461i 0.0370371i
\(923\) − 59.4164i − 1.95571i
\(924\) −14.4721 −0.476098
\(925\) 0 0
\(926\) −5.30495 −0.174332
\(927\) 16.9443i 0.556523i
\(928\) 41.9787i 1.37802i
\(929\) −47.5967 −1.56160 −0.780799 0.624782i \(-0.785188\pi\)
−0.780799 + 0.624782i \(0.785188\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) − 4.76393i − 0.156048i
\(933\) 4.00000i 0.130954i
\(934\) −16.1803 −0.529437
\(935\) 0 0
\(936\) 14.4721 0.473037
\(937\) 39.9443i 1.30492i 0.757822 + 0.652461i \(0.226263\pi\)
−0.757822 + 0.652461i \(0.773737\pi\)
\(938\) 15.1246i 0.493836i
\(939\) −30.9443 −1.00983
\(940\) 0 0
\(941\) 36.4721 1.18896 0.594479 0.804111i \(-0.297358\pi\)
0.594479 + 0.804111i \(0.297358\pi\)
\(942\) 4.32624i 0.140956i
\(943\) 16.1803i 0.526904i
\(944\) 27.2705 0.887579
\(945\) 0 0
\(946\) 9.88854 0.321504
\(947\) − 36.9443i − 1.20053i −0.799802 0.600264i \(-0.795062\pi\)
0.799802 0.600264i \(-0.204938\pi\)
\(948\) 3.70820i 0.120437i
\(949\) −22.4721 −0.729476
\(950\) 0 0
\(951\) 7.94427 0.257611
\(952\) − 6.18034i − 0.200306i
\(953\) − 53.2492i − 1.72491i −0.506132 0.862456i \(-0.668925\pi\)
0.506132 0.862456i \(-0.331075\pi\)
\(954\) −3.09017 −0.100048
\(955\) 0 0
\(956\) −0.472136 −0.0152700
\(957\) 29.8885i 0.966159i
\(958\) − 23.9574i − 0.774029i
\(959\) 9.59675 0.309895
\(960\) 0 0
\(961\) 78.6656 2.53760
\(962\) − 11.0557i − 0.356451i
\(963\) 16.2361i 0.523200i
\(964\) −26.1803 −0.843212
\(965\) 0 0
\(966\) −4.47214 −0.143889
\(967\) 22.5967i 0.726662i 0.931660 + 0.363331i \(0.118361\pi\)
−0.931660 + 0.363331i \(0.881639\pi\)
\(968\) − 11.1803i − 0.359350i
\(969\) −1.23607 −0.0397082
\(970\) 0 0
\(971\) 21.0689 0.676133 0.338066 0.941122i \(-0.390227\pi\)
0.338066 + 0.941122i \(0.390227\pi\)
\(972\) 1.61803i 0.0518985i
\(973\) − 35.2492i − 1.13004i
\(974\) 14.8328 0.475274
\(975\) 0 0
\(976\) 14.7295 0.471479
\(977\) 5.05573i 0.161747i 0.996724 + 0.0808735i \(0.0257710\pi\)
−0.996724 + 0.0808735i \(0.974229\pi\)
\(978\) 6.90983i 0.220952i
\(979\) −39.7771 −1.27128
\(980\) 0 0
\(981\) −7.70820 −0.246104
\(982\) 5.12461i 0.163533i
\(983\) − 57.3050i − 1.82774i −0.406002 0.913872i \(-0.633078\pi\)
0.406002 0.913872i \(-0.366922\pi\)
\(984\) −11.1803 −0.356416
\(985\) 0 0
\(986\) −5.70820 −0.181786
\(987\) 1.05573i 0.0336042i
\(988\) − 10.4721i − 0.333163i
\(989\) −12.9443 −0.411604
\(990\) 0 0
\(991\) −37.0557 −1.17711 −0.588557 0.808456i \(-0.700304\pi\)
−0.588557 + 0.808456i \(0.700304\pi\)
\(992\) 58.8328i 1.86794i
\(993\) − 26.3607i − 0.836531i
\(994\) −12.6869 −0.402405
\(995\) 0 0
\(996\) −11.2361 −0.356028
\(997\) 12.4721i 0.394997i 0.980303 + 0.197498i \(0.0632817\pi\)
−0.980303 + 0.197498i \(0.936718\pi\)
\(998\) − 19.2705i − 0.609997i
\(999\) 2.76393 0.0874469
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.m.799.2 4
5.2 odd 4 1425.2.a.n.1.2 2
5.3 odd 4 1425.2.a.q.1.1 yes 2
5.4 even 2 inner 1425.2.c.m.799.3 4
15.2 even 4 4275.2.a.v.1.1 2
15.8 even 4 4275.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.n.1.2 2 5.2 odd 4
1425.2.a.q.1.1 yes 2 5.3 odd 4
1425.2.c.m.799.2 4 1.1 even 1 trivial
1425.2.c.m.799.3 4 5.4 even 2 inner
4275.2.a.s.1.2 2 15.8 even 4
4275.2.a.v.1.1 2 15.2 even 4