Properties

Label 1425.2.c.m.799.1
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,-2,0,0,-4,0,-16,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.m.799.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803i q^{2} -1.00000i q^{3} -0.618034 q^{4} -1.61803 q^{6} -2.23607i q^{7} -2.23607i q^{8} -1.00000 q^{9} -4.00000 q^{11} +0.618034i q^{12} -2.47214i q^{13} -3.61803 q^{14} -4.85410 q^{16} +3.23607i q^{17} +1.61803i q^{18} +1.00000 q^{19} -2.23607 q^{21} +6.47214i q^{22} -1.23607i q^{23} -2.23607 q^{24} -4.00000 q^{26} +1.00000i q^{27} +1.38197i q^{28} +1.47214 q^{29} -1.52786 q^{31} +3.38197i q^{32} +4.00000i q^{33} +5.23607 q^{34} +0.618034 q^{36} -7.23607i q^{37} -1.61803i q^{38} -2.47214 q^{39} -5.00000 q^{41} +3.61803i q^{42} +4.00000i q^{43} +2.47214 q^{44} -2.00000 q^{46} +8.47214i q^{47} +4.85410i q^{48} +2.00000 q^{49} +3.23607 q^{51} +1.52786i q^{52} -5.00000i q^{53} +1.61803 q^{54} -5.00000 q^{56} -1.00000i q^{57} -2.38197i q^{58} +1.29180 q^{59} -9.94427 q^{61} +2.47214i q^{62} +2.23607i q^{63} -4.23607 q^{64} +6.47214 q^{66} -6.94427i q^{67} -2.00000i q^{68} -1.23607 q^{69} -13.1803 q^{71} +2.23607i q^{72} -5.47214i q^{73} -11.7082 q^{74} -0.618034 q^{76} +8.94427i q^{77} +4.00000i q^{78} +15.7082 q^{79} +1.00000 q^{81} +8.09017i q^{82} +10.9443i q^{83} +1.38197 q^{84} +6.47214 q^{86} -1.47214i q^{87} +8.94427i q^{88} -7.94427 q^{89} -5.52786 q^{91} +0.763932i q^{92} +1.52786i q^{93} +13.7082 q^{94} +3.38197 q^{96} -11.7082i q^{97} -3.23607i q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} - 4 q^{9} - 16 q^{11} - 10 q^{14} - 6 q^{16} + 4 q^{19} - 16 q^{26} - 12 q^{29} - 24 q^{31} + 12 q^{34} - 2 q^{36} + 8 q^{39} - 20 q^{41} - 8 q^{44} - 8 q^{46} + 8 q^{49} + 4 q^{51}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.61803i − 1.14412i −0.820211 0.572061i \(-0.806144\pi\)
0.820211 0.572061i \(-0.193856\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −0.618034 −0.309017
\(5\) 0 0
\(6\) −1.61803 −0.660560
\(7\) − 2.23607i − 0.845154i −0.906327 0.422577i \(-0.861126\pi\)
0.906327 0.422577i \(-0.138874\pi\)
\(8\) − 2.23607i − 0.790569i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0.618034i 0.178411i
\(13\) − 2.47214i − 0.685647i −0.939400 0.342824i \(-0.888617\pi\)
0.939400 0.342824i \(-0.111383\pi\)
\(14\) −3.61803 −0.966960
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 3.23607i 0.784862i 0.919781 + 0.392431i \(0.128366\pi\)
−0.919781 + 0.392431i \(0.871634\pi\)
\(18\) 1.61803i 0.381374i
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −2.23607 −0.487950
\(22\) 6.47214i 1.37986i
\(23\) − 1.23607i − 0.257738i −0.991662 0.128869i \(-0.958865\pi\)
0.991662 0.128869i \(-0.0411347\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 1.00000i 0.192450i
\(28\) 1.38197i 0.261167i
\(29\) 1.47214 0.273369 0.136684 0.990615i \(-0.456355\pi\)
0.136684 + 0.990615i \(0.456355\pi\)
\(30\) 0 0
\(31\) −1.52786 −0.274412 −0.137206 0.990543i \(-0.543812\pi\)
−0.137206 + 0.990543i \(0.543812\pi\)
\(32\) 3.38197i 0.597853i
\(33\) 4.00000i 0.696311i
\(34\) 5.23607 0.897978
\(35\) 0 0
\(36\) 0.618034 0.103006
\(37\) − 7.23607i − 1.18960i −0.803873 0.594801i \(-0.797231\pi\)
0.803873 0.594801i \(-0.202769\pi\)
\(38\) − 1.61803i − 0.262480i
\(39\) −2.47214 −0.395859
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 3.61803i 0.558275i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 2.47214 0.372689
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 8.47214i 1.23579i 0.786261 + 0.617894i \(0.212014\pi\)
−0.786261 + 0.617894i \(0.787986\pi\)
\(48\) 4.85410i 0.700629i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 3.23607 0.453140
\(52\) 1.52786i 0.211877i
\(53\) − 5.00000i − 0.686803i −0.939189 0.343401i \(-0.888421\pi\)
0.939189 0.343401i \(-0.111579\pi\)
\(54\) 1.61803 0.220187
\(55\) 0 0
\(56\) −5.00000 −0.668153
\(57\) − 1.00000i − 0.132453i
\(58\) − 2.38197i − 0.312767i
\(59\) 1.29180 0.168178 0.0840888 0.996458i \(-0.473202\pi\)
0.0840888 + 0.996458i \(0.473202\pi\)
\(60\) 0 0
\(61\) −9.94427 −1.27323 −0.636617 0.771180i \(-0.719667\pi\)
−0.636617 + 0.771180i \(0.719667\pi\)
\(62\) 2.47214i 0.313962i
\(63\) 2.23607i 0.281718i
\(64\) −4.23607 −0.529508
\(65\) 0 0
\(66\) 6.47214 0.796665
\(67\) − 6.94427i − 0.848378i −0.905574 0.424189i \(-0.860559\pi\)
0.905574 0.424189i \(-0.139441\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) −1.23607 −0.148805
\(70\) 0 0
\(71\) −13.1803 −1.56422 −0.782109 0.623141i \(-0.785856\pi\)
−0.782109 + 0.623141i \(0.785856\pi\)
\(72\) 2.23607i 0.263523i
\(73\) − 5.47214i − 0.640465i −0.947339 0.320233i \(-0.896239\pi\)
0.947339 0.320233i \(-0.103761\pi\)
\(74\) −11.7082 −1.36105
\(75\) 0 0
\(76\) −0.618034 −0.0708934
\(77\) 8.94427i 1.01929i
\(78\) 4.00000i 0.452911i
\(79\) 15.7082 1.76731 0.883656 0.468138i \(-0.155075\pi\)
0.883656 + 0.468138i \(0.155075\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 8.09017i 0.893410i
\(83\) 10.9443i 1.20129i 0.799516 + 0.600645i \(0.205089\pi\)
−0.799516 + 0.600645i \(0.794911\pi\)
\(84\) 1.38197 0.150785
\(85\) 0 0
\(86\) 6.47214 0.697908
\(87\) − 1.47214i − 0.157830i
\(88\) 8.94427i 0.953463i
\(89\) −7.94427 −0.842091 −0.421046 0.907039i \(-0.638337\pi\)
−0.421046 + 0.907039i \(0.638337\pi\)
\(90\) 0 0
\(91\) −5.52786 −0.579478
\(92\) 0.763932i 0.0796454i
\(93\) 1.52786i 0.158432i
\(94\) 13.7082 1.41389
\(95\) 0 0
\(96\) 3.38197 0.345170
\(97\) − 11.7082i − 1.18879i −0.804174 0.594394i \(-0.797392\pi\)
0.804174 0.594394i \(-0.202608\pi\)
\(98\) − 3.23607i − 0.326892i
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 8.18034 0.813974 0.406987 0.913434i \(-0.366579\pi\)
0.406987 + 0.913434i \(0.366579\pi\)
\(102\) − 5.23607i − 0.518448i
\(103\) − 0.944272i − 0.0930419i −0.998917 0.0465209i \(-0.985187\pi\)
0.998917 0.0465209i \(-0.0148134\pi\)
\(104\) −5.52786 −0.542052
\(105\) 0 0
\(106\) −8.09017 −0.785787
\(107\) 11.7639i 1.13726i 0.822593 + 0.568631i \(0.192527\pi\)
−0.822593 + 0.568631i \(0.807473\pi\)
\(108\) − 0.618034i − 0.0594703i
\(109\) −5.70820 −0.546747 −0.273373 0.961908i \(-0.588139\pi\)
−0.273373 + 0.961908i \(0.588139\pi\)
\(110\) 0 0
\(111\) −7.23607 −0.686817
\(112\) 10.8541i 1.02562i
\(113\) − 3.52786i − 0.331874i −0.986136 0.165937i \(-0.946935\pi\)
0.986136 0.165937i \(-0.0530648\pi\)
\(114\) −1.61803 −0.151543
\(115\) 0 0
\(116\) −0.909830 −0.0844756
\(117\) 2.47214i 0.228549i
\(118\) − 2.09017i − 0.192416i
\(119\) 7.23607 0.663329
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 16.0902i 1.45674i
\(123\) 5.00000i 0.450835i
\(124\) 0.944272 0.0847981
\(125\) 0 0
\(126\) 3.61803 0.322320
\(127\) − 15.2361i − 1.35198i −0.736910 0.675991i \(-0.763716\pi\)
0.736910 0.675991i \(-0.236284\pi\)
\(128\) 13.6180i 1.20368i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 10.9443 0.956205 0.478103 0.878304i \(-0.341325\pi\)
0.478103 + 0.878304i \(0.341325\pi\)
\(132\) − 2.47214i − 0.215172i
\(133\) − 2.23607i − 0.193892i
\(134\) −11.2361 −0.970648
\(135\) 0 0
\(136\) 7.23607 0.620488
\(137\) − 17.7082i − 1.51291i −0.654043 0.756457i \(-0.726929\pi\)
0.654043 0.756457i \(-0.273071\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 20.2361 1.71640 0.858200 0.513315i \(-0.171583\pi\)
0.858200 + 0.513315i \(0.171583\pi\)
\(140\) 0 0
\(141\) 8.47214 0.713483
\(142\) 21.3262i 1.78966i
\(143\) 9.88854i 0.826922i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −8.85410 −0.732771
\(147\) − 2.00000i − 0.164957i
\(148\) 4.47214i 0.367607i
\(149\) −7.41641 −0.607576 −0.303788 0.952740i \(-0.598251\pi\)
−0.303788 + 0.952740i \(0.598251\pi\)
\(150\) 0 0
\(151\) −1.70820 −0.139012 −0.0695058 0.997582i \(-0.522142\pi\)
−0.0695058 + 0.997582i \(0.522142\pi\)
\(152\) − 2.23607i − 0.181369i
\(153\) − 3.23607i − 0.261621i
\(154\) 14.4721 1.16620
\(155\) 0 0
\(156\) 1.52786 0.122327
\(157\) − 7.00000i − 0.558661i −0.960195 0.279330i \(-0.909888\pi\)
0.960195 0.279330i \(-0.0901125\pi\)
\(158\) − 25.4164i − 2.02202i
\(159\) −5.00000 −0.396526
\(160\) 0 0
\(161\) −2.76393 −0.217828
\(162\) − 1.61803i − 0.127125i
\(163\) 11.1803i 0.875712i 0.899045 + 0.437856i \(0.144262\pi\)
−0.899045 + 0.437856i \(0.855738\pi\)
\(164\) 3.09017 0.241302
\(165\) 0 0
\(166\) 17.7082 1.37442
\(167\) − 24.5967i − 1.90335i −0.307102 0.951677i \(-0.599359\pi\)
0.307102 0.951677i \(-0.400641\pi\)
\(168\) 5.00000i 0.385758i
\(169\) 6.88854 0.529888
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) − 2.47214i − 0.188499i
\(173\) − 4.52786i − 0.344247i −0.985075 0.172124i \(-0.944937\pi\)
0.985075 0.172124i \(-0.0550628\pi\)
\(174\) −2.38197 −0.180576
\(175\) 0 0
\(176\) 19.4164 1.46357
\(177\) − 1.29180i − 0.0970973i
\(178\) 12.8541i 0.963456i
\(179\) 18.1246 1.35470 0.677349 0.735662i \(-0.263129\pi\)
0.677349 + 0.735662i \(0.263129\pi\)
\(180\) 0 0
\(181\) 1.52786 0.113565 0.0567826 0.998387i \(-0.481916\pi\)
0.0567826 + 0.998387i \(0.481916\pi\)
\(182\) 8.94427i 0.662994i
\(183\) 9.94427i 0.735102i
\(184\) −2.76393 −0.203760
\(185\) 0 0
\(186\) 2.47214 0.181266
\(187\) − 12.9443i − 0.946579i
\(188\) − 5.23607i − 0.381880i
\(189\) 2.23607 0.162650
\(190\) 0 0
\(191\) −19.4164 −1.40492 −0.702461 0.711722i \(-0.747915\pi\)
−0.702461 + 0.711722i \(0.747915\pi\)
\(192\) 4.23607i 0.305712i
\(193\) 1.23607i 0.0889741i 0.999010 + 0.0444871i \(0.0141653\pi\)
−0.999010 + 0.0444871i \(0.985835\pi\)
\(194\) −18.9443 −1.36012
\(195\) 0 0
\(196\) −1.23607 −0.0882906
\(197\) − 8.65248i − 0.616463i −0.951311 0.308232i \(-0.900263\pi\)
0.951311 0.308232i \(-0.0997372\pi\)
\(198\) − 6.47214i − 0.459955i
\(199\) −6.23607 −0.442063 −0.221032 0.975267i \(-0.570942\pi\)
−0.221032 + 0.975267i \(0.570942\pi\)
\(200\) 0 0
\(201\) −6.94427 −0.489811
\(202\) − 13.2361i − 0.931286i
\(203\) − 3.29180i − 0.231039i
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) −1.52786 −0.106451
\(207\) 1.23607i 0.0859127i
\(208\) 12.0000i 0.832050i
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 28.1803 1.94001 0.970007 0.243076i \(-0.0781564\pi\)
0.970007 + 0.243076i \(0.0781564\pi\)
\(212\) 3.09017i 0.212234i
\(213\) 13.1803i 0.903102i
\(214\) 19.0344 1.30117
\(215\) 0 0
\(216\) 2.23607 0.152145
\(217\) 3.41641i 0.231921i
\(218\) 9.23607i 0.625545i
\(219\) −5.47214 −0.369773
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 11.7082i 0.785803i
\(223\) 4.76393i 0.319016i 0.987197 + 0.159508i \(0.0509909\pi\)
−0.987197 + 0.159508i \(0.949009\pi\)
\(224\) 7.56231 0.505278
\(225\) 0 0
\(226\) −5.70820 −0.379704
\(227\) 12.1246i 0.804739i 0.915477 + 0.402369i \(0.131813\pi\)
−0.915477 + 0.402369i \(0.868187\pi\)
\(228\) 0.618034i 0.0409303i
\(229\) −4.47214 −0.295527 −0.147764 0.989023i \(-0.547207\pi\)
−0.147764 + 0.989023i \(0.547207\pi\)
\(230\) 0 0
\(231\) 8.94427 0.588490
\(232\) − 3.29180i − 0.216117i
\(233\) − 14.9443i − 0.979032i −0.871994 0.489516i \(-0.837174\pi\)
0.871994 0.489516i \(-0.162826\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) −0.798374 −0.0519697
\(237\) − 15.7082i − 1.02036i
\(238\) − 11.7082i − 0.758930i
\(239\) −13.7082 −0.886710 −0.443355 0.896346i \(-0.646212\pi\)
−0.443355 + 0.896346i \(0.646212\pi\)
\(240\) 0 0
\(241\) 6.18034 0.398111 0.199055 0.979988i \(-0.436213\pi\)
0.199055 + 0.979988i \(0.436213\pi\)
\(242\) − 8.09017i − 0.520056i
\(243\) − 1.00000i − 0.0641500i
\(244\) 6.14590 0.393451
\(245\) 0 0
\(246\) 8.09017 0.515810
\(247\) − 2.47214i − 0.157298i
\(248\) 3.41641i 0.216942i
\(249\) 10.9443 0.693565
\(250\) 0 0
\(251\) −9.70820 −0.612776 −0.306388 0.951907i \(-0.599121\pi\)
−0.306388 + 0.951907i \(0.599121\pi\)
\(252\) − 1.38197i − 0.0870557i
\(253\) 4.94427i 0.310844i
\(254\) −24.6525 −1.54683
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 13.0000i 0.810918i 0.914113 + 0.405459i \(0.132888\pi\)
−0.914113 + 0.405459i \(0.867112\pi\)
\(258\) − 6.47214i − 0.402938i
\(259\) −16.1803 −1.00540
\(260\) 0 0
\(261\) −1.47214 −0.0911229
\(262\) − 17.7082i − 1.09402i
\(263\) − 23.7082i − 1.46191i −0.682425 0.730955i \(-0.739075\pi\)
0.682425 0.730955i \(-0.260925\pi\)
\(264\) 8.94427 0.550482
\(265\) 0 0
\(266\) −3.61803 −0.221836
\(267\) 7.94427i 0.486182i
\(268\) 4.29180i 0.262163i
\(269\) −11.5279 −0.702866 −0.351433 0.936213i \(-0.614306\pi\)
−0.351433 + 0.936213i \(0.614306\pi\)
\(270\) 0 0
\(271\) −19.1803 −1.16512 −0.582561 0.812787i \(-0.697949\pi\)
−0.582561 + 0.812787i \(0.697949\pi\)
\(272\) − 15.7082i − 0.952450i
\(273\) 5.52786i 0.334562i
\(274\) −28.6525 −1.73096
\(275\) 0 0
\(276\) 0.763932 0.0459833
\(277\) − 32.4164i − 1.94771i −0.227164 0.973857i \(-0.572945\pi\)
0.227164 0.973857i \(-0.427055\pi\)
\(278\) − 32.7426i − 1.96377i
\(279\) 1.52786 0.0914708
\(280\) 0 0
\(281\) −27.8885 −1.66369 −0.831846 0.555007i \(-0.812715\pi\)
−0.831846 + 0.555007i \(0.812715\pi\)
\(282\) − 13.7082i − 0.816312i
\(283\) − 25.8885i − 1.53891i −0.638699 0.769457i \(-0.720527\pi\)
0.638699 0.769457i \(-0.279473\pi\)
\(284\) 8.14590 0.483370
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) 11.1803i 0.659955i
\(288\) − 3.38197i − 0.199284i
\(289\) 6.52786 0.383992
\(290\) 0 0
\(291\) −11.7082 −0.686347
\(292\) 3.38197i 0.197915i
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) −3.23607 −0.188731
\(295\) 0 0
\(296\) −16.1803 −0.940463
\(297\) − 4.00000i − 0.232104i
\(298\) 12.0000i 0.695141i
\(299\) −3.05573 −0.176717
\(300\) 0 0
\(301\) 8.94427 0.515539
\(302\) 2.76393i 0.159046i
\(303\) − 8.18034i − 0.469948i
\(304\) −4.85410 −0.278402
\(305\) 0 0
\(306\) −5.23607 −0.299326
\(307\) 20.9443i 1.19535i 0.801737 + 0.597676i \(0.203909\pi\)
−0.801737 + 0.597676i \(0.796091\pi\)
\(308\) − 5.52786i − 0.314979i
\(309\) −0.944272 −0.0537178
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 5.52786i 0.312954i
\(313\) − 13.0557i − 0.737953i −0.929439 0.368977i \(-0.879708\pi\)
0.929439 0.368977i \(-0.120292\pi\)
\(314\) −11.3262 −0.639177
\(315\) 0 0
\(316\) −9.70820 −0.546129
\(317\) − 9.94427i − 0.558526i −0.960215 0.279263i \(-0.909910\pi\)
0.960215 0.279263i \(-0.0900901\pi\)
\(318\) 8.09017i 0.453674i
\(319\) −5.88854 −0.329695
\(320\) 0 0
\(321\) 11.7639 0.656599
\(322\) 4.47214i 0.249222i
\(323\) 3.23607i 0.180060i
\(324\) −0.618034 −0.0343352
\(325\) 0 0
\(326\) 18.0902 1.00192
\(327\) 5.70820i 0.315664i
\(328\) 11.1803i 0.617331i
\(329\) 18.9443 1.04443
\(330\) 0 0
\(331\) 18.3607 1.00919 0.504597 0.863355i \(-0.331641\pi\)
0.504597 + 0.863355i \(0.331641\pi\)
\(332\) − 6.76393i − 0.371219i
\(333\) 7.23607i 0.396534i
\(334\) −39.7984 −2.17767
\(335\) 0 0
\(336\) 10.8541 0.592140
\(337\) − 0.472136i − 0.0257189i −0.999917 0.0128594i \(-0.995907\pi\)
0.999917 0.0128594i \(-0.00409340\pi\)
\(338\) − 11.1459i − 0.606257i
\(339\) −3.52786 −0.191607
\(340\) 0 0
\(341\) 6.11146 0.330954
\(342\) 1.61803i 0.0874933i
\(343\) − 20.1246i − 1.08663i
\(344\) 8.94427 0.482243
\(345\) 0 0
\(346\) −7.32624 −0.393861
\(347\) − 11.7082i − 0.628529i −0.949335 0.314265i \(-0.898242\pi\)
0.949335 0.314265i \(-0.101758\pi\)
\(348\) 0.909830i 0.0487720i
\(349\) −35.8328 −1.91809 −0.959043 0.283259i \(-0.908584\pi\)
−0.959043 + 0.283259i \(0.908584\pi\)
\(350\) 0 0
\(351\) 2.47214 0.131953
\(352\) − 13.5279i − 0.721038i
\(353\) − 17.5279i − 0.932914i −0.884544 0.466457i \(-0.845530\pi\)
0.884544 0.466457i \(-0.154470\pi\)
\(354\) −2.09017 −0.111091
\(355\) 0 0
\(356\) 4.90983 0.260220
\(357\) − 7.23607i − 0.382973i
\(358\) − 29.3262i − 1.54994i
\(359\) 20.7639 1.09588 0.547939 0.836518i \(-0.315413\pi\)
0.547939 + 0.836518i \(0.315413\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 2.47214i − 0.129933i
\(363\) − 5.00000i − 0.262432i
\(364\) 3.41641 0.179068
\(365\) 0 0
\(366\) 16.0902 0.841047
\(367\) 29.3050i 1.52971i 0.644205 + 0.764853i \(0.277188\pi\)
−0.644205 + 0.764853i \(0.722812\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 5.00000 0.260290
\(370\) 0 0
\(371\) −11.1803 −0.580454
\(372\) − 0.944272i − 0.0489582i
\(373\) − 10.1803i − 0.527118i −0.964643 0.263559i \(-0.915104\pi\)
0.964643 0.263559i \(-0.0848964\pi\)
\(374\) −20.9443 −1.08300
\(375\) 0 0
\(376\) 18.9443 0.976976
\(377\) − 3.63932i − 0.187435i
\(378\) − 3.61803i − 0.186092i
\(379\) −11.2361 −0.577158 −0.288579 0.957456i \(-0.593183\pi\)
−0.288579 + 0.957456i \(0.593183\pi\)
\(380\) 0 0
\(381\) −15.2361 −0.780567
\(382\) 31.4164i 1.60740i
\(383\) − 24.1246i − 1.23271i −0.787468 0.616355i \(-0.788609\pi\)
0.787468 0.616355i \(-0.211391\pi\)
\(384\) 13.6180 0.694942
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) − 4.00000i − 0.203331i
\(388\) 7.23607i 0.367356i
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) − 4.47214i − 0.225877i
\(393\) − 10.9443i − 0.552065i
\(394\) −14.0000 −0.705310
\(395\) 0 0
\(396\) −2.47214 −0.124230
\(397\) 22.3607i 1.12225i 0.827731 + 0.561125i \(0.189631\pi\)
−0.827731 + 0.561125i \(0.810369\pi\)
\(398\) 10.0902i 0.505775i
\(399\) −2.23607 −0.111943
\(400\) 0 0
\(401\) 32.8328 1.63959 0.819796 0.572655i \(-0.194087\pi\)
0.819796 + 0.572655i \(0.194087\pi\)
\(402\) 11.2361i 0.560404i
\(403\) 3.77709i 0.188150i
\(404\) −5.05573 −0.251532
\(405\) 0 0
\(406\) −5.32624 −0.264337
\(407\) 28.9443i 1.43471i
\(408\) − 7.23607i − 0.358239i
\(409\) −13.2361 −0.654481 −0.327241 0.944941i \(-0.606119\pi\)
−0.327241 + 0.944941i \(0.606119\pi\)
\(410\) 0 0
\(411\) −17.7082 −0.873481
\(412\) 0.583592i 0.0287515i
\(413\) − 2.88854i − 0.142136i
\(414\) 2.00000 0.0982946
\(415\) 0 0
\(416\) 8.36068 0.409916
\(417\) − 20.2361i − 0.990965i
\(418\) 6.47214i 0.316563i
\(419\) 23.3050 1.13852 0.569261 0.822157i \(-0.307230\pi\)
0.569261 + 0.822157i \(0.307230\pi\)
\(420\) 0 0
\(421\) 20.4721 0.997751 0.498875 0.866674i \(-0.333747\pi\)
0.498875 + 0.866674i \(0.333747\pi\)
\(422\) − 45.5967i − 2.21961i
\(423\) − 8.47214i − 0.411929i
\(424\) −11.1803 −0.542965
\(425\) 0 0
\(426\) 21.3262 1.03326
\(427\) 22.2361i 1.07608i
\(428\) − 7.27051i − 0.351433i
\(429\) 9.88854 0.477423
\(430\) 0 0
\(431\) 17.1803 0.827548 0.413774 0.910380i \(-0.364210\pi\)
0.413774 + 0.910380i \(0.364210\pi\)
\(432\) − 4.85410i − 0.233543i
\(433\) − 28.4721i − 1.36828i −0.729349 0.684142i \(-0.760177\pi\)
0.729349 0.684142i \(-0.239823\pi\)
\(434\) 5.52786 0.265346
\(435\) 0 0
\(436\) 3.52786 0.168954
\(437\) − 1.23607i − 0.0591292i
\(438\) 8.85410i 0.423065i
\(439\) 21.2361 1.01354 0.506771 0.862081i \(-0.330839\pi\)
0.506771 + 0.862081i \(0.330839\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) − 12.9443i − 0.615696i
\(443\) − 13.4164i − 0.637433i −0.947850 0.318716i \(-0.896748\pi\)
0.947850 0.318716i \(-0.103252\pi\)
\(444\) 4.47214 0.212238
\(445\) 0 0
\(446\) 7.70820 0.364994
\(447\) 7.41641i 0.350784i
\(448\) 9.47214i 0.447516i
\(449\) 16.5279 0.779998 0.389999 0.920815i \(-0.372475\pi\)
0.389999 + 0.920815i \(0.372475\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 2.18034i 0.102555i
\(453\) 1.70820i 0.0802584i
\(454\) 19.6180 0.920720
\(455\) 0 0
\(456\) −2.23607 −0.104713
\(457\) 26.8885i 1.25779i 0.777489 + 0.628897i \(0.216493\pi\)
−0.777489 + 0.628897i \(0.783507\pi\)
\(458\) 7.23607i 0.338119i
\(459\) −3.23607 −0.151047
\(460\) 0 0
\(461\) −24.1803 −1.12619 −0.563095 0.826392i \(-0.690390\pi\)
−0.563095 + 0.826392i \(0.690390\pi\)
\(462\) − 14.4721i − 0.673305i
\(463\) 35.4164i 1.64594i 0.568085 + 0.822970i \(0.307685\pi\)
−0.568085 + 0.822970i \(0.692315\pi\)
\(464\) −7.14590 −0.331740
\(465\) 0 0
\(466\) −24.1803 −1.12013
\(467\) 3.81966i 0.176753i 0.996087 + 0.0883764i \(0.0281678\pi\)
−0.996087 + 0.0883764i \(0.971832\pi\)
\(468\) − 1.52786i − 0.0706255i
\(469\) −15.5279 −0.717010
\(470\) 0 0
\(471\) −7.00000 −0.322543
\(472\) − 2.88854i − 0.132956i
\(473\) − 16.0000i − 0.735681i
\(474\) −25.4164 −1.16741
\(475\) 0 0
\(476\) −4.47214 −0.204980
\(477\) 5.00000i 0.228934i
\(478\) 22.1803i 1.01451i
\(479\) 43.2361 1.97551 0.987753 0.156025i \(-0.0498679\pi\)
0.987753 + 0.156025i \(0.0498679\pi\)
\(480\) 0 0
\(481\) −17.8885 −0.815647
\(482\) − 10.0000i − 0.455488i
\(483\) 2.76393i 0.125763i
\(484\) −3.09017 −0.140462
\(485\) 0 0
\(486\) −1.61803 −0.0733955
\(487\) − 24.0000i − 1.08754i −0.839233 0.543772i \(-0.816996\pi\)
0.839233 0.543772i \(-0.183004\pi\)
\(488\) 22.2361i 1.00658i
\(489\) 11.1803 0.505592
\(490\) 0 0
\(491\) −21.7082 −0.979678 −0.489839 0.871813i \(-0.662944\pi\)
−0.489839 + 0.871813i \(0.662944\pi\)
\(492\) − 3.09017i − 0.139316i
\(493\) 4.76393i 0.214557i
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) 7.41641 0.333007
\(497\) 29.4721i 1.32201i
\(498\) − 17.7082i − 0.793524i
\(499\) 8.81966 0.394822 0.197411 0.980321i \(-0.436747\pi\)
0.197411 + 0.980321i \(0.436747\pi\)
\(500\) 0 0
\(501\) −24.5967 −1.09890
\(502\) 15.7082i 0.701091i
\(503\) − 18.4721i − 0.823632i −0.911267 0.411816i \(-0.864895\pi\)
0.911267 0.411816i \(-0.135105\pi\)
\(504\) 5.00000 0.222718
\(505\) 0 0
\(506\) 8.00000 0.355643
\(507\) − 6.88854i − 0.305931i
\(508\) 9.41641i 0.417786i
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) −12.2361 −0.541292
\(512\) 5.29180i 0.233867i
\(513\) 1.00000i 0.0441511i
\(514\) 21.0344 0.927789
\(515\) 0 0
\(516\) −2.47214 −0.108830
\(517\) − 33.8885i − 1.49042i
\(518\) 26.1803i 1.15030i
\(519\) −4.52786 −0.198751
\(520\) 0 0
\(521\) 17.8328 0.781270 0.390635 0.920546i \(-0.372255\pi\)
0.390635 + 0.920546i \(0.372255\pi\)
\(522\) 2.38197i 0.104256i
\(523\) 0.875388i 0.0382781i 0.999817 + 0.0191390i \(0.00609251\pi\)
−0.999817 + 0.0191390i \(0.993907\pi\)
\(524\) −6.76393 −0.295484
\(525\) 0 0
\(526\) −38.3607 −1.67261
\(527\) − 4.94427i − 0.215376i
\(528\) − 19.4164i − 0.844991i
\(529\) 21.4721 0.933571
\(530\) 0 0
\(531\) −1.29180 −0.0560592
\(532\) 1.38197i 0.0599158i
\(533\) 12.3607i 0.535400i
\(534\) 12.8541 0.556251
\(535\) 0 0
\(536\) −15.5279 −0.670702
\(537\) − 18.1246i − 0.782135i
\(538\) 18.6525i 0.804165i
\(539\) −8.00000 −0.344584
\(540\) 0 0
\(541\) −28.8328 −1.23962 −0.619810 0.784752i \(-0.712790\pi\)
−0.619810 + 0.784752i \(0.712790\pi\)
\(542\) 31.0344i 1.33304i
\(543\) − 1.52786i − 0.0655669i
\(544\) −10.9443 −0.469232
\(545\) 0 0
\(546\) 8.94427 0.382780
\(547\) − 5.70820i − 0.244065i −0.992526 0.122033i \(-0.961059\pi\)
0.992526 0.122033i \(-0.0389412\pi\)
\(548\) 10.9443i 0.467516i
\(549\) 9.94427 0.424411
\(550\) 0 0
\(551\) 1.47214 0.0627151
\(552\) 2.76393i 0.117641i
\(553\) − 35.1246i − 1.49365i
\(554\) −52.4508 −2.22842
\(555\) 0 0
\(556\) −12.5066 −0.530397
\(557\) − 1.88854i − 0.0800202i −0.999199 0.0400101i \(-0.987261\pi\)
0.999199 0.0400101i \(-0.0127390\pi\)
\(558\) − 2.47214i − 0.104654i
\(559\) 9.88854 0.418241
\(560\) 0 0
\(561\) −12.9443 −0.546508
\(562\) 45.1246i 1.90347i
\(563\) − 7.65248i − 0.322513i −0.986912 0.161257i \(-0.948445\pi\)
0.986912 0.161257i \(-0.0515547\pi\)
\(564\) −5.23607 −0.220478
\(565\) 0 0
\(566\) −41.8885 −1.76071
\(567\) − 2.23607i − 0.0939060i
\(568\) 29.4721i 1.23662i
\(569\) −14.8885 −0.624160 −0.312080 0.950056i \(-0.601026\pi\)
−0.312080 + 0.950056i \(0.601026\pi\)
\(570\) 0 0
\(571\) 15.6525 0.655036 0.327518 0.944845i \(-0.393788\pi\)
0.327518 + 0.944845i \(0.393788\pi\)
\(572\) − 6.11146i − 0.255533i
\(573\) 19.4164i 0.811132i
\(574\) 18.0902 0.755069
\(575\) 0 0
\(576\) 4.23607 0.176503
\(577\) − 25.4164i − 1.05810i −0.848591 0.529049i \(-0.822549\pi\)
0.848591 0.529049i \(-0.177451\pi\)
\(578\) − 10.5623i − 0.439334i
\(579\) 1.23607 0.0513692
\(580\) 0 0
\(581\) 24.4721 1.01528
\(582\) 18.9443i 0.785265i
\(583\) 20.0000i 0.828315i
\(584\) −12.2361 −0.506332
\(585\) 0 0
\(586\) 3.23607 0.133681
\(587\) 18.6525i 0.769870i 0.922944 + 0.384935i \(0.125776\pi\)
−0.922944 + 0.384935i \(0.874224\pi\)
\(588\) 1.23607i 0.0509746i
\(589\) −1.52786 −0.0629545
\(590\) 0 0
\(591\) −8.65248 −0.355915
\(592\) 35.1246i 1.44361i
\(593\) 21.8885i 0.898855i 0.893317 + 0.449427i \(0.148372\pi\)
−0.893317 + 0.449427i \(0.851628\pi\)
\(594\) −6.47214 −0.265555
\(595\) 0 0
\(596\) 4.58359 0.187751
\(597\) 6.23607i 0.255225i
\(598\) 4.94427i 0.202186i
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) 35.7771 1.45938 0.729689 0.683779i \(-0.239665\pi\)
0.729689 + 0.683779i \(0.239665\pi\)
\(602\) − 14.4721i − 0.589840i
\(603\) 6.94427i 0.282793i
\(604\) 1.05573 0.0429570
\(605\) 0 0
\(606\) −13.2361 −0.537679
\(607\) − 21.1246i − 0.857422i −0.903442 0.428711i \(-0.858968\pi\)
0.903442 0.428711i \(-0.141032\pi\)
\(608\) 3.38197i 0.137157i
\(609\) −3.29180 −0.133390
\(610\) 0 0
\(611\) 20.9443 0.847315
\(612\) 2.00000i 0.0808452i
\(613\) 23.0000i 0.928961i 0.885583 + 0.464481i \(0.153759\pi\)
−0.885583 + 0.464481i \(0.846241\pi\)
\(614\) 33.8885 1.36763
\(615\) 0 0
\(616\) 20.0000 0.805823
\(617\) − 22.0000i − 0.885687i −0.896599 0.442843i \(-0.853970\pi\)
0.896599 0.442843i \(-0.146030\pi\)
\(618\) 1.52786i 0.0614597i
\(619\) −17.2918 −0.695016 −0.347508 0.937677i \(-0.612972\pi\)
−0.347508 + 0.937677i \(0.612972\pi\)
\(620\) 0 0
\(621\) 1.23607 0.0496017
\(622\) − 6.47214i − 0.259509i
\(623\) 17.7639i 0.711697i
\(624\) 12.0000 0.480384
\(625\) 0 0
\(626\) −21.1246 −0.844309
\(627\) 4.00000i 0.159745i
\(628\) 4.32624i 0.172636i
\(629\) 23.4164 0.933673
\(630\) 0 0
\(631\) −16.5836 −0.660182 −0.330091 0.943949i \(-0.607080\pi\)
−0.330091 + 0.943949i \(0.607080\pi\)
\(632\) − 35.1246i − 1.39718i
\(633\) − 28.1803i − 1.12007i
\(634\) −16.0902 −0.639022
\(635\) 0 0
\(636\) 3.09017 0.122533
\(637\) − 4.94427i − 0.195899i
\(638\) 9.52786i 0.377212i
\(639\) 13.1803 0.521406
\(640\) 0 0
\(641\) −10.9443 −0.432273 −0.216136 0.976363i \(-0.569346\pi\)
−0.216136 + 0.976363i \(0.569346\pi\)
\(642\) − 19.0344i − 0.751229i
\(643\) 5.18034i 0.204293i 0.994769 + 0.102146i \(0.0325710\pi\)
−0.994769 + 0.102146i \(0.967429\pi\)
\(644\) 1.70820 0.0673127
\(645\) 0 0
\(646\) 5.23607 0.206010
\(647\) 45.3050i 1.78112i 0.454864 + 0.890561i \(0.349688\pi\)
−0.454864 + 0.890561i \(0.650312\pi\)
\(648\) − 2.23607i − 0.0878410i
\(649\) −5.16718 −0.202830
\(650\) 0 0
\(651\) 3.41641 0.133900
\(652\) − 6.90983i − 0.270610i
\(653\) − 9.88854i − 0.386969i −0.981103 0.193484i \(-0.938021\pi\)
0.981103 0.193484i \(-0.0619789\pi\)
\(654\) 9.23607 0.361159
\(655\) 0 0
\(656\) 24.2705 0.947604
\(657\) 5.47214i 0.213488i
\(658\) − 30.6525i − 1.19496i
\(659\) −7.05573 −0.274852 −0.137426 0.990512i \(-0.543883\pi\)
−0.137426 + 0.990512i \(0.543883\pi\)
\(660\) 0 0
\(661\) 17.1246 0.666070 0.333035 0.942914i \(-0.391927\pi\)
0.333035 + 0.942914i \(0.391927\pi\)
\(662\) − 29.7082i − 1.15464i
\(663\) − 8.00000i − 0.310694i
\(664\) 24.4721 0.949703
\(665\) 0 0
\(666\) 11.7082 0.453684
\(667\) − 1.81966i − 0.0704575i
\(668\) 15.2016i 0.588169i
\(669\) 4.76393 0.184184
\(670\) 0 0
\(671\) 39.7771 1.53558
\(672\) − 7.56231i − 0.291722i
\(673\) 46.2492i 1.78278i 0.453240 + 0.891388i \(0.350268\pi\)
−0.453240 + 0.891388i \(0.649732\pi\)
\(674\) −0.763932 −0.0294256
\(675\) 0 0
\(676\) −4.25735 −0.163744
\(677\) 47.8328i 1.83836i 0.393833 + 0.919182i \(0.371149\pi\)
−0.393833 + 0.919182i \(0.628851\pi\)
\(678\) 5.70820i 0.219222i
\(679\) −26.1803 −1.00471
\(680\) 0 0
\(681\) 12.1246 0.464616
\(682\) − 9.88854i − 0.378652i
\(683\) 39.6525i 1.51726i 0.651522 + 0.758630i \(0.274131\pi\)
−0.651522 + 0.758630i \(0.725869\pi\)
\(684\) 0.618034 0.0236311
\(685\) 0 0
\(686\) −32.5623 −1.24323
\(687\) 4.47214i 0.170623i
\(688\) − 19.4164i − 0.740244i
\(689\) −12.3607 −0.470904
\(690\) 0 0
\(691\) −24.9443 −0.948925 −0.474462 0.880276i \(-0.657358\pi\)
−0.474462 + 0.880276i \(0.657358\pi\)
\(692\) 2.79837i 0.106378i
\(693\) − 8.94427i − 0.339765i
\(694\) −18.9443 −0.719115
\(695\) 0 0
\(696\) −3.29180 −0.124775
\(697\) − 16.1803i − 0.612874i
\(698\) 57.9787i 2.19453i
\(699\) −14.9443 −0.565244
\(700\) 0 0
\(701\) 48.6525 1.83758 0.918789 0.394748i \(-0.129168\pi\)
0.918789 + 0.394748i \(0.129168\pi\)
\(702\) − 4.00000i − 0.150970i
\(703\) − 7.23607i − 0.272913i
\(704\) 16.9443 0.638611
\(705\) 0 0
\(706\) −28.3607 −1.06737
\(707\) − 18.2918i − 0.687934i
\(708\) 0.798374i 0.0300047i
\(709\) 13.5836 0.510143 0.255071 0.966922i \(-0.417901\pi\)
0.255071 + 0.966922i \(0.417901\pi\)
\(710\) 0 0
\(711\) −15.7082 −0.589104
\(712\) 17.7639i 0.665731i
\(713\) 1.88854i 0.0707265i
\(714\) −11.7082 −0.438169
\(715\) 0 0
\(716\) −11.2016 −0.418624
\(717\) 13.7082i 0.511942i
\(718\) − 33.5967i − 1.25382i
\(719\) 46.4721 1.73312 0.866559 0.499074i \(-0.166327\pi\)
0.866559 + 0.499074i \(0.166327\pi\)
\(720\) 0 0
\(721\) −2.11146 −0.0786347
\(722\) − 1.61803i − 0.0602170i
\(723\) − 6.18034i − 0.229849i
\(724\) −0.944272 −0.0350936
\(725\) 0 0
\(726\) −8.09017 −0.300254
\(727\) 20.2361i 0.750514i 0.926921 + 0.375257i \(0.122446\pi\)
−0.926921 + 0.375257i \(0.877554\pi\)
\(728\) 12.3607i 0.458117i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.9443 −0.478761
\(732\) − 6.14590i − 0.227159i
\(733\) 14.4164i 0.532482i 0.963906 + 0.266241i \(0.0857817\pi\)
−0.963906 + 0.266241i \(0.914218\pi\)
\(734\) 47.4164 1.75017
\(735\) 0 0
\(736\) 4.18034 0.154089
\(737\) 27.7771i 1.02318i
\(738\) − 8.09017i − 0.297803i
\(739\) −44.5967 −1.64052 −0.820259 0.571992i \(-0.806171\pi\)
−0.820259 + 0.571992i \(0.806171\pi\)
\(740\) 0 0
\(741\) −2.47214 −0.0908162
\(742\) 18.0902i 0.664111i
\(743\) 1.87539i 0.0688013i 0.999408 + 0.0344007i \(0.0109522\pi\)
−0.999408 + 0.0344007i \(0.989048\pi\)
\(744\) 3.41641 0.125252
\(745\) 0 0
\(746\) −16.4721 −0.603088
\(747\) − 10.9443i − 0.400430i
\(748\) 8.00000i 0.292509i
\(749\) 26.3050 0.961162
\(750\) 0 0
\(751\) −11.5279 −0.420658 −0.210329 0.977631i \(-0.567453\pi\)
−0.210329 + 0.977631i \(0.567453\pi\)
\(752\) − 41.1246i − 1.49966i
\(753\) 9.70820i 0.353787i
\(754\) −5.88854 −0.214448
\(755\) 0 0
\(756\) −1.38197 −0.0502616
\(757\) − 23.0000i − 0.835949i −0.908459 0.417975i \(-0.862740\pi\)
0.908459 0.417975i \(-0.137260\pi\)
\(758\) 18.1803i 0.660340i
\(759\) 4.94427 0.179466
\(760\) 0 0
\(761\) 15.1246 0.548267 0.274133 0.961692i \(-0.411609\pi\)
0.274133 + 0.961692i \(0.411609\pi\)
\(762\) 24.6525i 0.893065i
\(763\) 12.7639i 0.462085i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −39.0344 −1.41037
\(767\) − 3.19350i − 0.115310i
\(768\) − 13.5623i − 0.489388i
\(769\) 32.4164 1.16897 0.584483 0.811406i \(-0.301297\pi\)
0.584483 + 0.811406i \(0.301297\pi\)
\(770\) 0 0
\(771\) 13.0000 0.468184
\(772\) − 0.763932i − 0.0274945i
\(773\) 13.9443i 0.501541i 0.968047 + 0.250770i \(0.0806839\pi\)
−0.968047 + 0.250770i \(0.919316\pi\)
\(774\) −6.47214 −0.232636
\(775\) 0 0
\(776\) −26.1803 −0.939819
\(777\) 16.1803i 0.580466i
\(778\) 12.9443i 0.464075i
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) 52.7214 1.88652
\(782\) − 6.47214i − 0.231443i
\(783\) 1.47214i 0.0526098i
\(784\) −9.70820 −0.346722
\(785\) 0 0
\(786\) −17.7082 −0.631631
\(787\) 50.6525i 1.80557i 0.430097 + 0.902783i \(0.358480\pi\)
−0.430097 + 0.902783i \(0.641520\pi\)
\(788\) 5.34752i 0.190498i
\(789\) −23.7082 −0.844034
\(790\) 0 0
\(791\) −7.88854 −0.280484
\(792\) − 8.94427i − 0.317821i
\(793\) 24.5836i 0.872989i
\(794\) 36.1803 1.28399
\(795\) 0 0
\(796\) 3.85410 0.136605
\(797\) − 13.3607i − 0.473260i −0.971600 0.236630i \(-0.923957\pi\)
0.971600 0.236630i \(-0.0760428\pi\)
\(798\) 3.61803i 0.128077i
\(799\) −27.4164 −0.969923
\(800\) 0 0
\(801\) 7.94427 0.280697
\(802\) − 53.1246i − 1.87590i
\(803\) 21.8885i 0.772430i
\(804\) 4.29180 0.151360
\(805\) 0 0
\(806\) 6.11146 0.215267
\(807\) 11.5279i 0.405800i
\(808\) − 18.2918i − 0.643503i
\(809\) −36.8328 −1.29497 −0.647486 0.762077i \(-0.724180\pi\)
−0.647486 + 0.762077i \(0.724180\pi\)
\(810\) 0 0
\(811\) −42.7214 −1.50015 −0.750075 0.661353i \(-0.769983\pi\)
−0.750075 + 0.661353i \(0.769983\pi\)
\(812\) 2.03444i 0.0713949i
\(813\) 19.1803i 0.672684i
\(814\) 46.8328 1.64149
\(815\) 0 0
\(816\) −15.7082 −0.549897
\(817\) 4.00000i 0.139942i
\(818\) 21.4164i 0.748807i
\(819\) 5.52786 0.193159
\(820\) 0 0
\(821\) −35.1246 −1.22586 −0.612929 0.790138i \(-0.710009\pi\)
−0.612929 + 0.790138i \(0.710009\pi\)
\(822\) 28.6525i 0.999370i
\(823\) − 10.8197i − 0.377150i −0.982059 0.188575i \(-0.939613\pi\)
0.982059 0.188575i \(-0.0603868\pi\)
\(824\) −2.11146 −0.0735561
\(825\) 0 0
\(826\) −4.67376 −0.162621
\(827\) 19.0557i 0.662633i 0.943520 + 0.331316i \(0.107493\pi\)
−0.943520 + 0.331316i \(0.892507\pi\)
\(828\) − 0.763932i − 0.0265485i
\(829\) 51.6656 1.79442 0.897211 0.441603i \(-0.145590\pi\)
0.897211 + 0.441603i \(0.145590\pi\)
\(830\) 0 0
\(831\) −32.4164 −1.12451
\(832\) 10.4721i 0.363056i
\(833\) 6.47214i 0.224246i
\(834\) −32.7426 −1.13379
\(835\) 0 0
\(836\) 2.47214 0.0855006
\(837\) − 1.52786i − 0.0528107i
\(838\) − 37.7082i − 1.30261i
\(839\) 33.7639 1.16566 0.582830 0.812594i \(-0.301945\pi\)
0.582830 + 0.812594i \(0.301945\pi\)
\(840\) 0 0
\(841\) −26.8328 −0.925270
\(842\) − 33.1246i − 1.14155i
\(843\) 27.8885i 0.960532i
\(844\) −17.4164 −0.599497
\(845\) 0 0
\(846\) −13.7082 −0.471298
\(847\) − 11.1803i − 0.384161i
\(848\) 24.2705i 0.833453i
\(849\) −25.8885 −0.888493
\(850\) 0 0
\(851\) −8.94427 −0.306606
\(852\) − 8.14590i − 0.279074i
\(853\) − 1.11146i − 0.0380555i −0.999819 0.0190278i \(-0.993943\pi\)
0.999819 0.0190278i \(-0.00605709\pi\)
\(854\) 35.9787 1.23117
\(855\) 0 0
\(856\) 26.3050 0.899085
\(857\) 38.7771i 1.32460i 0.749239 + 0.662300i \(0.230420\pi\)
−0.749239 + 0.662300i \(0.769580\pi\)
\(858\) − 16.0000i − 0.546231i
\(859\) 34.7082 1.18423 0.592114 0.805854i \(-0.298293\pi\)
0.592114 + 0.805854i \(0.298293\pi\)
\(860\) 0 0
\(861\) 11.1803 0.381025
\(862\) − 27.7984i − 0.946816i
\(863\) 57.1803i 1.94644i 0.229873 + 0.973221i \(0.426169\pi\)
−0.229873 + 0.973221i \(0.573831\pi\)
\(864\) −3.38197 −0.115057
\(865\) 0 0
\(866\) −46.0689 −1.56548
\(867\) − 6.52786i − 0.221698i
\(868\) − 2.11146i − 0.0716675i
\(869\) −62.8328 −2.13146
\(870\) 0 0
\(871\) −17.1672 −0.581688
\(872\) 12.7639i 0.432241i
\(873\) 11.7082i 0.396263i
\(874\) −2.00000 −0.0676510
\(875\) 0 0
\(876\) 3.38197 0.114266
\(877\) 27.0557i 0.913607i 0.889568 + 0.456804i \(0.151006\pi\)
−0.889568 + 0.456804i \(0.848994\pi\)
\(878\) − 34.3607i − 1.15962i
\(879\) 2.00000 0.0674583
\(880\) 0 0
\(881\) 16.9443 0.570867 0.285434 0.958399i \(-0.407862\pi\)
0.285434 + 0.958399i \(0.407862\pi\)
\(882\) 3.23607i 0.108964i
\(883\) 14.3475i 0.482833i 0.970422 + 0.241416i \(0.0776119\pi\)
−0.970422 + 0.241416i \(0.922388\pi\)
\(884\) −4.94427 −0.166294
\(885\) 0 0
\(886\) −21.7082 −0.729301
\(887\) − 34.8328i − 1.16957i −0.811188 0.584786i \(-0.801179\pi\)
0.811188 0.584786i \(-0.198821\pi\)
\(888\) 16.1803i 0.542977i
\(889\) −34.0689 −1.14263
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) − 2.94427i − 0.0985815i
\(893\) 8.47214i 0.283509i
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) 30.4508 1.01729
\(897\) 3.05573i 0.102028i
\(898\) − 26.7426i − 0.892414i
\(899\) −2.24922 −0.0750158
\(900\) 0 0
\(901\) 16.1803 0.539045
\(902\) − 32.3607i − 1.07749i
\(903\) − 8.94427i − 0.297647i
\(904\) −7.88854 −0.262369
\(905\) 0 0
\(906\) 2.76393 0.0918255
\(907\) 52.1803i 1.73262i 0.499507 + 0.866310i \(0.333515\pi\)
−0.499507 + 0.866310i \(0.666485\pi\)
\(908\) − 7.49342i − 0.248678i
\(909\) −8.18034 −0.271325
\(910\) 0 0
\(911\) 16.2361 0.537925 0.268962 0.963151i \(-0.413319\pi\)
0.268962 + 0.963151i \(0.413319\pi\)
\(912\) 4.85410i 0.160735i
\(913\) − 43.7771i − 1.44881i
\(914\) 43.5066 1.43907
\(915\) 0 0
\(916\) 2.76393 0.0913229
\(917\) − 24.4721i − 0.808141i
\(918\) 5.23607i 0.172816i
\(919\) −54.7082 −1.80466 −0.902329 0.431049i \(-0.858144\pi\)
−0.902329 + 0.431049i \(0.858144\pi\)
\(920\) 0 0
\(921\) 20.9443 0.690137
\(922\) 39.1246i 1.28850i
\(923\) 32.5836i 1.07250i
\(924\) −5.52786 −0.181853
\(925\) 0 0
\(926\) 57.3050 1.88316
\(927\) 0.944272i 0.0310140i
\(928\) 4.97871i 0.163434i
\(929\) 1.59675 0.0523876 0.0261938 0.999657i \(-0.491661\pi\)
0.0261938 + 0.999657i \(0.491661\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) 9.23607i 0.302537i
\(933\) − 4.00000i − 0.130954i
\(934\) 6.18034 0.202227
\(935\) 0 0
\(936\) 5.52786 0.180684
\(937\) − 22.0557i − 0.720529i −0.932850 0.360265i \(-0.882686\pi\)
0.932850 0.360265i \(-0.117314\pi\)
\(938\) 25.1246i 0.820348i
\(939\) −13.0557 −0.426058
\(940\) 0 0
\(941\) 27.5279 0.897383 0.448691 0.893687i \(-0.351890\pi\)
0.448691 + 0.893687i \(0.351890\pi\)
\(942\) 11.3262i 0.369029i
\(943\) 6.18034i 0.201260i
\(944\) −6.27051 −0.204088
\(945\) 0 0
\(946\) −25.8885 −0.841709
\(947\) 19.0557i 0.619228i 0.950862 + 0.309614i \(0.100200\pi\)
−0.950862 + 0.309614i \(0.899800\pi\)
\(948\) 9.70820i 0.315308i
\(949\) −13.5279 −0.439133
\(950\) 0 0
\(951\) −9.94427 −0.322465
\(952\) − 16.1803i − 0.524408i
\(953\) − 27.2492i − 0.882689i −0.897338 0.441344i \(-0.854502\pi\)
0.897338 0.441344i \(-0.145498\pi\)
\(954\) 8.09017 0.261929
\(955\) 0 0
\(956\) 8.47214 0.274008
\(957\) 5.88854i 0.190350i
\(958\) − 69.9574i − 2.26022i
\(959\) −39.5967 −1.27865
\(960\) 0 0
\(961\) −28.6656 −0.924698
\(962\) 28.9443i 0.933201i
\(963\) − 11.7639i − 0.379087i
\(964\) −3.81966 −0.123023
\(965\) 0 0
\(966\) 4.47214 0.143889
\(967\) 26.5967i 0.855294i 0.903946 + 0.427647i \(0.140657\pi\)
−0.903946 + 0.427647i \(0.859343\pi\)
\(968\) − 11.1803i − 0.359350i
\(969\) 3.23607 0.103957
\(970\) 0 0
\(971\) −37.0689 −1.18960 −0.594799 0.803875i \(-0.702768\pi\)
−0.594799 + 0.803875i \(0.702768\pi\)
\(972\) 0.618034i 0.0198234i
\(973\) − 45.2492i − 1.45062i
\(974\) −38.8328 −1.24428
\(975\) 0 0
\(976\) 48.2705 1.54510
\(977\) − 22.9443i − 0.734052i −0.930211 0.367026i \(-0.880376\pi\)
0.930211 0.367026i \(-0.119624\pi\)
\(978\) − 18.0902i − 0.578460i
\(979\) 31.7771 1.01560
\(980\) 0 0
\(981\) 5.70820 0.182249
\(982\) 35.1246i 1.12087i
\(983\) − 5.30495i − 0.169202i −0.996415 0.0846008i \(-0.973038\pi\)
0.996415 0.0846008i \(-0.0269615\pi\)
\(984\) 11.1803 0.356416
\(985\) 0 0
\(986\) 7.70820 0.245479
\(987\) − 18.9443i − 0.603003i
\(988\) 1.52786i 0.0486078i
\(989\) 4.94427 0.157219
\(990\) 0 0
\(991\) −54.9443 −1.74536 −0.872681 0.488290i \(-0.837621\pi\)
−0.872681 + 0.488290i \(0.837621\pi\)
\(992\) − 5.16718i − 0.164058i
\(993\) − 18.3607i − 0.582659i
\(994\) 47.6869 1.51254
\(995\) 0 0
\(996\) −6.76393 −0.214323
\(997\) − 3.52786i − 0.111729i −0.998438 0.0558643i \(-0.982209\pi\)
0.998438 0.0558643i \(-0.0177914\pi\)
\(998\) − 14.2705i − 0.451725i
\(999\) 7.23607 0.228939
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.m.799.1 4
5.2 odd 4 1425.2.a.q.1.2 yes 2
5.3 odd 4 1425.2.a.n.1.1 2
5.4 even 2 inner 1425.2.c.m.799.4 4
15.2 even 4 4275.2.a.s.1.1 2
15.8 even 4 4275.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.n.1.1 2 5.3 odd 4
1425.2.a.q.1.2 yes 2 5.2 odd 4
1425.2.c.m.799.1 4 1.1 even 1 trivial
1425.2.c.m.799.4 4 5.4 even 2 inner
4275.2.a.s.1.1 2 15.2 even 4
4275.2.a.v.1.2 2 15.8 even 4