Properties

Label 1400.3.f.a.601.2
Level $1400$
Weight $3$
Character 1400.601
Analytic conductor $38.147$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1400,3,Mod(601,1400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1400.601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1400.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.1472370104\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 601.2
Root \(-0.765367i\) of defining polynomial
Character \(\chi\) \(=\) 1400.601
Dual form 1400.3.f.a.601.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53073i q^{3} +(-3.82843 + 5.86030i) q^{7} +6.65685 q^{9} -9.31371 q^{11} +0.262632i q^{13} +14.7821i q^{17} -25.4972i q^{19} +(8.97056 + 5.86030i) q^{21} -16.6274 q^{23} -23.9665i q^{27} +14.6863 q^{29} +8.65914i q^{31} +14.2568i q^{33} -43.9411 q^{37} +0.402020 q^{39} -22.9159i q^{41} +46.0000 q^{43} -86.1562i q^{47} +(-19.6863 - 44.8715i) q^{49} +22.6274 q^{51} +60.6274 q^{53} -39.0294 q^{57} -58.1228i q^{59} -9.97230i q^{61} +(-25.4853 + 39.0112i) q^{63} +20.6274 q^{67} +25.4521i q^{69} -78.9706 q^{71} +21.4303i q^{73} +(35.6569 - 54.5811i) q^{77} -90.2843 q^{79} +23.2254 q^{81} -71.8544i q^{83} -22.4808i q^{87} +2.01094i q^{89} +(-1.53911 - 1.00547i) q^{91} +13.2548 q^{93} -158.581i q^{97} -62.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 4 q^{9} + 8 q^{11} - 32 q^{21} + 24 q^{23} + 104 q^{29} - 40 q^{37} + 160 q^{39} + 184 q^{43} - 124 q^{49} + 152 q^{53} - 224 q^{57} - 68 q^{63} - 8 q^{67} - 248 q^{71} + 120 q^{77} - 248 q^{79}+ \cdots - 248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.53073i 0.510245i −0.966909 0.255122i \(-0.917884\pi\)
0.966909 0.255122i \(-0.0821157\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.82843 + 5.86030i −0.546918 + 0.837186i
\(8\) 0 0
\(9\) 6.65685 0.739650
\(10\) 0 0
\(11\) −9.31371 −0.846701 −0.423350 0.905966i \(-0.639146\pi\)
−0.423350 + 0.905966i \(0.639146\pi\)
\(12\) 0 0
\(13\) 0.262632i 0.0202025i 0.999949 + 0.0101012i \(0.00321538\pi\)
−0.999949 + 0.0101012i \(0.996785\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.7821i 0.869534i 0.900543 + 0.434767i \(0.143169\pi\)
−0.900543 + 0.434767i \(0.856831\pi\)
\(18\) 0 0
\(19\) 25.4972i 1.34196i −0.741476 0.670979i \(-0.765874\pi\)
0.741476 0.670979i \(-0.234126\pi\)
\(20\) 0 0
\(21\) 8.97056 + 5.86030i 0.427170 + 0.279062i
\(22\) 0 0
\(23\) −16.6274 −0.722931 −0.361466 0.932385i \(-0.617724\pi\)
−0.361466 + 0.932385i \(0.617724\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 23.9665i 0.887647i
\(28\) 0 0
\(29\) 14.6863 0.506424 0.253212 0.967411i \(-0.418513\pi\)
0.253212 + 0.967411i \(0.418513\pi\)
\(30\) 0 0
\(31\) 8.65914i 0.279327i 0.990199 + 0.139664i \(0.0446021\pi\)
−0.990199 + 0.139664i \(0.955398\pi\)
\(32\) 0 0
\(33\) 14.2568i 0.432024i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −43.9411 −1.18760 −0.593799 0.804613i \(-0.702373\pi\)
−0.593799 + 0.804613i \(0.702373\pi\)
\(38\) 0 0
\(39\) 0.402020 0.0103082
\(40\) 0 0
\(41\) 22.9159i 0.558925i −0.960157 0.279463i \(-0.909844\pi\)
0.960157 0.279463i \(-0.0901563\pi\)
\(42\) 0 0
\(43\) 46.0000 1.06977 0.534884 0.844926i \(-0.320355\pi\)
0.534884 + 0.844926i \(0.320355\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 86.1562i 1.83311i −0.399907 0.916556i \(-0.630958\pi\)
0.399907 0.916556i \(-0.369042\pi\)
\(48\) 0 0
\(49\) −19.6863 44.8715i −0.401761 0.915745i
\(50\) 0 0
\(51\) 22.6274 0.443675
\(52\) 0 0
\(53\) 60.6274 1.14391 0.571957 0.820284i \(-0.306185\pi\)
0.571957 + 0.820284i \(0.306185\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −39.0294 −0.684727
\(58\) 0 0
\(59\) 58.1228i 0.985133i −0.870275 0.492566i \(-0.836059\pi\)
0.870275 0.492566i \(-0.163941\pi\)
\(60\) 0 0
\(61\) 9.97230i 0.163480i −0.996654 0.0817402i \(-0.973952\pi\)
0.996654 0.0817402i \(-0.0260478\pi\)
\(62\) 0 0
\(63\) −25.4853 + 39.0112i −0.404528 + 0.619225i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 20.6274 0.307872 0.153936 0.988081i \(-0.450805\pi\)
0.153936 + 0.988081i \(0.450805\pi\)
\(68\) 0 0
\(69\) 25.4521i 0.368872i
\(70\) 0 0
\(71\) −78.9706 −1.11226 −0.556131 0.831095i \(-0.687715\pi\)
−0.556131 + 0.831095i \(0.687715\pi\)
\(72\) 0 0
\(73\) 21.4303i 0.293565i 0.989169 + 0.146783i \(0.0468918\pi\)
−0.989169 + 0.146783i \(0.953108\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 35.6569 54.5811i 0.463076 0.708846i
\(78\) 0 0
\(79\) −90.2843 −1.14284 −0.571419 0.820658i \(-0.693607\pi\)
−0.571419 + 0.820658i \(0.693607\pi\)
\(80\) 0 0
\(81\) 23.2254 0.286733
\(82\) 0 0
\(83\) 71.8544i 0.865715i −0.901462 0.432858i \(-0.857505\pi\)
0.901462 0.432858i \(-0.142495\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 22.4808i 0.258400i
\(88\) 0 0
\(89\) 2.01094i 0.0225948i 0.999936 + 0.0112974i \(0.00359615\pi\)
−0.999936 + 0.0112974i \(0.996404\pi\)
\(90\) 0 0
\(91\) −1.53911 1.00547i −0.0169132 0.0110491i
\(92\) 0 0
\(93\) 13.2548 0.142525
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 158.581i 1.63485i −0.576032 0.817427i \(-0.695399\pi\)
0.576032 0.817427i \(-0.304601\pi\)
\(98\) 0 0
\(99\) −62.0000 −0.626263
\(100\) 0 0
\(101\) 93.5022i 0.925764i −0.886420 0.462882i \(-0.846815\pi\)
0.886420 0.462882i \(-0.153185\pi\)
\(102\) 0 0
\(103\) 20.3797i 0.197862i 0.995094 + 0.0989308i \(0.0315422\pi\)
−0.995094 + 0.0989308i \(0.968458\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.1177 −0.131942 −0.0659708 0.997822i \(-0.521014\pi\)
−0.0659708 + 0.997822i \(0.521014\pi\)
\(108\) 0 0
\(109\) 23.2548 0.213347 0.106674 0.994294i \(-0.465980\pi\)
0.106674 + 0.994294i \(0.465980\pi\)
\(110\) 0 0
\(111\) 67.2622i 0.605965i
\(112\) 0 0
\(113\) −13.7157 −0.121378 −0.0606891 0.998157i \(-0.519330\pi\)
−0.0606891 + 0.998157i \(0.519330\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.74831i 0.0149428i
\(118\) 0 0
\(119\) −86.6274 56.5921i −0.727961 0.475564i
\(120\) 0 0
\(121\) −34.2548 −0.283098
\(122\) 0 0
\(123\) −35.0782 −0.285189
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −177.765 −1.39972 −0.699860 0.714280i \(-0.746754\pi\)
−0.699860 + 0.714280i \(0.746754\pi\)
\(128\) 0 0
\(129\) 70.4138i 0.545843i
\(130\) 0 0
\(131\) 112.614i 0.859648i 0.902913 + 0.429824i \(0.141424\pi\)
−0.902913 + 0.429824i \(0.858576\pi\)
\(132\) 0 0
\(133\) 149.421 + 97.6142i 1.12347 + 0.733941i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −121.765 −0.888792 −0.444396 0.895830i \(-0.646582\pi\)
−0.444396 + 0.895830i \(0.646582\pi\)
\(138\) 0 0
\(139\) 175.329i 1.26136i −0.776043 0.630679i \(-0.782776\pi\)
0.776043 0.630679i \(-0.217224\pi\)
\(140\) 0 0
\(141\) −131.882 −0.935335
\(142\) 0 0
\(143\) 2.44608i 0.0171055i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −68.6863 + 30.1345i −0.467254 + 0.204996i
\(148\) 0 0
\(149\) −237.765 −1.59573 −0.797867 0.602833i \(-0.794039\pi\)
−0.797867 + 0.602833i \(0.794039\pi\)
\(150\) 0 0
\(151\) 99.3726 0.658097 0.329048 0.944313i \(-0.393272\pi\)
0.329048 + 0.944313i \(0.393272\pi\)
\(152\) 0 0
\(153\) 98.4021i 0.643151i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 96.6538i 0.615629i −0.951446 0.307815i \(-0.900402\pi\)
0.951446 0.307815i \(-0.0995977\pi\)
\(158\) 0 0
\(159\) 92.8044i 0.583676i
\(160\) 0 0
\(161\) 63.6569 97.4417i 0.395384 0.605228i
\(162\) 0 0
\(163\) −170.569 −1.04643 −0.523216 0.852200i \(-0.675268\pi\)
−0.523216 + 0.852200i \(0.675268\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 94.9055i 0.568296i −0.958780 0.284148i \(-0.908289\pi\)
0.958780 0.284148i \(-0.0917108\pi\)
\(168\) 0 0
\(169\) 168.931 0.999592
\(170\) 0 0
\(171\) 169.731i 0.992580i
\(172\) 0 0
\(173\) 182.720i 1.05618i 0.849187 + 0.528092i \(0.177092\pi\)
−0.849187 + 0.528092i \(0.822908\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −88.9706 −0.502659
\(178\) 0 0
\(179\) −204.059 −1.13999 −0.569997 0.821647i \(-0.693056\pi\)
−0.569997 + 0.821647i \(0.693056\pi\)
\(180\) 0 0
\(181\) 229.167i 1.26612i 0.774104 + 0.633059i \(0.218201\pi\)
−0.774104 + 0.633059i \(0.781799\pi\)
\(182\) 0 0
\(183\) −15.2649 −0.0834149
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 137.676i 0.736235i
\(188\) 0 0
\(189\) 140.451 + 91.7539i 0.743126 + 0.485470i
\(190\) 0 0
\(191\) 9.59798 0.0502512 0.0251256 0.999684i \(-0.492001\pi\)
0.0251256 + 0.999684i \(0.492001\pi\)
\(192\) 0 0
\(193\) 3.42136 0.0177272 0.00886362 0.999961i \(-0.497179\pi\)
0.00886362 + 0.999961i \(0.497179\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 146.451 0.743405 0.371703 0.928352i \(-0.378774\pi\)
0.371703 + 0.928352i \(0.378774\pi\)
\(198\) 0 0
\(199\) 244.647i 1.22938i −0.788768 0.614691i \(-0.789281\pi\)
0.788768 0.614691i \(-0.210719\pi\)
\(200\) 0 0
\(201\) 31.5751i 0.157090i
\(202\) 0 0
\(203\) −56.2254 + 86.0661i −0.276972 + 0.423971i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −110.686 −0.534716
\(208\) 0 0
\(209\) 237.474i 1.13624i
\(210\) 0 0
\(211\) 311.019 1.47403 0.737013 0.675879i \(-0.236236\pi\)
0.737013 + 0.675879i \(0.236236\pi\)
\(212\) 0 0
\(213\) 120.883i 0.567525i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −50.7452 33.1509i −0.233849 0.152769i
\(218\) 0 0
\(219\) 32.8040 0.149790
\(220\) 0 0
\(221\) −3.88225 −0.0175667
\(222\) 0 0
\(223\) 116.156i 0.520877i −0.965490 0.260438i \(-0.916133\pi\)
0.965490 0.260438i \(-0.0838671\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 59.1734i 0.260676i −0.991470 0.130338i \(-0.958394\pi\)
0.991470 0.130338i \(-0.0416062\pi\)
\(228\) 0 0
\(229\) 128.664i 0.561852i 0.959729 + 0.280926i \(0.0906415\pi\)
−0.959729 + 0.280926i \(0.909359\pi\)
\(230\) 0 0
\(231\) −83.5492 54.5811i −0.361685 0.236282i
\(232\) 0 0
\(233\) 88.9807 0.381891 0.190946 0.981601i \(-0.438845\pi\)
0.190946 + 0.981601i \(0.438845\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 138.201i 0.583127i
\(238\) 0 0
\(239\) −7.13708 −0.0298623 −0.0149311 0.999889i \(-0.504753\pi\)
−0.0149311 + 0.999889i \(0.504753\pi\)
\(240\) 0 0
\(241\) 367.451i 1.52469i −0.647170 0.762346i \(-0.724047\pi\)
0.647170 0.762346i \(-0.275953\pi\)
\(242\) 0 0
\(243\) 251.250i 1.03395i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.69639 0.0271109
\(248\) 0 0
\(249\) −109.990 −0.441727
\(250\) 0 0
\(251\) 176.995i 0.705159i −0.935782 0.352579i \(-0.885305\pi\)
0.935782 0.352579i \(-0.114695\pi\)
\(252\) 0 0
\(253\) 154.863 0.612106
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.4631i 0.106860i −0.998572 0.0534301i \(-0.982985\pi\)
0.998572 0.0534301i \(-0.0170154\pi\)
\(258\) 0 0
\(259\) 168.225 257.508i 0.649519 0.994240i
\(260\) 0 0
\(261\) 97.7645 0.374577
\(262\) 0 0
\(263\) −77.1472 −0.293335 −0.146668 0.989186i \(-0.546855\pi\)
−0.146668 + 0.989186i \(0.546855\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.07821 0.0115289
\(268\) 0 0
\(269\) 34.3739i 0.127784i 0.997957 + 0.0638920i \(0.0203513\pi\)
−0.997957 + 0.0638920i \(0.979649\pi\)
\(270\) 0 0
\(271\) 202.927i 0.748809i 0.927266 + 0.374404i \(0.122153\pi\)
−0.927266 + 0.374404i \(0.877847\pi\)
\(272\) 0 0
\(273\) −1.53911 + 2.35596i −0.00563775 + 0.00862989i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 254.098 0.917320 0.458660 0.888612i \(-0.348330\pi\)
0.458660 + 0.888612i \(0.348330\pi\)
\(278\) 0 0
\(279\) 57.6426i 0.206604i
\(280\) 0 0
\(281\) −221.529 −0.788359 −0.394180 0.919033i \(-0.628971\pi\)
−0.394180 + 0.919033i \(0.628971\pi\)
\(282\) 0 0
\(283\) 283.786i 1.00278i −0.865223 0.501388i \(-0.832823\pi\)
0.865223 0.501388i \(-0.167177\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 134.294 + 87.7320i 0.467925 + 0.305687i
\(288\) 0 0
\(289\) 70.4903 0.243911
\(290\) 0 0
\(291\) −242.745 −0.834176
\(292\) 0 0
\(293\) 398.073i 1.35861i −0.733855 0.679306i \(-0.762281\pi\)
0.733855 0.679306i \(-0.237719\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 223.217i 0.751572i
\(298\) 0 0
\(299\) 4.36690i 0.0146050i
\(300\) 0 0
\(301\) −176.108 + 269.574i −0.585075 + 0.895594i
\(302\) 0 0
\(303\) −143.127 −0.472366
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 167.720i 0.546320i −0.961969 0.273160i \(-0.911931\pi\)
0.961969 0.273160i \(-0.0880689\pi\)
\(308\) 0 0
\(309\) 31.1960 0.100958
\(310\) 0 0
\(311\) 284.101i 0.913508i 0.889593 + 0.456754i \(0.150988\pi\)
−0.889593 + 0.456754i \(0.849012\pi\)
\(312\) 0 0
\(313\) 514.311i 1.64317i 0.570089 + 0.821583i \(0.306909\pi\)
−0.570089 + 0.821583i \(0.693091\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.5685 −0.0585758 −0.0292879 0.999571i \(-0.509324\pi\)
−0.0292879 + 0.999571i \(0.509324\pi\)
\(318\) 0 0
\(319\) −136.784 −0.428789
\(320\) 0 0
\(321\) 21.6105i 0.0673225i
\(322\) 0 0
\(323\) 376.902 1.16688
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 35.5970i 0.108859i
\(328\) 0 0
\(329\) 504.902 + 329.843i 1.53466 + 1.00256i
\(330\) 0 0
\(331\) 194.333 0.587109 0.293554 0.955942i \(-0.405162\pi\)
0.293554 + 0.955942i \(0.405162\pi\)
\(332\) 0 0
\(333\) −292.510 −0.878407
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 125.265 0.371706 0.185853 0.982578i \(-0.440495\pi\)
0.185853 + 0.982578i \(0.440495\pi\)
\(338\) 0 0
\(339\) 20.9951i 0.0619325i
\(340\) 0 0
\(341\) 80.6487i 0.236506i
\(342\) 0 0
\(343\) 338.328 + 56.4196i 0.986379 + 0.164489i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 160.745 0.463243 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(348\) 0 0
\(349\) 93.0671i 0.266668i 0.991071 + 0.133334i \(0.0425683\pi\)
−0.991071 + 0.133334i \(0.957432\pi\)
\(350\) 0 0
\(351\) 6.29437 0.0179327
\(352\) 0 0
\(353\) 189.631i 0.537198i −0.963252 0.268599i \(-0.913439\pi\)
0.963252 0.268599i \(-0.0865606\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −86.6274 + 132.604i −0.242654 + 0.371438i
\(358\) 0 0
\(359\) −494.431 −1.37724 −0.688622 0.725121i \(-0.741784\pi\)
−0.688622 + 0.725121i \(0.741784\pi\)
\(360\) 0 0
\(361\) −289.108 −0.800852
\(362\) 0 0
\(363\) 52.4350i 0.144449i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 718.994i 1.95911i 0.201171 + 0.979556i \(0.435525\pi\)
−0.201171 + 0.979556i \(0.564475\pi\)
\(368\) 0 0
\(369\) 152.548i 0.413410i
\(370\) 0 0
\(371\) −232.108 + 355.295i −0.625627 + 0.957668i
\(372\) 0 0
\(373\) −132.843 −0.356147 −0.178073 0.984017i \(-0.556986\pi\)
−0.178073 + 0.984017i \(0.556986\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.85710i 0.0102310i
\(378\) 0 0
\(379\) 324.607 0.856483 0.428242 0.903664i \(-0.359133\pi\)
0.428242 + 0.903664i \(0.359133\pi\)
\(380\) 0 0
\(381\) 272.110i 0.714200i
\(382\) 0 0
\(383\) 391.252i 1.02155i −0.859715 0.510773i \(-0.829359\pi\)
0.859715 0.510773i \(-0.170641\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 306.215 0.791254
\(388\) 0 0
\(389\) 223.352 0.574171 0.287085 0.957905i \(-0.407314\pi\)
0.287085 + 0.957905i \(0.407314\pi\)
\(390\) 0 0
\(391\) 245.788i 0.628613i
\(392\) 0 0
\(393\) 172.382 0.438631
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 223.044i 0.561824i 0.959733 + 0.280912i \(0.0906370\pi\)
−0.959733 + 0.280912i \(0.909363\pi\)
\(398\) 0 0
\(399\) 149.421 228.724i 0.374490 0.573244i
\(400\) 0 0
\(401\) 136.225 0.339714 0.169857 0.985469i \(-0.445669\pi\)
0.169857 + 0.985469i \(0.445669\pi\)
\(402\) 0 0
\(403\) −2.27417 −0.00564310
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 409.255 1.00554
\(408\) 0 0
\(409\) 671.587i 1.64202i 0.570913 + 0.821010i \(0.306589\pi\)
−0.570913 + 0.821010i \(0.693411\pi\)
\(410\) 0 0
\(411\) 186.389i 0.453501i
\(412\) 0 0
\(413\) 340.617 + 222.519i 0.824739 + 0.538787i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −268.382 −0.643601
\(418\) 0 0
\(419\) 10.8053i 0.0257882i 0.999917 + 0.0128941i \(0.00410443\pi\)
−0.999917 + 0.0128941i \(0.995896\pi\)
\(420\) 0 0
\(421\) 421.647 1.00154 0.500768 0.865581i \(-0.333051\pi\)
0.500768 + 0.865581i \(0.333051\pi\)
\(422\) 0 0
\(423\) 573.529i 1.35586i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 58.4407 + 38.1782i 0.136863 + 0.0894104i
\(428\) 0 0
\(429\) −3.74430 −0.00872797
\(430\) 0 0
\(431\) 793.529 1.84113 0.920567 0.390584i \(-0.127727\pi\)
0.920567 + 0.390584i \(0.127727\pi\)
\(432\) 0 0
\(433\) 254.627i 0.588053i 0.955797 + 0.294027i \(0.0949954\pi\)
−0.955797 + 0.294027i \(0.905005\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 423.953i 0.970144i
\(438\) 0 0
\(439\) 839.517i 1.91234i 0.292814 + 0.956169i \(0.405408\pi\)
−0.292814 + 0.956169i \(0.594592\pi\)
\(440\) 0 0
\(441\) −131.049 298.703i −0.297163 0.677331i
\(442\) 0 0
\(443\) −774.215 −1.74766 −0.873832 0.486228i \(-0.838373\pi\)
−0.873832 + 0.486228i \(0.838373\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 363.954i 0.814215i
\(448\) 0 0
\(449\) 751.921 1.67466 0.837328 0.546700i \(-0.184116\pi\)
0.837328 + 0.546700i \(0.184116\pi\)
\(450\) 0 0
\(451\) 213.432i 0.473243i
\(452\) 0 0
\(453\) 152.113i 0.335790i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 251.990 0.551400 0.275700 0.961244i \(-0.411090\pi\)
0.275700 + 0.961244i \(0.411090\pi\)
\(458\) 0 0
\(459\) 354.274 0.771839
\(460\) 0 0
\(461\) 93.4121i 0.202629i −0.994854 0.101315i \(-0.967695\pi\)
0.994854 0.101315i \(-0.0323049\pi\)
\(462\) 0 0
\(463\) −167.990 −0.362829 −0.181415 0.983407i \(-0.558068\pi\)
−0.181415 + 0.983407i \(0.558068\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 364.179i 0.779828i 0.920851 + 0.389914i \(0.127495\pi\)
−0.920851 + 0.389914i \(0.872505\pi\)
\(468\) 0 0
\(469\) −78.9706 + 120.883i −0.168381 + 0.257746i
\(470\) 0 0
\(471\) −147.951 −0.314122
\(472\) 0 0
\(473\) −428.431 −0.905773
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 403.588 0.846096
\(478\) 0 0
\(479\) 137.061i 0.286139i 0.989713 + 0.143069i \(0.0456972\pi\)
−0.989713 + 0.143069i \(0.954303\pi\)
\(480\) 0 0
\(481\) 11.5404i 0.0239924i
\(482\) 0 0
\(483\) −149.157 97.4417i −0.308814 0.201743i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −557.411 −1.14458 −0.572291 0.820051i \(-0.693945\pi\)
−0.572291 + 0.820051i \(0.693945\pi\)
\(488\) 0 0
\(489\) 261.095i 0.533937i
\(490\) 0 0
\(491\) −537.647 −1.09500 −0.547502 0.836805i \(-0.684421\pi\)
−0.547502 + 0.836805i \(0.684421\pi\)
\(492\) 0 0
\(493\) 217.094i 0.440353i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 302.333 462.791i 0.608316 0.931170i
\(498\) 0 0
\(499\) −633.980 −1.27050 −0.635250 0.772306i \(-0.719103\pi\)
−0.635250 + 0.772306i \(0.719103\pi\)
\(500\) 0 0
\(501\) −145.275 −0.289970
\(502\) 0 0
\(503\) 91.1385i 0.181190i −0.995888 0.0905949i \(-0.971123\pi\)
0.995888 0.0905949i \(-0.0288769\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 258.588i 0.510036i
\(508\) 0 0
\(509\) 353.366i 0.694237i −0.937821 0.347118i \(-0.887160\pi\)
0.937821 0.347118i \(-0.112840\pi\)
\(510\) 0 0
\(511\) −125.588 82.0442i −0.245769 0.160556i
\(512\) 0 0
\(513\) −611.078 −1.19119
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 802.434i 1.55210i
\(518\) 0 0
\(519\) 279.696 0.538912
\(520\) 0 0
\(521\) 949.039i 1.82157i −0.412878 0.910786i \(-0.635476\pi\)
0.412878 0.910786i \(-0.364524\pi\)
\(522\) 0 0
\(523\) 662.702i 1.26712i 0.773695 + 0.633558i \(0.218406\pi\)
−0.773695 + 0.633558i \(0.781594\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −128.000 −0.242884
\(528\) 0 0
\(529\) −252.529 −0.477371
\(530\) 0 0
\(531\) 386.915i 0.728654i
\(532\) 0 0
\(533\) 6.01847 0.0112917
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 312.360i 0.581676i
\(538\) 0 0
\(539\) 183.352 + 417.920i 0.340171 + 0.775362i
\(540\) 0 0
\(541\) 1026.90 1.89815 0.949077 0.315043i \(-0.102019\pi\)
0.949077 + 0.315043i \(0.102019\pi\)
\(542\) 0 0
\(543\) 350.794 0.646029
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 258.686 0.472918 0.236459 0.971641i \(-0.424013\pi\)
0.236459 + 0.971641i \(0.424013\pi\)
\(548\) 0 0
\(549\) 66.3841i 0.120918i
\(550\) 0 0
\(551\) 374.459i 0.679600i
\(552\) 0 0
\(553\) 345.647 529.093i 0.625039 0.956769i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 741.529 1.33129 0.665645 0.746268i \(-0.268156\pi\)
0.665645 + 0.746268i \(0.268156\pi\)
\(558\) 0 0
\(559\) 12.0811i 0.0216120i
\(560\) 0 0
\(561\) −210.745 −0.375660
\(562\) 0 0
\(563\) 80.5135i 0.143008i −0.997440 0.0715040i \(-0.977220\pi\)
0.997440 0.0715040i \(-0.0227799\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −88.9167 + 136.108i −0.156820 + 0.240049i
\(568\) 0 0
\(569\) −742.971 −1.30575 −0.652874 0.757467i \(-0.726437\pi\)
−0.652874 + 0.757467i \(0.726437\pi\)
\(570\) 0 0
\(571\) 597.882 1.04708 0.523540 0.852001i \(-0.324611\pi\)
0.523540 + 0.852001i \(0.324611\pi\)
\(572\) 0 0
\(573\) 14.6920i 0.0256404i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 830.767i 1.43980i −0.694075 0.719902i \(-0.744187\pi\)
0.694075 0.719902i \(-0.255813\pi\)
\(578\) 0 0
\(579\) 5.23719i 0.00904523i
\(580\) 0 0
\(581\) 421.088 + 275.089i 0.724765 + 0.473475i
\(582\) 0 0
\(583\) −564.666 −0.968552
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 700.310i 1.19303i 0.802601 + 0.596516i \(0.203449\pi\)
−0.802601 + 0.596516i \(0.796551\pi\)
\(588\) 0 0
\(589\) 220.784 0.374845
\(590\) 0 0
\(591\) 224.177i 0.379318i
\(592\) 0 0
\(593\) 417.050i 0.703288i −0.936134 0.351644i \(-0.885623\pi\)
0.936134 0.351644i \(-0.114377\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −374.489 −0.627286
\(598\) 0 0
\(599\) 223.892 0.373777 0.186888 0.982381i \(-0.440160\pi\)
0.186888 + 0.982381i \(0.440160\pi\)
\(600\) 0 0
\(601\) 721.185i 1.19998i 0.800009 + 0.599988i \(0.204828\pi\)
−0.800009 + 0.599988i \(0.795172\pi\)
\(602\) 0 0
\(603\) 137.314 0.227718
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 320.494i 0.527996i −0.964523 0.263998i \(-0.914959\pi\)
0.964523 0.263998i \(-0.0850413\pi\)
\(608\) 0 0
\(609\) 131.744 + 86.0661i 0.216329 + 0.141324i
\(610\) 0 0
\(611\) 22.6274 0.0370334
\(612\) 0 0
\(613\) −195.373 −0.318715 −0.159358 0.987221i \(-0.550942\pi\)
−0.159358 + 0.987221i \(0.550942\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −838.284 −1.35865 −0.679323 0.733840i \(-0.737726\pi\)
−0.679323 + 0.733840i \(0.737726\pi\)
\(618\) 0 0
\(619\) 515.407i 0.832644i 0.909217 + 0.416322i \(0.136681\pi\)
−0.909217 + 0.416322i \(0.863319\pi\)
\(620\) 0 0
\(621\) 398.501i 0.641708i
\(622\) 0 0
\(623\) −11.7847 7.69873i −0.0189161 0.0123575i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 363.509 0.579759
\(628\) 0 0
\(629\) 649.541i 1.03266i
\(630\) 0 0
\(631\) −392.538 −0.622089 −0.311045 0.950395i \(-0.600679\pi\)
−0.311045 + 0.950395i \(0.600679\pi\)
\(632\) 0 0
\(633\) 476.088i 0.752113i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.7847 5.17026i 0.0185003 0.00811657i
\(638\) 0 0
\(639\) −525.696 −0.822685
\(640\) 0 0
\(641\) −813.460 −1.26905 −0.634524 0.772903i \(-0.718804\pi\)
−0.634524 + 0.772903i \(0.718804\pi\)
\(642\) 0 0
\(643\) 906.299i 1.40948i 0.709463 + 0.704742i \(0.248937\pi\)
−0.709463 + 0.704742i \(0.751063\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 114.325i 0.176700i −0.996089 0.0883499i \(-0.971841\pi\)
0.996089 0.0883499i \(-0.0281594\pi\)
\(648\) 0 0
\(649\) 541.339i 0.834113i
\(650\) 0 0
\(651\) −50.7452 + 77.6773i −0.0779496 + 0.119320i
\(652\) 0 0
\(653\) −415.685 −0.636578 −0.318289 0.947994i \(-0.603108\pi\)
−0.318289 + 0.947994i \(0.603108\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 142.658i 0.217136i
\(658\) 0 0
\(659\) 650.431 0.986996 0.493498 0.869747i \(-0.335718\pi\)
0.493498 + 0.869747i \(0.335718\pi\)
\(660\) 0 0
\(661\) 1023.81i 1.54888i 0.632645 + 0.774442i \(0.281969\pi\)
−0.632645 + 0.774442i \(0.718031\pi\)
\(662\) 0 0
\(663\) 5.94269i 0.00896334i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −244.195 −0.366110
\(668\) 0 0
\(669\) −177.803 −0.265775
\(670\) 0 0
\(671\) 92.8791i 0.138419i
\(672\) 0 0
\(673\) 1187.21 1.76406 0.882032 0.471190i \(-0.156176\pi\)
0.882032 + 0.471190i \(0.156176\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 905.826i 1.33800i 0.743262 + 0.669000i \(0.233277\pi\)
−0.743262 + 0.669000i \(0.766723\pi\)
\(678\) 0 0
\(679\) 929.332 + 607.116i 1.36868 + 0.894132i
\(680\) 0 0
\(681\) −90.5786 −0.133008
\(682\) 0 0
\(683\) 315.255 0.461574 0.230787 0.973004i \(-0.425870\pi\)
0.230787 + 0.973004i \(0.425870\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 196.950 0.286682
\(688\) 0 0
\(689\) 15.9227i 0.0231099i
\(690\) 0 0
\(691\) 334.960i 0.484747i 0.970183 + 0.242374i \(0.0779260\pi\)
−0.970183 + 0.242374i \(0.922074\pi\)
\(692\) 0 0
\(693\) 237.362 363.339i 0.342514 0.524298i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 338.745 0.486005
\(698\) 0 0
\(699\) 136.206i 0.194858i
\(700\) 0 0
\(701\) −362.353 −0.516909 −0.258455 0.966023i \(-0.583213\pi\)
−0.258455 + 0.966023i \(0.583213\pi\)
\(702\) 0 0
\(703\) 1120.38i 1.59371i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 547.951 + 357.966i 0.775037 + 0.506317i
\(708\) 0 0
\(709\) −1117.96 −1.57681 −0.788406 0.615155i \(-0.789093\pi\)
−0.788406 + 0.615155i \(0.789093\pi\)
\(710\) 0 0
\(711\) −601.009 −0.845301
\(712\) 0 0
\(713\) 143.979i 0.201934i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.9250i 0.0152371i
\(718\) 0 0
\(719\) 972.571i 1.35267i −0.736593 0.676336i \(-0.763567\pi\)
0.736593 0.676336i \(-0.236433\pi\)
\(720\) 0 0
\(721\) −119.431 78.0224i −0.165647 0.108214i
\(722\) 0 0
\(723\) −562.469 −0.777966
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 660.646i 0.908729i −0.890816 0.454365i \(-0.849866\pi\)
0.890816 0.454365i \(-0.150134\pi\)
\(728\) 0 0
\(729\) −175.569 −0.240835
\(730\) 0 0
\(731\) 679.975i 0.930199i
\(732\) 0 0
\(733\) 258.222i 0.352280i 0.984365 + 0.176140i \(0.0563612\pi\)
−0.984365 + 0.176140i \(0.943639\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −192.118 −0.260675
\(738\) 0 0
\(739\) −333.391 −0.451138 −0.225569 0.974227i \(-0.572424\pi\)
−0.225569 + 0.974227i \(0.572424\pi\)
\(740\) 0 0
\(741\) 10.2504i 0.0138332i
\(742\) 0 0
\(743\) 610.118 0.821154 0.410577 0.911826i \(-0.365327\pi\)
0.410577 + 0.911826i \(0.365327\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 478.324i 0.640327i
\(748\) 0 0
\(749\) 54.0488 82.7343i 0.0721612 0.110460i
\(750\) 0 0
\(751\) −18.1177 −0.0241248 −0.0120624 0.999927i \(-0.503840\pi\)
−0.0120624 + 0.999927i \(0.503840\pi\)
\(752\) 0 0
\(753\) −270.932 −0.359803
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −107.137 −0.141529 −0.0707643 0.997493i \(-0.522544\pi\)
−0.0707643 + 0.997493i \(0.522544\pi\)
\(758\) 0 0
\(759\) 237.054i 0.312324i
\(760\) 0 0
\(761\) 898.284i 1.18040i −0.807257 0.590200i \(-0.799049\pi\)
0.807257 0.590200i \(-0.200951\pi\)
\(762\) 0 0
\(763\) −89.0294 + 136.280i −0.116683 + 0.178611i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.2649 0.0199021
\(768\) 0 0
\(769\) 929.350i 1.20852i −0.796788 0.604259i \(-0.793469\pi\)
0.796788 0.604259i \(-0.206531\pi\)
\(770\) 0 0
\(771\) −42.0387 −0.0545249
\(772\) 0 0
\(773\) 914.395i 1.18292i −0.806335 0.591459i \(-0.798552\pi\)
0.806335 0.591459i \(-0.201448\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −394.177 257.508i −0.507306 0.331413i
\(778\) 0 0
\(779\) −584.293 −0.750055
\(780\) 0 0
\(781\) 735.509 0.941753
\(782\) 0 0
\(783\) 351.979i 0.449526i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 761.720i 0.967878i −0.875102 0.483939i \(-0.839206\pi\)
0.875102 0.483939i \(-0.160794\pi\)
\(788\) 0 0
\(789\) 118.092i 0.149673i
\(790\) 0 0
\(791\) 52.5097 80.3783i 0.0663839 0.101616i
\(792\) 0 0
\(793\) 2.61905 0.00330271
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 395.267i 0.495943i −0.968767 0.247972i \(-0.920236\pi\)
0.968767 0.247972i \(-0.0797639\pi\)
\(798\) 0 0
\(799\) 1273.57 1.59395
\(800\) 0 0
\(801\) 13.3865i 0.0167123i
\(802\) 0 0
\(803\) 199.595i 0.248562i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 52.6173 0.0652011
\(808\) 0 0
\(809\) −877.793 −1.08503 −0.542517 0.840045i \(-0.682529\pi\)
−0.542517 + 0.840045i \(0.682529\pi\)
\(810\) 0 0
\(811\) 851.717i 1.05021i −0.851039 0.525103i \(-0.824027\pi\)
0.851039 0.525103i \(-0.175973\pi\)
\(812\) 0 0
\(813\) 310.627 0.382076
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1172.87i 1.43558i
\(818\) 0 0
\(819\) −10.2456 6.69326i −0.0125099 0.00817248i
\(820\) 0 0
\(821\) 437.038 0.532324 0.266162 0.963928i \(-0.414244\pi\)
0.266162 + 0.963928i \(0.414244\pi\)
\(822\) 0 0
\(823\) 1592.34 1.93480 0.967402 0.253247i \(-0.0814985\pi\)
0.967402 + 0.253247i \(0.0814985\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1182.45 −1.42981 −0.714904 0.699223i \(-0.753530\pi\)
−0.714904 + 0.699223i \(0.753530\pi\)
\(828\) 0 0
\(829\) 1048.05i 1.26423i −0.774873 0.632117i \(-0.782186\pi\)
0.774873 0.632117i \(-0.217814\pi\)
\(830\) 0 0
\(831\) 388.956i 0.468057i
\(832\) 0 0
\(833\) 663.294 291.004i 0.796271 0.349345i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 207.529 0.247944
\(838\) 0 0
\(839\) 585.611i 0.697986i 0.937125 + 0.348993i \(0.113476\pi\)
−0.937125 + 0.348993i \(0.886524\pi\)
\(840\) 0 0
\(841\) −625.313 −0.743535
\(842\) 0 0
\(843\) 339.102i 0.402256i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 131.142 200.744i 0.154831 0.237006i
\(848\) 0 0
\(849\) −434.400 −0.511661
\(850\) 0 0
\(851\) 730.627 0.858552
\(852\) 0 0
\(853\) 901.189i 1.05649i 0.849091 + 0.528247i \(0.177150\pi\)
−0.849091 + 0.528247i \(0.822850\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 965.997i 1.12718i −0.826053 0.563592i \(-0.809419\pi\)
0.826053 0.563592i \(-0.190581\pi\)
\(858\) 0 0
\(859\) 250.830i 0.292003i −0.989284 0.146001i \(-0.953360\pi\)
0.989284 0.146001i \(-0.0466404\pi\)
\(860\) 0 0
\(861\) 134.294 205.569i 0.155975 0.238756i
\(862\) 0 0
\(863\) −1497.13 −1.73479 −0.867397 0.497617i \(-0.834209\pi\)
−0.867397 + 0.497617i \(0.834209\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 107.902i 0.124454i
\(868\) 0 0
\(869\) 840.881 0.967643
\(870\) 0 0
\(871\) 5.41743i 0.00621978i
\(872\) 0 0
\(873\) 1055.65i 1.20922i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −141.354 −0.161179 −0.0805896 0.996747i \(-0.525680\pi\)
−0.0805896 + 0.996747i \(0.525680\pi\)
\(878\) 0 0
\(879\) −609.344 −0.693224
\(880\) 0 0
\(881\) 1413.83i 1.60480i −0.596788 0.802399i \(-0.703557\pi\)
0.596788 0.802399i \(-0.296443\pi\)
\(882\) 0 0
\(883\) 1386.04 1.56969 0.784845 0.619692i \(-0.212742\pi\)
0.784845 + 0.619692i \(0.212742\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 303.595i 0.342272i 0.985247 + 0.171136i \(0.0547437\pi\)
−0.985247 + 0.171136i \(0.945256\pi\)
\(888\) 0 0
\(889\) 680.558 1041.75i 0.765533 1.17183i
\(890\) 0 0
\(891\) −216.315 −0.242777
\(892\) 0 0
\(893\) −2196.74 −2.45996
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.68456 −0.00745213
\(898\) 0 0
\(899\) 127.171i 0.141458i
\(900\) 0 0
\(901\) 896.199i 0.994671i
\(902\) 0 0
\(903\) 412.646 + 269.574i 0.456972 + 0.298531i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1304.02 −1.43773 −0.718864 0.695151i \(-0.755337\pi\)
−0.718864 + 0.695151i \(0.755337\pi\)
\(908\) 0 0
\(909\) 622.431i 0.684742i
\(910\) 0 0
\(911\) −466.118 −0.511655 −0.255828 0.966722i \(-0.582348\pi\)
−0.255828 + 0.966722i \(0.582348\pi\)
\(912\) 0 0
\(913\) 669.231i 0.733002i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −659.951 431.134i −0.719685 0.470157i
\(918\) 0 0
\(919\) −1178.34 −1.28220 −0.641100 0.767458i \(-0.721522\pi\)
−0.641100 + 0.767458i \(0.721522\pi\)
\(920\) 0 0
\(921\) −256.735 −0.278757
\(922\) 0 0
\(923\) 20.7402i 0.0224705i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 135.665i 0.146348i
\(928\) 0 0
\(929\) 911.161i 0.980798i −0.871498 0.490399i \(-0.836851\pi\)
0.871498 0.490399i \(-0.163149\pi\)
\(930\) 0 0
\(931\) −1144.10 + 501.945i −1.22889 + 0.539147i
\(932\) 0 0
\(933\) 434.883 0.466113
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1035.35i 1.10496i −0.833527 0.552479i \(-0.813682\pi\)
0.833527 0.552479i \(-0.186318\pi\)
\(938\) 0 0
\(939\) 787.273 0.838417
\(940\) 0 0
\(941\) 64.4479i 0.0684887i 0.999413 + 0.0342443i \(0.0109024\pi\)
−0.999413 + 0.0342443i \(0.989098\pi\)
\(942\) 0 0
\(943\) 381.033i 0.404065i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −132.274 −0.139677 −0.0698385 0.997558i \(-0.522248\pi\)
−0.0698385 + 0.997558i \(0.522248\pi\)
\(948\) 0 0
\(949\) −5.62828 −0.00593075
\(950\) 0 0
\(951\) 28.4235i 0.0298880i
\(952\) 0 0
\(953\) −1346.86 −1.41329 −0.706643 0.707570i \(-0.749791\pi\)
−0.706643 + 0.707570i \(0.749791\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 209.380i 0.218787i
\(958\) 0 0
\(959\) 466.167 713.577i 0.486096 0.744084i
\(960\) 0 0
\(961\) 886.019 0.921976
\(962\) 0 0
\(963\) −93.9798 −0.0975907
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 498.979 0.516007 0.258004 0.966144i \(-0.416935\pi\)
0.258004 + 0.966144i \(0.416935\pi\)
\(968\) 0 0
\(969\) 576.936i 0.595393i
\(970\) 0 0
\(971\) 1799.26i 1.85299i −0.376304 0.926496i \(-0.622805\pi\)
0.376304 0.926496i \(-0.377195\pi\)
\(972\) 0 0
\(973\) 1027.48 + 671.234i 1.05599 + 0.689860i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1381.61 −1.41413 −0.707066 0.707148i \(-0.749982\pi\)
−0.707066 + 0.707148i \(0.749982\pi\)
\(978\) 0 0
\(979\) 18.7293i 0.0191310i
\(980\) 0 0
\(981\) 154.804 0.157802
\(982\) 0 0
\(983\) 1306.67i 1.32927i 0.747167 + 0.664636i \(0.231413\pi\)
−0.747167 + 0.664636i \(0.768587\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 504.902 772.870i 0.511552 0.783050i
\(988\) 0 0
\(989\) −764.861 −0.773368
\(990\) 0 0
\(991\) 1033.99 1.04338 0.521689 0.853136i \(-0.325302\pi\)
0.521689 + 0.853136i \(0.325302\pi\)
\(992\) 0 0
\(993\) 297.472i 0.299569i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 391.500i 0.392678i 0.980536 + 0.196339i \(0.0629052\pi\)
−0.980536 + 0.196339i \(0.937095\pi\)
\(998\) 0 0
\(999\) 1053.11i 1.05417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.3.f.a.601.2 4
5.2 odd 4 1400.3.p.a.1049.3 8
5.3 odd 4 1400.3.p.a.1049.6 8
5.4 even 2 56.3.c.a.41.3 yes 4
7.6 odd 2 inner 1400.3.f.a.601.3 4
15.14 odd 2 504.3.f.a.433.1 4
20.19 odd 2 112.3.c.c.97.2 4
35.4 even 6 392.3.o.b.313.3 8
35.9 even 6 392.3.o.b.129.2 8
35.13 even 4 1400.3.p.a.1049.4 8
35.19 odd 6 392.3.o.b.129.3 8
35.24 odd 6 392.3.o.b.313.2 8
35.27 even 4 1400.3.p.a.1049.5 8
35.34 odd 2 56.3.c.a.41.2 4
40.19 odd 2 448.3.c.e.321.3 4
40.29 even 2 448.3.c.f.321.2 4
60.59 even 2 1008.3.f.h.433.1 4
105.104 even 2 504.3.f.a.433.4 4
140.19 even 6 784.3.s.f.129.2 8
140.39 odd 6 784.3.s.f.705.2 8
140.59 even 6 784.3.s.f.705.3 8
140.79 odd 6 784.3.s.f.129.3 8
140.139 even 2 112.3.c.c.97.3 4
280.69 odd 2 448.3.c.f.321.3 4
280.139 even 2 448.3.c.e.321.2 4
420.419 odd 2 1008.3.f.h.433.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.3.c.a.41.2 4 35.34 odd 2
56.3.c.a.41.3 yes 4 5.4 even 2
112.3.c.c.97.2 4 20.19 odd 2
112.3.c.c.97.3 4 140.139 even 2
392.3.o.b.129.2 8 35.9 even 6
392.3.o.b.129.3 8 35.19 odd 6
392.3.o.b.313.2 8 35.24 odd 6
392.3.o.b.313.3 8 35.4 even 6
448.3.c.e.321.2 4 280.139 even 2
448.3.c.e.321.3 4 40.19 odd 2
448.3.c.f.321.2 4 40.29 even 2
448.3.c.f.321.3 4 280.69 odd 2
504.3.f.a.433.1 4 15.14 odd 2
504.3.f.a.433.4 4 105.104 even 2
784.3.s.f.129.2 8 140.19 even 6
784.3.s.f.129.3 8 140.79 odd 6
784.3.s.f.705.2 8 140.39 odd 6
784.3.s.f.705.3 8 140.59 even 6
1008.3.f.h.433.1 4 60.59 even 2
1008.3.f.h.433.4 4 420.419 odd 2
1400.3.f.a.601.2 4 1.1 even 1 trivial
1400.3.f.a.601.3 4 7.6 odd 2 inner
1400.3.p.a.1049.3 8 5.2 odd 4
1400.3.p.a.1049.4 8 35.13 even 4
1400.3.p.a.1049.5 8 35.27 even 4
1400.3.p.a.1049.6 8 5.3 odd 4