Properties

Label 1008.3.f.h.433.1
Level $1008$
Weight $3$
Character 1008.433
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(433,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.1
Root \(-0.765367i\) of defining polynomial
Character \(\chi\) \(=\) 1008.433
Dual form 1008.3.f.h.433.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.92177i q^{5} +(-3.82843 + 5.86030i) q^{7} -9.31371 q^{11} -0.262632i q^{13} +14.7821i q^{17} +25.4972i q^{19} +16.6274 q^{23} -54.5980 q^{25} -14.6863 q^{29} -8.65914i q^{31} +(52.2843 + 34.1563i) q^{35} +43.9411 q^{37} +22.9159i q^{41} +46.0000 q^{43} +86.1562i q^{47} +(-19.6863 - 44.8715i) q^{49} +60.6274 q^{53} +83.0948i q^{55} -58.1228i q^{59} -9.97230i q^{61} -2.34315 q^{65} +20.6274 q^{67} -78.9706 q^{71} -21.4303i q^{73} +(35.6569 - 54.5811i) q^{77} +90.2843 q^{79} +71.8544i q^{83} +131.882 q^{85} -2.01094i q^{89} +(1.53911 + 1.00547i) q^{91} +227.480 q^{95} +158.581i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 8 q^{11} - 24 q^{23} - 60 q^{25} - 104 q^{29} + 96 q^{35} + 40 q^{37} + 184 q^{43} - 124 q^{49} + 152 q^{53} - 32 q^{65} - 8 q^{67} - 248 q^{71} + 120 q^{77} + 248 q^{79} + 256 q^{85} - 288 q^{91}+ \cdots + 480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.92177i 1.78435i −0.451686 0.892177i \(-0.649177\pi\)
0.451686 0.892177i \(-0.350823\pi\)
\(6\) 0 0
\(7\) −3.82843 + 5.86030i −0.546918 + 0.837186i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −9.31371 −0.846701 −0.423350 0.905966i \(-0.639146\pi\)
−0.423350 + 0.905966i \(0.639146\pi\)
\(12\) 0 0
\(13\) 0.262632i 0.0202025i −0.999949 0.0101012i \(-0.996785\pi\)
0.999949 0.0101012i \(-0.00321538\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.7821i 0.869534i 0.900543 + 0.434767i \(0.143169\pi\)
−0.900543 + 0.434767i \(0.856831\pi\)
\(18\) 0 0
\(19\) 25.4972i 1.34196i 0.741476 + 0.670979i \(0.234126\pi\)
−0.741476 + 0.670979i \(0.765874\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.6274 0.722931 0.361466 0.932385i \(-0.382276\pi\)
0.361466 + 0.932385i \(0.382276\pi\)
\(24\) 0 0
\(25\) −54.5980 −2.18392
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −14.6863 −0.506424 −0.253212 0.967411i \(-0.581487\pi\)
−0.253212 + 0.967411i \(0.581487\pi\)
\(30\) 0 0
\(31\) 8.65914i 0.279327i −0.990199 0.139664i \(-0.955398\pi\)
0.990199 0.139664i \(-0.0446021\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 52.2843 + 34.1563i 1.49384 + 0.975896i
\(36\) 0 0
\(37\) 43.9411 1.18760 0.593799 0.804613i \(-0.297627\pi\)
0.593799 + 0.804613i \(0.297627\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.9159i 0.558925i 0.960157 + 0.279463i \(0.0901563\pi\)
−0.960157 + 0.279463i \(0.909844\pi\)
\(42\) 0 0
\(43\) 46.0000 1.06977 0.534884 0.844926i \(-0.320355\pi\)
0.534884 + 0.844926i \(0.320355\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 86.1562i 1.83311i 0.399907 + 0.916556i \(0.369042\pi\)
−0.399907 + 0.916556i \(0.630958\pi\)
\(48\) 0 0
\(49\) −19.6863 44.8715i −0.401761 0.915745i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 60.6274 1.14391 0.571957 0.820284i \(-0.306185\pi\)
0.571957 + 0.820284i \(0.306185\pi\)
\(54\) 0 0
\(55\) 83.0948i 1.51081i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 58.1228i 0.985133i −0.870275 0.492566i \(-0.836059\pi\)
0.870275 0.492566i \(-0.163941\pi\)
\(60\) 0 0
\(61\) 9.97230i 0.163480i −0.996654 0.0817402i \(-0.973952\pi\)
0.996654 0.0817402i \(-0.0260478\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.34315 −0.0360484
\(66\) 0 0
\(67\) 20.6274 0.307872 0.153936 0.988081i \(-0.450805\pi\)
0.153936 + 0.988081i \(0.450805\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −78.9706 −1.11226 −0.556131 0.831095i \(-0.687715\pi\)
−0.556131 + 0.831095i \(0.687715\pi\)
\(72\) 0 0
\(73\) 21.4303i 0.293565i −0.989169 0.146783i \(-0.953108\pi\)
0.989169 0.146783i \(-0.0468918\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 35.6569 54.5811i 0.463076 0.708846i
\(78\) 0 0
\(79\) 90.2843 1.14284 0.571419 0.820658i \(-0.306393\pi\)
0.571419 + 0.820658i \(0.306393\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 71.8544i 0.865715i 0.901462 + 0.432858i \(0.142495\pi\)
−0.901462 + 0.432858i \(0.857505\pi\)
\(84\) 0 0
\(85\) 131.882 1.55156
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.01094i 0.0225948i −0.999936 0.0112974i \(-0.996404\pi\)
0.999936 0.0112974i \(-0.00359615\pi\)
\(90\) 0 0
\(91\) 1.53911 + 1.00547i 0.0169132 + 0.0110491i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 227.480 2.39453
\(96\) 0 0
\(97\) 158.581i 1.63485i 0.576032 + 0.817427i \(0.304601\pi\)
−0.576032 + 0.817427i \(0.695399\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 93.5022i 0.925764i 0.886420 + 0.462882i \(0.153185\pi\)
−0.886420 + 0.462882i \(0.846815\pi\)
\(102\) 0 0
\(103\) 20.3797i 0.197862i 0.995094 + 0.0989308i \(0.0315422\pi\)
−0.995094 + 0.0989308i \(0.968458\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1177 0.131942 0.0659708 0.997822i \(-0.478986\pi\)
0.0659708 + 0.997822i \(0.478986\pi\)
\(108\) 0 0
\(109\) 23.2548 0.213347 0.106674 0.994294i \(-0.465980\pi\)
0.106674 + 0.994294i \(0.465980\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.7157 −0.121378 −0.0606891 0.998157i \(-0.519330\pi\)
−0.0606891 + 0.998157i \(0.519330\pi\)
\(114\) 0 0
\(115\) 148.346i 1.28997i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −86.6274 56.5921i −0.727961 0.475564i
\(120\) 0 0
\(121\) −34.2548 −0.283098
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 264.066i 2.11253i
\(126\) 0 0
\(127\) −177.765 −1.39972 −0.699860 0.714280i \(-0.746754\pi\)
−0.699860 + 0.714280i \(0.746754\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 112.614i 0.859648i 0.902913 + 0.429824i \(0.141424\pi\)
−0.902913 + 0.429824i \(0.858576\pi\)
\(132\) 0 0
\(133\) −149.421 97.6142i −1.12347 0.733941i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −121.765 −0.888792 −0.444396 0.895830i \(-0.646582\pi\)
−0.444396 + 0.895830i \(0.646582\pi\)
\(138\) 0 0
\(139\) 175.329i 1.26136i 0.776043 + 0.630679i \(0.217224\pi\)
−0.776043 + 0.630679i \(0.782776\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44608i 0.0171055i
\(144\) 0 0
\(145\) 131.028i 0.903639i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 237.765 1.59573 0.797867 0.602833i \(-0.205961\pi\)
0.797867 + 0.602833i \(0.205961\pi\)
\(150\) 0 0
\(151\) −99.3726 −0.658097 −0.329048 0.944313i \(-0.606728\pi\)
−0.329048 + 0.944313i \(0.606728\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −77.2548 −0.498418
\(156\) 0 0
\(157\) 96.6538i 0.615629i 0.951446 + 0.307815i \(0.0995977\pi\)
−0.951446 + 0.307815i \(0.900402\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −63.6569 + 97.4417i −0.395384 + 0.605228i
\(162\) 0 0
\(163\) −170.569 −1.04643 −0.523216 0.852200i \(-0.675268\pi\)
−0.523216 + 0.852200i \(0.675268\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 94.9055i 0.568296i 0.958780 + 0.284148i \(0.0917108\pi\)
−0.958780 + 0.284148i \(0.908289\pi\)
\(168\) 0 0
\(169\) 168.931 0.999592
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 182.720i 1.05618i 0.849187 + 0.528092i \(0.177092\pi\)
−0.849187 + 0.528092i \(0.822908\pi\)
\(174\) 0 0
\(175\) 209.024 319.961i 1.19443 1.82835i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −204.059 −1.13999 −0.569997 0.821647i \(-0.693056\pi\)
−0.569997 + 0.821647i \(0.693056\pi\)
\(180\) 0 0
\(181\) 229.167i 1.26612i 0.774104 + 0.633059i \(0.218201\pi\)
−0.774104 + 0.633059i \(0.781799\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 392.033i 2.11910i
\(186\) 0 0
\(187\) 137.676i 0.736235i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.59798 0.0502512 0.0251256 0.999684i \(-0.492001\pi\)
0.0251256 + 0.999684i \(0.492001\pi\)
\(192\) 0 0
\(193\) −3.42136 −0.0177272 −0.00886362 0.999961i \(-0.502821\pi\)
−0.00886362 + 0.999961i \(0.502821\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 146.451 0.743405 0.371703 0.928352i \(-0.378774\pi\)
0.371703 + 0.928352i \(0.378774\pi\)
\(198\) 0 0
\(199\) 244.647i 1.22938i 0.788768 + 0.614691i \(0.210719\pi\)
−0.788768 + 0.614691i \(0.789281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 56.2254 86.0661i 0.276972 0.423971i
\(204\) 0 0
\(205\) 204.451 0.997321
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 237.474i 1.13624i
\(210\) 0 0
\(211\) −311.019 −1.47403 −0.737013 0.675879i \(-0.763764\pi\)
−0.737013 + 0.675879i \(0.763764\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 410.401i 1.90884i
\(216\) 0 0
\(217\) 50.7452 + 33.1509i 0.233849 + 0.152769i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.88225 0.0175667
\(222\) 0 0
\(223\) 116.156i 0.520877i −0.965490 0.260438i \(-0.916133\pi\)
0.965490 0.260438i \(-0.0838671\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 59.1734i 0.260676i 0.991470 + 0.130338i \(0.0416062\pi\)
−0.991470 + 0.130338i \(0.958394\pi\)
\(228\) 0 0
\(229\) 128.664i 0.561852i 0.959729 + 0.280926i \(0.0906415\pi\)
−0.959729 + 0.280926i \(0.909359\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 88.9807 0.381891 0.190946 0.981601i \(-0.438845\pi\)
0.190946 + 0.981601i \(0.438845\pi\)
\(234\) 0 0
\(235\) 768.666 3.27092
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.13708 −0.0298623 −0.0149311 0.999889i \(-0.504753\pi\)
−0.0149311 + 0.999889i \(0.504753\pi\)
\(240\) 0 0
\(241\) 367.451i 1.52469i −0.647170 0.762346i \(-0.724047\pi\)
0.647170 0.762346i \(-0.275953\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −400.333 + 175.637i −1.63401 + 0.716884i
\(246\) 0 0
\(247\) 6.69639 0.0271109
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 176.995i 0.705159i −0.935782 0.352579i \(-0.885305\pi\)
0.935782 0.352579i \(-0.114695\pi\)
\(252\) 0 0
\(253\) −154.863 −0.612106
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.4631i 0.106860i −0.998572 0.0534301i \(-0.982985\pi\)
0.998572 0.0534301i \(-0.0170154\pi\)
\(258\) 0 0
\(259\) −168.225 + 257.508i −0.649519 + 0.994240i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 77.1472 0.293335 0.146668 0.989186i \(-0.453145\pi\)
0.146668 + 0.989186i \(0.453145\pi\)
\(264\) 0 0
\(265\) 540.904i 2.04115i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 34.3739i 0.127784i −0.997957 0.0638920i \(-0.979649\pi\)
0.997957 0.0638920i \(-0.0203513\pi\)
\(270\) 0 0
\(271\) 202.927i 0.748809i −0.927266 0.374404i \(-0.877847\pi\)
0.927266 0.374404i \(-0.122153\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 508.510 1.84913
\(276\) 0 0
\(277\) −254.098 −0.917320 −0.458660 0.888612i \(-0.651670\pi\)
−0.458660 + 0.888612i \(0.651670\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 221.529 0.788359 0.394180 0.919033i \(-0.371029\pi\)
0.394180 + 0.919033i \(0.371029\pi\)
\(282\) 0 0
\(283\) 283.786i 1.00278i −0.865223 0.501388i \(-0.832823\pi\)
0.865223 0.501388i \(-0.167177\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −134.294 87.7320i −0.467925 0.305687i
\(288\) 0 0
\(289\) 70.4903 0.243911
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 398.073i 1.35861i −0.733855 0.679306i \(-0.762281\pi\)
0.733855 0.679306i \(-0.237719\pi\)
\(294\) 0 0
\(295\) −518.558 −1.75783
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.36690i 0.0146050i
\(300\) 0 0
\(301\) −176.108 + 269.574i −0.585075 + 0.895594i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −88.9706 −0.291707
\(306\) 0 0
\(307\) 167.720i 0.546320i −0.961969 0.273160i \(-0.911931\pi\)
0.961969 0.273160i \(-0.0880689\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 284.101i 0.913508i 0.889593 + 0.456754i \(0.150988\pi\)
−0.889593 + 0.456754i \(0.849012\pi\)
\(312\) 0 0
\(313\) 514.311i 1.64317i −0.570089 0.821583i \(-0.693091\pi\)
0.570089 0.821583i \(-0.306909\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.5685 −0.0585758 −0.0292879 0.999571i \(-0.509324\pi\)
−0.0292879 + 0.999571i \(0.509324\pi\)
\(318\) 0 0
\(319\) 136.784 0.428789
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −376.902 −1.16688
\(324\) 0 0
\(325\) 14.3392i 0.0441206i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −504.902 329.843i −1.53466 1.00256i
\(330\) 0 0
\(331\) −194.333 −0.587109 −0.293554 0.955942i \(-0.594838\pi\)
−0.293554 + 0.955942i \(0.594838\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 184.033i 0.549352i
\(336\) 0 0
\(337\) −125.265 −0.371706 −0.185853 0.982578i \(-0.559505\pi\)
−0.185853 + 0.982578i \(0.559505\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 80.6487i 0.236506i
\(342\) 0 0
\(343\) 338.328 + 56.4196i 0.986379 + 0.164489i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −160.745 −0.463243 −0.231621 0.972806i \(-0.574403\pi\)
−0.231621 + 0.972806i \(0.574403\pi\)
\(348\) 0 0
\(349\) 93.0671i 0.266668i 0.991071 + 0.133334i \(0.0425683\pi\)
−0.991071 + 0.133334i \(0.957432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 189.631i 0.537198i −0.963252 0.268599i \(-0.913439\pi\)
0.963252 0.268599i \(-0.0865606\pi\)
\(354\) 0 0
\(355\) 704.557i 1.98467i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −494.431 −1.37724 −0.688622 0.725121i \(-0.741784\pi\)
−0.688622 + 0.725121i \(0.741784\pi\)
\(360\) 0 0
\(361\) −289.108 −0.800852
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −191.196 −0.523825
\(366\) 0 0
\(367\) 718.994i 1.95911i 0.201171 + 0.979556i \(0.435525\pi\)
−0.201171 + 0.979556i \(0.564475\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −232.108 + 355.295i −0.625627 + 0.957668i
\(372\) 0 0
\(373\) 132.843 0.356147 0.178073 0.984017i \(-0.443014\pi\)
0.178073 + 0.984017i \(0.443014\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.85710i 0.0102310i
\(378\) 0 0
\(379\) −324.607 −0.856483 −0.428242 0.903664i \(-0.640867\pi\)
−0.428242 + 0.903664i \(0.640867\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 391.252i 1.02155i 0.859715 + 0.510773i \(0.170641\pi\)
−0.859715 + 0.510773i \(0.829359\pi\)
\(384\) 0 0
\(385\) −486.960 318.122i −1.26483 0.826292i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −223.352 −0.574171 −0.287085 0.957905i \(-0.592686\pi\)
−0.287085 + 0.957905i \(0.592686\pi\)
\(390\) 0 0
\(391\) 245.788i 0.628613i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 805.496i 2.03923i
\(396\) 0 0
\(397\) 223.044i 0.561824i −0.959733 0.280912i \(-0.909363\pi\)
0.959733 0.280912i \(-0.0906370\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −136.225 −0.339714 −0.169857 0.985469i \(-0.554331\pi\)
−0.169857 + 0.985469i \(0.554331\pi\)
\(402\) 0 0
\(403\) −2.27417 −0.00564310
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −409.255 −1.00554
\(408\) 0 0
\(409\) 671.587i 1.64202i 0.570913 + 0.821010i \(0.306589\pi\)
−0.570913 + 0.821010i \(0.693411\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 340.617 + 222.519i 0.824739 + 0.538787i
\(414\) 0 0
\(415\) 641.068 1.54474
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.8053i 0.0257882i 0.999917 + 0.0128941i \(0.00410443\pi\)
−0.999917 + 0.0128941i \(0.995896\pi\)
\(420\) 0 0
\(421\) 421.647 1.00154 0.500768 0.865581i \(-0.333051\pi\)
0.500768 + 0.865581i \(0.333051\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 807.071i 1.89899i
\(426\) 0 0
\(427\) 58.4407 + 38.1782i 0.136863 + 0.0894104i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 793.529 1.84113 0.920567 0.390584i \(-0.127727\pi\)
0.920567 + 0.390584i \(0.127727\pi\)
\(432\) 0 0
\(433\) 254.627i 0.588053i −0.955797 0.294027i \(-0.905005\pi\)
0.955797 0.294027i \(-0.0949954\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 423.953i 0.970144i
\(438\) 0 0
\(439\) 839.517i 1.91234i −0.292814 0.956169i \(-0.594592\pi\)
0.292814 0.956169i \(-0.405408\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 774.215 1.74766 0.873832 0.486228i \(-0.161627\pi\)
0.873832 + 0.486228i \(0.161627\pi\)
\(444\) 0 0
\(445\) −17.9411 −0.0403171
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −751.921 −1.67466 −0.837328 0.546700i \(-0.815884\pi\)
−0.837328 + 0.546700i \(0.815884\pi\)
\(450\) 0 0
\(451\) 213.432i 0.473243i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.97056 13.7315i 0.0197155 0.0301792i
\(456\) 0 0
\(457\) −251.990 −0.551400 −0.275700 0.961244i \(-0.588910\pi\)
−0.275700 + 0.961244i \(0.588910\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 93.4121i 0.202629i 0.994854 + 0.101315i \(0.0323049\pi\)
−0.994854 + 0.101315i \(0.967695\pi\)
\(462\) 0 0
\(463\) −167.990 −0.362829 −0.181415 0.983407i \(-0.558068\pi\)
−0.181415 + 0.983407i \(0.558068\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 364.179i 0.779828i −0.920851 0.389914i \(-0.872505\pi\)
0.920851 0.389914i \(-0.127495\pi\)
\(468\) 0 0
\(469\) −78.9706 + 120.883i −0.168381 + 0.257746i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −428.431 −0.905773
\(474\) 0 0
\(475\) 1392.10i 2.93073i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 137.061i 0.286139i 0.989713 + 0.143069i \(0.0456972\pi\)
−0.989713 + 0.143069i \(0.954303\pi\)
\(480\) 0 0
\(481\) 11.5404i 0.0239924i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1414.82 2.91716
\(486\) 0 0
\(487\) −557.411 −1.14458 −0.572291 0.820051i \(-0.693945\pi\)
−0.572291 + 0.820051i \(0.693945\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −537.647 −1.09500 −0.547502 0.836805i \(-0.684421\pi\)
−0.547502 + 0.836805i \(0.684421\pi\)
\(492\) 0 0
\(493\) 217.094i 0.440353i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 302.333 462.791i 0.608316 0.931170i
\(498\) 0 0
\(499\) 633.980 1.27050 0.635250 0.772306i \(-0.280897\pi\)
0.635250 + 0.772306i \(0.280897\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 91.1385i 0.181190i 0.995888 + 0.0905949i \(0.0288769\pi\)
−0.995888 + 0.0905949i \(0.971123\pi\)
\(504\) 0 0
\(505\) 834.205 1.65189
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 353.366i 0.694237i 0.937821 + 0.347118i \(0.112840\pi\)
−0.937821 + 0.347118i \(0.887160\pi\)
\(510\) 0 0
\(511\) 125.588 + 82.0442i 0.245769 + 0.160556i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 181.823 0.353055
\(516\) 0 0
\(517\) 802.434i 1.55210i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 949.039i 1.82157i 0.412878 + 0.910786i \(0.364524\pi\)
−0.412878 + 0.910786i \(0.635476\pi\)
\(522\) 0 0
\(523\) 662.702i 1.26712i 0.773695 + 0.633558i \(0.218406\pi\)
−0.773695 + 0.633558i \(0.781594\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 128.000 0.242884
\(528\) 0 0
\(529\) −252.529 −0.477371
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.01847 0.0112917
\(534\) 0 0
\(535\) 125.955i 0.235430i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 183.352 + 417.920i 0.340171 + 0.775362i
\(540\) 0 0
\(541\) 1026.90 1.89815 0.949077 0.315043i \(-0.102019\pi\)
0.949077 + 0.315043i \(0.102019\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 207.474i 0.380687i
\(546\) 0 0
\(547\) 258.686 0.472918 0.236459 0.971641i \(-0.424013\pi\)
0.236459 + 0.971641i \(0.424013\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 374.459i 0.679600i
\(552\) 0 0
\(553\) −345.647 + 529.093i −0.625039 + 0.956769i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 741.529 1.33129 0.665645 0.746268i \(-0.268156\pi\)
0.665645 + 0.746268i \(0.268156\pi\)
\(558\) 0 0
\(559\) 12.0811i 0.0216120i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 80.5135i 0.143008i 0.997440 + 0.0715040i \(0.0227799\pi\)
−0.997440 + 0.0715040i \(0.977220\pi\)
\(564\) 0 0
\(565\) 122.369i 0.216582i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 742.971 1.30575 0.652874 0.757467i \(-0.273563\pi\)
0.652874 + 0.757467i \(0.273563\pi\)
\(570\) 0 0
\(571\) −597.882 −1.04708 −0.523540 0.852001i \(-0.675389\pi\)
−0.523540 + 0.852001i \(0.675389\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −907.823 −1.57882
\(576\) 0 0
\(577\) 830.767i 1.43980i 0.694075 + 0.719902i \(0.255813\pi\)
−0.694075 + 0.719902i \(0.744187\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −421.088 275.089i −0.724765 0.473475i
\(582\) 0 0
\(583\) −564.666 −0.968552
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 700.310i 1.19303i −0.802601 0.596516i \(-0.796551\pi\)
0.802601 0.596516i \(-0.203449\pi\)
\(588\) 0 0
\(589\) 220.784 0.374845
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 417.050i 0.703288i −0.936134 0.351644i \(-0.885623\pi\)
0.936134 0.351644i \(-0.114377\pi\)
\(594\) 0 0
\(595\) −504.902 + 772.870i −0.848574 + 1.29894i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 223.892 0.373777 0.186888 0.982381i \(-0.440160\pi\)
0.186888 + 0.982381i \(0.440160\pi\)
\(600\) 0 0
\(601\) 721.185i 1.19998i 0.800009 + 0.599988i \(0.204828\pi\)
−0.800009 + 0.599988i \(0.795172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 305.614i 0.505147i
\(606\) 0 0
\(607\) 320.494i 0.527996i −0.964523 0.263998i \(-0.914959\pi\)
0.964523 0.263998i \(-0.0850413\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.6274 0.0370334
\(612\) 0 0
\(613\) 195.373 0.318715 0.159358 0.987221i \(-0.449058\pi\)
0.159358 + 0.987221i \(0.449058\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −838.284 −1.35865 −0.679323 0.733840i \(-0.737726\pi\)
−0.679323 + 0.733840i \(0.737726\pi\)
\(618\) 0 0
\(619\) 515.407i 0.832644i −0.909217 0.416322i \(-0.863319\pi\)
0.909217 0.416322i \(-0.136681\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.7847 + 7.69873i 0.0189161 + 0.0123575i
\(624\) 0 0
\(625\) 990.990 1.58558
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 649.541i 1.03266i
\(630\) 0 0
\(631\) 392.538 0.622089 0.311045 0.950395i \(-0.399321\pi\)
0.311045 + 0.950395i \(0.399321\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1585.97i 2.49760i
\(636\) 0 0
\(637\) −11.7847 + 5.17026i −0.0185003 + 0.00811657i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 813.460 1.26905 0.634524 0.772903i \(-0.281196\pi\)
0.634524 + 0.772903i \(0.281196\pi\)
\(642\) 0 0
\(643\) 906.299i 1.40948i 0.709463 + 0.704742i \(0.248937\pi\)
−0.709463 + 0.704742i \(0.751063\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 114.325i 0.176700i 0.996089 + 0.0883499i \(0.0281594\pi\)
−0.996089 + 0.0883499i \(0.971841\pi\)
\(648\) 0 0
\(649\) 541.339i 0.834113i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −415.685 −0.636578 −0.318289 0.947994i \(-0.603108\pi\)
−0.318289 + 0.947994i \(0.603108\pi\)
\(654\) 0 0
\(655\) 1004.71 1.53392
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 650.431 0.986996 0.493498 0.869747i \(-0.335718\pi\)
0.493498 + 0.869747i \(0.335718\pi\)
\(660\) 0 0
\(661\) 1023.81i 1.54888i 0.632645 + 0.774442i \(0.281969\pi\)
−0.632645 + 0.774442i \(0.718031\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −870.891 + 1333.10i −1.30961 + 2.00467i
\(666\) 0 0
\(667\) −244.195 −0.366110
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 92.8791i 0.138419i
\(672\) 0 0
\(673\) −1187.21 −1.76406 −0.882032 0.471190i \(-0.843824\pi\)
−0.882032 + 0.471190i \(0.843824\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 905.826i 1.33800i 0.743262 + 0.669000i \(0.233277\pi\)
−0.743262 + 0.669000i \(0.766723\pi\)
\(678\) 0 0
\(679\) −929.332 607.116i −1.36868 0.894132i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −315.255 −0.461574 −0.230787 0.973004i \(-0.574130\pi\)
−0.230787 + 0.973004i \(0.574130\pi\)
\(684\) 0 0
\(685\) 1086.35i 1.58592i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.9227i 0.0231099i
\(690\) 0 0
\(691\) 334.960i 0.484747i −0.970183 0.242374i \(-0.922074\pi\)
0.970183 0.242374i \(-0.0779260\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1564.24 2.25071
\(696\) 0 0
\(697\) −338.745 −0.486005
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 362.353 0.516909 0.258455 0.966023i \(-0.416787\pi\)
0.258455 + 0.966023i \(0.416787\pi\)
\(702\) 0 0
\(703\) 1120.38i 1.59371i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −547.951 357.966i −0.775037 0.506317i
\(708\) 0 0
\(709\) −1117.96 −1.57681 −0.788406 0.615155i \(-0.789093\pi\)
−0.788406 + 0.615155i \(0.789093\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 143.979i 0.201934i
\(714\) 0 0
\(715\) 21.8234 0.0305222
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 972.571i 1.35267i −0.736593 0.676336i \(-0.763567\pi\)
0.736593 0.676336i \(-0.236433\pi\)
\(720\) 0 0
\(721\) −119.431 78.0224i −0.165647 0.108214i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 801.842 1.10599
\(726\) 0 0
\(727\) 660.646i 0.908729i −0.890816 0.454365i \(-0.849866\pi\)
0.890816 0.454365i \(-0.150134\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 679.975i 0.930199i
\(732\) 0 0
\(733\) 258.222i 0.352280i −0.984365 0.176140i \(-0.943639\pi\)
0.984365 0.176140i \(-0.0563612\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −192.118 −0.260675
\(738\) 0 0
\(739\) 333.391 0.451138 0.225569 0.974227i \(-0.427576\pi\)
0.225569 + 0.974227i \(0.427576\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −610.118 −0.821154 −0.410577 0.911826i \(-0.634673\pi\)
−0.410577 + 0.911826i \(0.634673\pi\)
\(744\) 0 0
\(745\) 2121.28i 2.84736i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −54.0488 + 82.7343i −0.0721612 + 0.110460i
\(750\) 0 0
\(751\) 18.1177 0.0241248 0.0120624 0.999927i \(-0.496160\pi\)
0.0120624 + 0.999927i \(0.496160\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 886.579i 1.17428i
\(756\) 0 0
\(757\) 107.137 0.141529 0.0707643 0.997493i \(-0.477456\pi\)
0.0707643 + 0.997493i \(0.477456\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 898.284i 1.18040i 0.807257 + 0.590200i \(0.200951\pi\)
−0.807257 + 0.590200i \(0.799049\pi\)
\(762\) 0 0
\(763\) −89.0294 + 136.280i −0.116683 + 0.178611i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.2649 −0.0199021
\(768\) 0 0
\(769\) 929.350i 1.20852i −0.796788 0.604259i \(-0.793469\pi\)
0.796788 0.604259i \(-0.206531\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 914.395i 1.18292i −0.806335 0.591459i \(-0.798552\pi\)
0.806335 0.591459i \(-0.201448\pi\)
\(774\) 0 0
\(775\) 472.771i 0.610028i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −584.293 −0.750055
\(780\) 0 0
\(781\) 735.509 0.941753
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 862.323 1.09850
\(786\) 0 0
\(787\) 761.720i 0.967878i −0.875102 0.483939i \(-0.839206\pi\)
0.875102 0.483939i \(-0.160794\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 52.5097 80.3783i 0.0663839 0.101616i
\(792\) 0 0
\(793\) −2.61905 −0.00330271
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 395.267i 0.495943i −0.968767 0.247972i \(-0.920236\pi\)
0.968767 0.247972i \(-0.0797639\pi\)
\(798\) 0 0
\(799\) −1273.57 −1.59395
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 199.595i 0.248562i
\(804\) 0 0
\(805\) 869.352 + 567.932i 1.07994 + 0.705505i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 877.793 1.08503 0.542517 0.840045i \(-0.317471\pi\)
0.542517 + 0.840045i \(0.317471\pi\)
\(810\) 0 0
\(811\) 851.717i 1.05021i 0.851039 + 0.525103i \(0.175973\pi\)
−0.851039 + 0.525103i \(0.824027\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1521.77i 1.86721i
\(816\) 0 0
\(817\) 1172.87i 1.43558i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −437.038 −0.532324 −0.266162 0.963928i \(-0.585756\pi\)
−0.266162 + 0.963928i \(0.585756\pi\)
\(822\) 0 0
\(823\) 1592.34 1.93480 0.967402 0.253247i \(-0.0814985\pi\)
0.967402 + 0.253247i \(0.0814985\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1182.45 1.42981 0.714904 0.699223i \(-0.246470\pi\)
0.714904 + 0.699223i \(0.246470\pi\)
\(828\) 0 0
\(829\) 1048.05i 1.26423i −0.774873 0.632117i \(-0.782186\pi\)
0.774873 0.632117i \(-0.217814\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 663.294 291.004i 0.796271 0.349345i
\(834\) 0 0
\(835\) 846.725 1.01404
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 585.611i 0.697986i 0.937125 + 0.348993i \(0.113476\pi\)
−0.937125 + 0.348993i \(0.886524\pi\)
\(840\) 0 0
\(841\) −625.313 −0.743535
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1507.16i 1.78363i
\(846\) 0 0
\(847\) 131.142 200.744i 0.154831 0.237006i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 730.627 0.858552
\(852\) 0 0
\(853\) 901.189i 1.05649i −0.849091 0.528247i \(-0.822850\pi\)
0.849091 0.528247i \(-0.177150\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 965.997i 1.12718i −0.826053 0.563592i \(-0.809419\pi\)
0.826053 0.563592i \(-0.190581\pi\)
\(858\) 0 0
\(859\) 250.830i 0.292003i 0.989284 + 0.146001i \(0.0466404\pi\)
−0.989284 + 0.146001i \(0.953360\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1497.13 1.73479 0.867397 0.497617i \(-0.165791\pi\)
0.867397 + 0.497617i \(0.165791\pi\)
\(864\) 0 0
\(865\) 1630.18 1.88461
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −840.881 −0.967643
\(870\) 0 0
\(871\) 5.41743i 0.00621978i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1547.51 1010.96i −1.76858 1.15538i
\(876\) 0 0
\(877\) 141.354 0.161179 0.0805896 0.996747i \(-0.474320\pi\)
0.0805896 + 0.996747i \(0.474320\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1413.83i 1.60480i 0.596788 + 0.802399i \(0.296443\pi\)
−0.596788 + 0.802399i \(0.703557\pi\)
\(882\) 0 0
\(883\) 1386.04 1.56969 0.784845 0.619692i \(-0.212742\pi\)
0.784845 + 0.619692i \(0.212742\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 303.595i 0.342272i −0.985247 0.171136i \(-0.945256\pi\)
0.985247 0.171136i \(-0.0547437\pi\)
\(888\) 0 0
\(889\) 680.558 1041.75i 0.765533 1.17183i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2196.74 −2.45996
\(894\) 0 0
\(895\) 1820.57i 2.03415i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 127.171i 0.141458i
\(900\) 0 0
\(901\) 896.199i 0.994671i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2044.58 2.25920
\(906\) 0 0
\(907\) −1304.02 −1.43773 −0.718864 0.695151i \(-0.755337\pi\)
−0.718864 + 0.695151i \(0.755337\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −466.118 −0.511655 −0.255828 0.966722i \(-0.582348\pi\)
−0.255828 + 0.966722i \(0.582348\pi\)
\(912\) 0 0
\(913\) 669.231i 0.733002i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −659.951 431.134i −0.719685 0.470157i
\(918\) 0 0
\(919\) 1178.34 1.28220 0.641100 0.767458i \(-0.278478\pi\)
0.641100 + 0.767458i \(0.278478\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.7402i 0.0224705i
\(924\) 0 0
\(925\) −2399.10 −2.59362
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 911.161i 0.980798i 0.871498 + 0.490399i \(0.163149\pi\)
−0.871498 + 0.490399i \(0.836851\pi\)
\(930\) 0 0
\(931\) 1144.10 501.945i 1.22889 0.539147i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1228.31 −1.31370
\(936\) 0 0
\(937\) 1035.35i 1.10496i 0.833527 + 0.552479i \(0.186318\pi\)
−0.833527 + 0.552479i \(0.813682\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 64.4479i 0.0684887i −0.999413 0.0342443i \(-0.989098\pi\)
0.999413 0.0342443i \(-0.0109024\pi\)
\(942\) 0 0
\(943\) 381.033i 0.404065i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 132.274 0.139677 0.0698385 0.997558i \(-0.477752\pi\)
0.0698385 + 0.997558i \(0.477752\pi\)
\(948\) 0 0
\(949\) −5.62828 −0.00593075
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1346.86 −1.41329 −0.706643 0.707570i \(-0.749791\pi\)
−0.706643 + 0.707570i \(0.749791\pi\)
\(954\) 0 0
\(955\) 85.6310i 0.0896659i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 466.167 713.577i 0.486096 0.744084i
\(960\) 0 0
\(961\) 886.019 0.921976
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.5246i 0.0316317i
\(966\) 0 0
\(967\) 498.979 0.516007 0.258004 0.966144i \(-0.416935\pi\)
0.258004 + 0.966144i \(0.416935\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1799.26i 1.85299i −0.376304 0.926496i \(-0.622805\pi\)
0.376304 0.926496i \(-0.377195\pi\)
\(972\) 0 0
\(973\) −1027.48 671.234i −1.05599 0.689860i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1381.61 −1.41413 −0.707066 0.707148i \(-0.749982\pi\)
−0.707066 + 0.707148i \(0.749982\pi\)
\(978\) 0 0
\(979\) 18.7293i 0.0191310i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1306.67i 1.32927i −0.747167 0.664636i \(-0.768587\pi\)
0.747167 0.664636i \(-0.231413\pi\)
\(984\) 0 0
\(985\) 1306.60i 1.32650i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 764.861 0.773368
\(990\) 0 0
\(991\) −1033.99 −1.04338 −0.521689 0.853136i \(-0.674698\pi\)
−0.521689 + 0.853136i \(0.674698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2182.68 2.19365
\(996\) 0 0
\(997\) 391.500i 0.392678i −0.980536 0.196339i \(-0.937095\pi\)
0.980536 0.196339i \(-0.0629052\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.f.h.433.1 4
3.2 odd 2 112.3.c.c.97.2 4
4.3 odd 2 504.3.f.a.433.1 4
7.6 odd 2 inner 1008.3.f.h.433.4 4
12.11 even 2 56.3.c.a.41.3 yes 4
21.2 odd 6 784.3.s.f.129.3 8
21.5 even 6 784.3.s.f.129.2 8
21.11 odd 6 784.3.s.f.705.2 8
21.17 even 6 784.3.s.f.705.3 8
21.20 even 2 112.3.c.c.97.3 4
24.5 odd 2 448.3.c.e.321.3 4
24.11 even 2 448.3.c.f.321.2 4
28.27 even 2 504.3.f.a.433.4 4
60.23 odd 4 1400.3.p.a.1049.3 8
60.47 odd 4 1400.3.p.a.1049.6 8
60.59 even 2 1400.3.f.a.601.2 4
84.11 even 6 392.3.o.b.313.3 8
84.23 even 6 392.3.o.b.129.2 8
84.47 odd 6 392.3.o.b.129.3 8
84.59 odd 6 392.3.o.b.313.2 8
84.83 odd 2 56.3.c.a.41.2 4
168.83 odd 2 448.3.c.f.321.3 4
168.125 even 2 448.3.c.e.321.2 4
420.83 even 4 1400.3.p.a.1049.5 8
420.167 even 4 1400.3.p.a.1049.4 8
420.419 odd 2 1400.3.f.a.601.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.3.c.a.41.2 4 84.83 odd 2
56.3.c.a.41.3 yes 4 12.11 even 2
112.3.c.c.97.2 4 3.2 odd 2
112.3.c.c.97.3 4 21.20 even 2
392.3.o.b.129.2 8 84.23 even 6
392.3.o.b.129.3 8 84.47 odd 6
392.3.o.b.313.2 8 84.59 odd 6
392.3.o.b.313.3 8 84.11 even 6
448.3.c.e.321.2 4 168.125 even 2
448.3.c.e.321.3 4 24.5 odd 2
448.3.c.f.321.2 4 24.11 even 2
448.3.c.f.321.3 4 168.83 odd 2
504.3.f.a.433.1 4 4.3 odd 2
504.3.f.a.433.4 4 28.27 even 2
784.3.s.f.129.2 8 21.5 even 6
784.3.s.f.129.3 8 21.2 odd 6
784.3.s.f.705.2 8 21.11 odd 6
784.3.s.f.705.3 8 21.17 even 6
1008.3.f.h.433.1 4 1.1 even 1 trivial
1008.3.f.h.433.4 4 7.6 odd 2 inner
1400.3.f.a.601.2 4 60.59 even 2
1400.3.f.a.601.3 4 420.419 odd 2
1400.3.p.a.1049.3 8 60.23 odd 4
1400.3.p.a.1049.4 8 420.167 even 4
1400.3.p.a.1049.5 8 420.83 even 4
1400.3.p.a.1049.6 8 60.47 odd 4