Properties

Label 14.44.a.c.1.4
Level $14$
Weight $44$
Character 14.1
Self dual yes
Analytic conductor $163.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,44,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12582912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(163.954553484\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 62\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{33}\cdot 3^{11}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-9.84461e9\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.09715e6 q^{2} +2.06706e10 q^{3} +4.39805e12 q^{4} -3.66872e14 q^{5} -4.33493e16 q^{6} -5.58546e17 q^{7} -9.22337e18 q^{8} +9.90153e19 q^{9} +7.69386e20 q^{10} +1.87548e22 q^{11} +9.09101e22 q^{12} -1.38064e24 q^{13} +1.17136e24 q^{14} -7.58344e24 q^{15} +1.93428e25 q^{16} +3.48300e26 q^{17} -2.07650e26 q^{18} +3.24082e27 q^{19} -1.61352e27 q^{20} -1.15455e28 q^{21} -3.93318e28 q^{22} -4.93948e28 q^{23} -1.90652e29 q^{24} -1.00227e30 q^{25} +2.89540e30 q^{26} -4.73856e30 q^{27} -2.45651e30 q^{28} -1.66224e31 q^{29} +1.59036e31 q^{30} -1.58604e32 q^{31} -4.05648e31 q^{32} +3.87673e32 q^{33} -7.30438e32 q^{34} +2.04915e32 q^{35} +4.35474e32 q^{36} +5.14914e33 q^{37} -6.79650e33 q^{38} -2.85385e34 q^{39} +3.38379e33 q^{40} +9.41346e34 q^{41} +2.42126e34 q^{42} +2.84250e34 q^{43} +8.24847e34 q^{44} -3.63259e34 q^{45} +1.03589e35 q^{46} -3.54783e35 q^{47} +3.99827e35 q^{48} +3.11973e35 q^{49} +2.10192e36 q^{50} +7.19956e36 q^{51} -6.07210e36 q^{52} -9.79738e34 q^{53} +9.93747e36 q^{54} -6.88062e36 q^{55} +5.15168e36 q^{56} +6.69897e37 q^{57} +3.48596e37 q^{58} +8.41451e37 q^{59} -3.33523e37 q^{60} -2.30721e38 q^{61} +3.32618e38 q^{62} -5.53046e37 q^{63} +8.50706e37 q^{64} +5.06516e38 q^{65} -8.13010e38 q^{66} +1.89971e39 q^{67} +1.53184e39 q^{68} -1.02102e39 q^{69} -4.29737e38 q^{70} +7.16921e39 q^{71} -9.13255e38 q^{72} +4.88777e39 q^{73} -1.07985e40 q^{74} -2.07176e40 q^{75} +1.42533e40 q^{76} -1.04754e40 q^{77} +5.98496e40 q^{78} -3.32784e40 q^{79} -7.09633e39 q^{80} -1.30451e41 q^{81} -1.97415e41 q^{82} -2.22244e41 q^{83} -5.07775e40 q^{84} -1.27781e41 q^{85} -5.96116e40 q^{86} -3.43593e41 q^{87} -1.72983e41 q^{88} +2.06614e41 q^{89} +7.61809e40 q^{90} +7.71149e41 q^{91} -2.17241e41 q^{92} -3.27844e42 q^{93} +7.44033e41 q^{94} -1.18897e42 q^{95} -8.38498e41 q^{96} +9.44705e42 q^{97} -6.54256e41 q^{98} +1.85702e42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12582912 q^{2} + 5888073464 q^{3} + 26388279066624 q^{4} + 11\!\cdots\!36 q^{5} - 12\!\cdots\!28 q^{6} - 33\!\cdots\!42 q^{7} - 55\!\cdots\!48 q^{8} + 92\!\cdots\!42 q^{9} - 23\!\cdots\!72 q^{10}+ \cdots - 32\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09715e6 −0.707107
\(3\) 2.06706e10 1.14089 0.570447 0.821334i \(-0.306770\pi\)
0.570447 + 0.821334i \(0.306770\pi\)
\(4\) 4.39805e12 0.500000
\(5\) −3.66872e14 −0.344080 −0.172040 0.985090i \(-0.555036\pi\)
−0.172040 + 0.985090i \(0.555036\pi\)
\(6\) −4.33493e16 −0.806734
\(7\) −5.58546e17 −0.377964
\(8\) −9.22337e18 −0.353553
\(9\) 9.90153e19 0.301640
\(10\) 7.69386e20 0.243301
\(11\) 1.87548e22 0.764136 0.382068 0.924134i \(-0.375212\pi\)
0.382068 + 0.924134i \(0.375212\pi\)
\(12\) 9.09101e22 0.570447
\(13\) −1.38064e24 −1.54988 −0.774938 0.632037i \(-0.782219\pi\)
−0.774938 + 0.632037i \(0.782219\pi\)
\(14\) 1.17136e24 0.267261
\(15\) −7.58344e24 −0.392559
\(16\) 1.93428e25 0.250000
\(17\) 3.48300e26 1.22265 0.611324 0.791380i \(-0.290637\pi\)
0.611324 + 0.791380i \(0.290637\pi\)
\(18\) −2.07650e26 −0.213291
\(19\) 3.24082e27 1.04101 0.520503 0.853860i \(-0.325745\pi\)
0.520503 + 0.853860i \(0.325745\pi\)
\(20\) −1.61352e27 −0.172040
\(21\) −1.15455e28 −0.431217
\(22\) −3.93318e28 −0.540326
\(23\) −4.93948e28 −0.260936 −0.130468 0.991453i \(-0.541648\pi\)
−0.130468 + 0.991453i \(0.541648\pi\)
\(24\) −1.90652e29 −0.403367
\(25\) −1.00227e30 −0.881609
\(26\) 2.89540e30 1.09593
\(27\) −4.73856e30 −0.796755
\(28\) −2.45651e30 −0.188982
\(29\) −1.66224e31 −0.601362 −0.300681 0.953725i \(-0.597214\pi\)
−0.300681 + 0.953725i \(0.597214\pi\)
\(30\) 1.59036e31 0.277581
\(31\) −1.58604e32 −1.36785 −0.683926 0.729552i \(-0.739729\pi\)
−0.683926 + 0.729552i \(0.739729\pi\)
\(32\) −4.05648e31 −0.176777
\(33\) 3.87673e32 0.871798
\(34\) −7.30438e32 −0.864543
\(35\) 2.04915e32 0.130050
\(36\) 4.35474e32 0.150820
\(37\) 5.14914e33 0.989459 0.494730 0.869047i \(-0.335267\pi\)
0.494730 + 0.869047i \(0.335267\pi\)
\(38\) −6.79650e33 −0.736102
\(39\) −2.85385e34 −1.76825
\(40\) 3.38379e33 0.121651
\(41\) 9.41346e34 1.99020 0.995100 0.0988783i \(-0.0315254\pi\)
0.995100 + 0.0988783i \(0.0315254\pi\)
\(42\) 2.42126e34 0.304917
\(43\) 2.84250e34 0.215839 0.107919 0.994160i \(-0.465581\pi\)
0.107919 + 0.994160i \(0.465581\pi\)
\(44\) 8.24847e34 0.382068
\(45\) −3.63259e34 −0.103788
\(46\) 1.03589e35 0.184509
\(47\) −3.54783e35 −0.397978 −0.198989 0.980002i \(-0.563766\pi\)
−0.198989 + 0.980002i \(0.563766\pi\)
\(48\) 3.99827e35 0.285224
\(49\) 3.11973e35 0.142857
\(50\) 2.10192e36 0.623392
\(51\) 7.19956e36 1.39491
\(52\) −6.07210e36 −0.774938
\(53\) −9.79738e34 −0.00830192 −0.00415096 0.999991i \(-0.501321\pi\)
−0.00415096 + 0.999991i \(0.501321\pi\)
\(54\) 9.93747e36 0.563391
\(55\) −6.88062e36 −0.262924
\(56\) 5.15168e36 0.133631
\(57\) 6.69897e37 1.18768
\(58\) 3.48596e37 0.425227
\(59\) 8.41451e37 0.710740 0.355370 0.934726i \(-0.384355\pi\)
0.355370 + 0.934726i \(0.384355\pi\)
\(60\) −3.33523e37 −0.196279
\(61\) −2.30721e38 −0.951689 −0.475844 0.879530i \(-0.657857\pi\)
−0.475844 + 0.879530i \(0.657857\pi\)
\(62\) 3.32618e38 0.967217
\(63\) −5.53046e37 −0.114009
\(64\) 8.50706e37 0.125000
\(65\) 5.06516e38 0.533281
\(66\) −8.13010e38 −0.616455
\(67\) 1.89971e39 1.04251 0.521255 0.853401i \(-0.325464\pi\)
0.521255 + 0.853401i \(0.325464\pi\)
\(68\) 1.53184e39 0.611324
\(69\) −1.02102e39 −0.297700
\(70\) −4.29737e38 −0.0919592
\(71\) 7.16921e39 1.13088 0.565440 0.824789i \(-0.308706\pi\)
0.565440 + 0.824789i \(0.308706\pi\)
\(72\) −9.13255e38 −0.106646
\(73\) 4.88777e39 0.424296 0.212148 0.977238i \(-0.431954\pi\)
0.212148 + 0.977238i \(0.431954\pi\)
\(74\) −1.07985e40 −0.699653
\(75\) −2.07176e40 −1.00582
\(76\) 1.42533e40 0.520503
\(77\) −1.04754e40 −0.288816
\(78\) 5.98496e40 1.25034
\(79\) −3.32784e40 −0.528664 −0.264332 0.964432i \(-0.585152\pi\)
−0.264332 + 0.964432i \(0.585152\pi\)
\(80\) −7.09633e39 −0.0860199
\(81\) −1.30451e41 −1.21065
\(82\) −1.97415e41 −1.40728
\(83\) −2.22244e41 −1.22082 −0.610410 0.792086i \(-0.708995\pi\)
−0.610410 + 0.792086i \(0.708995\pi\)
\(84\) −5.07775e40 −0.215609
\(85\) −1.27781e41 −0.420688
\(86\) −5.96116e40 −0.152621
\(87\) −3.43593e41 −0.686090
\(88\) −1.72983e41 −0.270163
\(89\) 2.06614e41 0.253089 0.126545 0.991961i \(-0.459611\pi\)
0.126545 + 0.991961i \(0.459611\pi\)
\(90\) 7.61809e40 0.0733892
\(91\) 7.71149e41 0.585798
\(92\) −2.17241e41 −0.130468
\(93\) −3.27844e42 −1.56057
\(94\) 7.44033e41 0.281413
\(95\) −1.18897e42 −0.358189
\(96\) −8.38498e41 −0.201684
\(97\) 9.44705e42 1.81846 0.909230 0.416293i \(-0.136671\pi\)
0.909230 + 0.416293i \(0.136671\pi\)
\(98\) −6.54256e41 −0.101015
\(99\) 1.85702e42 0.230494
\(100\) −4.40805e42 −0.440805
\(101\) 6.25547e42 0.505068 0.252534 0.967588i \(-0.418736\pi\)
0.252534 + 0.967588i \(0.418736\pi\)
\(102\) −1.50986e43 −0.986352
\(103\) −3.11542e43 −1.65012 −0.825061 0.565044i \(-0.808859\pi\)
−0.825061 + 0.565044i \(0.808859\pi\)
\(104\) 1.27341e43 0.547964
\(105\) 4.23570e42 0.148373
\(106\) 2.05466e41 0.00587034
\(107\) 8.09367e43 1.88971 0.944853 0.327493i \(-0.106204\pi\)
0.944853 + 0.327493i \(0.106204\pi\)
\(108\) −2.08404e43 −0.398378
\(109\) −9.40999e43 −1.47543 −0.737716 0.675111i \(-0.764096\pi\)
−0.737716 + 0.675111i \(0.764096\pi\)
\(110\) 1.44297e43 0.185915
\(111\) 1.06436e44 1.12887
\(112\) −1.08038e43 −0.0944911
\(113\) −6.16833e43 −0.445637 −0.222819 0.974860i \(-0.571526\pi\)
−0.222819 + 0.974860i \(0.571526\pi\)
\(114\) −1.40487e44 −0.839814
\(115\) 1.81216e43 0.0897826
\(116\) −7.31059e43 −0.300681
\(117\) −1.36704e44 −0.467504
\(118\) −1.76465e44 −0.502569
\(119\) −1.94541e44 −0.462118
\(120\) 6.99449e43 0.138790
\(121\) −2.50657e44 −0.416096
\(122\) 4.83856e44 0.672946
\(123\) 1.94582e45 2.27061
\(124\) −6.97550e44 −0.683926
\(125\) 7.84790e44 0.647423
\(126\) 1.15982e44 0.0806166
\(127\) 2.58644e45 1.51678 0.758389 0.651802i \(-0.225987\pi\)
0.758389 + 0.651802i \(0.225987\pi\)
\(128\) −1.78406e44 −0.0883883
\(129\) 5.87561e44 0.246249
\(130\) −1.06224e45 −0.377087
\(131\) 5.13813e45 1.54693 0.773467 0.633836i \(-0.218521\pi\)
0.773467 + 0.633836i \(0.218521\pi\)
\(132\) 1.70500e45 0.435899
\(133\) −1.81015e45 −0.393463
\(134\) −3.98399e45 −0.737165
\(135\) 1.73844e45 0.274147
\(136\) −3.21250e45 −0.432271
\(137\) 1.10601e46 1.27135 0.635677 0.771955i \(-0.280721\pi\)
0.635677 + 0.771955i \(0.280721\pi\)
\(138\) 2.14123e45 0.210506
\(139\) −5.83939e45 −0.491529 −0.245765 0.969330i \(-0.579039\pi\)
−0.245765 + 0.969330i \(0.579039\pi\)
\(140\) 9.01224e44 0.0650249
\(141\) −7.33356e45 −0.454050
\(142\) −1.50349e46 −0.799653
\(143\) −2.58936e46 −1.18432
\(144\) 1.91523e45 0.0754099
\(145\) 6.09827e45 0.206916
\(146\) −1.02504e46 −0.300023
\(147\) 6.44867e45 0.162985
\(148\) 2.26462e46 0.494730
\(149\) 2.88506e46 0.545318 0.272659 0.962111i \(-0.412097\pi\)
0.272659 + 0.962111i \(0.412097\pi\)
\(150\) 4.34479e46 0.711224
\(151\) −9.60073e46 −1.36239 −0.681193 0.732104i \(-0.738538\pi\)
−0.681193 + 0.732104i \(0.738538\pi\)
\(152\) −2.98913e46 −0.368051
\(153\) 3.44870e46 0.368799
\(154\) 2.19686e46 0.204224
\(155\) 5.81875e46 0.470650
\(156\) −1.25514e47 −0.884123
\(157\) −4.10743e46 −0.252190 −0.126095 0.992018i \(-0.540244\pi\)
−0.126095 + 0.992018i \(0.540244\pi\)
\(158\) 6.97899e46 0.373822
\(159\) −2.02517e45 −0.00947161
\(160\) 1.48821e46 0.0608253
\(161\) 2.75893e46 0.0986244
\(162\) 2.73576e47 0.856061
\(163\) 2.47830e47 0.679393 0.339696 0.940535i \(-0.389676\pi\)
0.339696 + 0.940535i \(0.389676\pi\)
\(164\) 4.14008e47 0.995100
\(165\) −1.42226e47 −0.299968
\(166\) 4.66080e47 0.863250
\(167\) 3.25854e47 0.530420 0.265210 0.964191i \(-0.414559\pi\)
0.265210 + 0.964191i \(0.414559\pi\)
\(168\) 1.06488e47 0.152458
\(169\) 1.11262e48 1.40212
\(170\) 2.67977e47 0.297472
\(171\) 3.20891e47 0.314008
\(172\) 1.25015e47 0.107919
\(173\) 2.31190e47 0.176188 0.0880942 0.996112i \(-0.471922\pi\)
0.0880942 + 0.996112i \(0.471922\pi\)
\(174\) 7.20568e47 0.485139
\(175\) 5.59816e47 0.333217
\(176\) 3.62771e47 0.191034
\(177\) 1.73933e48 0.810879
\(178\) −4.33300e47 −0.178961
\(179\) 1.62191e48 0.593864 0.296932 0.954899i \(-0.404036\pi\)
0.296932 + 0.954899i \(0.404036\pi\)
\(180\) −1.59763e47 −0.0518940
\(181\) 5.77250e48 1.66446 0.832232 0.554428i \(-0.187063\pi\)
0.832232 + 0.554428i \(0.187063\pi\)
\(182\) −1.61722e48 −0.414222
\(183\) −4.76913e48 −1.08578
\(184\) 4.55587e47 0.0922546
\(185\) −1.88907e48 −0.340453
\(186\) 6.87539e48 1.10349
\(187\) 6.53231e48 0.934270
\(188\) −1.56035e48 −0.198989
\(189\) 2.64670e48 0.301145
\(190\) 2.49344e48 0.253278
\(191\) 4.86122e48 0.441090 0.220545 0.975377i \(-0.429216\pi\)
0.220545 + 0.975377i \(0.429216\pi\)
\(192\) 1.75846e48 0.142612
\(193\) −1.17519e48 −0.0852363 −0.0426182 0.999091i \(-0.513570\pi\)
−0.0426182 + 0.999091i \(0.513570\pi\)
\(194\) −1.98119e49 −1.28585
\(195\) 1.04700e49 0.608417
\(196\) 1.37207e48 0.0714286
\(197\) 2.24013e49 1.04532 0.522660 0.852541i \(-0.324940\pi\)
0.522660 + 0.852541i \(0.324940\pi\)
\(198\) −3.89445e48 −0.162984
\(199\) 3.80988e49 1.43077 0.715385 0.698730i \(-0.246251\pi\)
0.715385 + 0.698730i \(0.246251\pi\)
\(200\) 9.24434e48 0.311696
\(201\) 3.92681e49 1.18939
\(202\) −1.31187e49 −0.357137
\(203\) 9.28435e48 0.227293
\(204\) 3.16640e49 0.697456
\(205\) −3.45353e49 −0.684787
\(206\) 6.53351e49 1.16681
\(207\) −4.89085e48 −0.0787085
\(208\) −2.67054e49 −0.387469
\(209\) 6.07811e49 0.795470
\(210\) −8.88291e48 −0.104916
\(211\) −5.01520e49 −0.534829 −0.267415 0.963582i \(-0.586169\pi\)
−0.267415 + 0.963582i \(0.586169\pi\)
\(212\) −4.30893e47 −0.00415096
\(213\) 1.48192e50 1.29021
\(214\) −1.69737e50 −1.33622
\(215\) −1.04283e49 −0.0742657
\(216\) 4.37055e49 0.281696
\(217\) 8.85878e49 0.516999
\(218\) 1.97342e50 1.04329
\(219\) 1.01033e50 0.484077
\(220\) −3.02613e49 −0.131462
\(221\) −4.80875e50 −1.89495
\(222\) −2.23212e50 −0.798231
\(223\) 1.82003e50 0.590914 0.295457 0.955356i \(-0.404528\pi\)
0.295457 + 0.955356i \(0.404528\pi\)
\(224\) 2.26573e49 0.0668153
\(225\) −9.92404e49 −0.265928
\(226\) 1.29359e50 0.315113
\(227\) −4.60937e50 −1.02114 −0.510570 0.859836i \(-0.670566\pi\)
−0.510570 + 0.859836i \(0.670566\pi\)
\(228\) 2.94624e50 0.593838
\(229\) 4.00777e50 0.735259 0.367630 0.929972i \(-0.380169\pi\)
0.367630 + 0.929972i \(0.380169\pi\)
\(230\) −3.80037e49 −0.0634859
\(231\) −2.16533e50 −0.329509
\(232\) 1.53314e50 0.212613
\(233\) −4.41260e50 −0.557882 −0.278941 0.960308i \(-0.589983\pi\)
−0.278941 + 0.960308i \(0.589983\pi\)
\(234\) 2.86689e50 0.330575
\(235\) 1.30160e50 0.136936
\(236\) 3.70074e50 0.355370
\(237\) −6.87883e50 −0.603150
\(238\) 4.07983e50 0.326767
\(239\) 1.20215e49 0.00879844 0.00439922 0.999990i \(-0.498600\pi\)
0.00439922 + 0.999990i \(0.498600\pi\)
\(240\) −1.46685e50 −0.0981396
\(241\) 5.77573e49 0.0353379 0.0176689 0.999844i \(-0.494376\pi\)
0.0176689 + 0.999844i \(0.494376\pi\)
\(242\) 5.25665e50 0.294224
\(243\) −1.14103e51 −0.584472
\(244\) −1.01472e51 −0.475844
\(245\) −1.14454e50 −0.0491542
\(246\) −4.08067e51 −1.60556
\(247\) −4.47440e51 −1.61343
\(248\) 1.46287e51 0.483608
\(249\) −4.59392e51 −1.39283
\(250\) −1.64582e51 −0.457798
\(251\) 1.73429e51 0.442729 0.221364 0.975191i \(-0.428949\pi\)
0.221364 + 0.975191i \(0.428949\pi\)
\(252\) −2.43232e50 −0.0570045
\(253\) −9.26393e50 −0.199390
\(254\) −5.42416e51 −1.07252
\(255\) −2.64131e51 −0.479961
\(256\) 3.74144e50 0.0625000
\(257\) −7.25467e51 −1.11444 −0.557218 0.830366i \(-0.688131\pi\)
−0.557218 + 0.830366i \(0.688131\pi\)
\(258\) −1.23221e51 −0.174124
\(259\) −2.87603e51 −0.373980
\(260\) 2.22768e51 0.266641
\(261\) −1.64587e51 −0.181394
\(262\) −1.07754e52 −1.09385
\(263\) 5.06186e51 0.473436 0.236718 0.971578i \(-0.423928\pi\)
0.236718 + 0.971578i \(0.423928\pi\)
\(264\) −3.57565e51 −0.308227
\(265\) 3.59438e49 0.00285652
\(266\) 3.79616e51 0.278220
\(267\) 4.27082e51 0.288748
\(268\) 8.35503e51 0.521255
\(269\) 2.47334e52 1.42433 0.712164 0.702013i \(-0.247715\pi\)
0.712164 + 0.702013i \(0.247715\pi\)
\(270\) −3.64578e51 −0.193851
\(271\) 2.98646e52 1.46662 0.733308 0.679896i \(-0.237975\pi\)
0.733308 + 0.679896i \(0.237975\pi\)
\(272\) 6.73710e51 0.305662
\(273\) 1.59401e52 0.668334
\(274\) −2.31947e52 −0.898983
\(275\) −1.87975e52 −0.673669
\(276\) −4.49049e51 −0.148850
\(277\) 1.63760e52 0.502219 0.251110 0.967959i \(-0.419205\pi\)
0.251110 + 0.967959i \(0.419205\pi\)
\(278\) 1.22461e52 0.347564
\(279\) −1.57043e52 −0.412598
\(280\) −1.89000e51 −0.0459796
\(281\) 3.42545e52 0.771847 0.385924 0.922531i \(-0.373883\pi\)
0.385924 + 0.922531i \(0.373883\pi\)
\(282\) 1.53796e52 0.321062
\(283\) 2.24301e52 0.433934 0.216967 0.976179i \(-0.430384\pi\)
0.216967 + 0.976179i \(0.430384\pi\)
\(284\) 3.15305e52 0.565440
\(285\) −2.45766e52 −0.408656
\(286\) 5.43028e52 0.837438
\(287\) −5.25785e52 −0.752225
\(288\) −4.01654e51 −0.0533228
\(289\) 4.01600e52 0.494869
\(290\) −1.27890e52 −0.146312
\(291\) 1.95276e53 2.07467
\(292\) 2.14966e52 0.212148
\(293\) −1.67562e53 −1.53646 −0.768231 0.640172i \(-0.778863\pi\)
−0.768231 + 0.640172i \(0.778863\pi\)
\(294\) −1.35238e52 −0.115248
\(295\) −3.08705e52 −0.244551
\(296\) −4.74925e52 −0.349827
\(297\) −8.88709e52 −0.608830
\(298\) −6.05041e52 −0.385598
\(299\) 6.81963e52 0.404418
\(300\) −9.11168e52 −0.502911
\(301\) −1.58767e52 −0.0815793
\(302\) 2.01342e53 0.963352
\(303\) 1.29304e53 0.576230
\(304\) 6.26866e52 0.260251
\(305\) 8.46448e52 0.327457
\(306\) −7.23245e52 −0.260780
\(307\) 4.97448e53 1.67214 0.836071 0.548622i \(-0.184847\pi\)
0.836071 + 0.548622i \(0.184847\pi\)
\(308\) −4.60715e52 −0.144408
\(309\) −6.43975e53 −1.88261
\(310\) −1.22028e53 −0.332800
\(311\) 3.08611e53 0.785350 0.392675 0.919677i \(-0.371550\pi\)
0.392675 + 0.919677i \(0.371550\pi\)
\(312\) 2.63221e53 0.625169
\(313\) 6.55098e53 1.45246 0.726228 0.687454i \(-0.241272\pi\)
0.726228 + 0.687454i \(0.241272\pi\)
\(314\) 8.61391e52 0.178325
\(315\) 2.02897e52 0.0392282
\(316\) −1.46360e53 −0.264332
\(317\) −1.96912e53 −0.332275 −0.166137 0.986103i \(-0.553130\pi\)
−0.166137 + 0.986103i \(0.553130\pi\)
\(318\) 4.24710e51 0.00669744
\(319\) −3.11750e53 −0.459522
\(320\) −3.12100e52 −0.0430100
\(321\) 1.67301e54 2.15596
\(322\) −5.78589e52 −0.0697379
\(323\) 1.12878e54 1.27278
\(324\) −5.73730e53 −0.605327
\(325\) 1.38378e54 1.36639
\(326\) −5.19738e53 −0.480403
\(327\) −1.94510e54 −1.68331
\(328\) −8.68239e53 −0.703642
\(329\) 1.98162e53 0.150421
\(330\) 2.98270e53 0.212109
\(331\) 3.06072e53 0.203949 0.101975 0.994787i \(-0.467484\pi\)
0.101975 + 0.994787i \(0.467484\pi\)
\(332\) −9.77441e53 −0.610410
\(333\) 5.09844e53 0.298460
\(334\) −6.83366e53 −0.375063
\(335\) −6.96951e53 −0.358706
\(336\) −2.23322e53 −0.107804
\(337\) −1.17538e54 −0.532275 −0.266137 0.963935i \(-0.585747\pi\)
−0.266137 + 0.963935i \(0.585747\pi\)
\(338\) −2.33334e54 −0.991447
\(339\) −1.27503e54 −0.508425
\(340\) −5.61988e53 −0.210344
\(341\) −2.97460e54 −1.04522
\(342\) −6.72957e53 −0.222037
\(343\) −1.74251e53 −0.0539949
\(344\) −2.62175e53 −0.0763105
\(345\) 3.74583e53 0.102432
\(346\) −4.84840e53 −0.124584
\(347\) −8.58145e53 −0.207242 −0.103621 0.994617i \(-0.533043\pi\)
−0.103621 + 0.994617i \(0.533043\pi\)
\(348\) −1.51114e54 −0.343045
\(349\) 1.02482e54 0.218727 0.109363 0.994002i \(-0.465119\pi\)
0.109363 + 0.994002i \(0.465119\pi\)
\(350\) −1.17402e54 −0.235620
\(351\) 6.54222e54 1.23487
\(352\) −7.60787e53 −0.135081
\(353\) −3.04715e54 −0.509023 −0.254512 0.967070i \(-0.581915\pi\)
−0.254512 + 0.967070i \(0.581915\pi\)
\(354\) −3.64763e54 −0.573378
\(355\) −2.63018e54 −0.389113
\(356\) 9.08697e53 0.126545
\(357\) −4.02128e54 −0.527227
\(358\) −3.40140e54 −0.419925
\(359\) −3.69837e52 −0.00430011 −0.00215006 0.999998i \(-0.500684\pi\)
−0.00215006 + 0.999998i \(0.500684\pi\)
\(360\) 3.35047e53 0.0366946
\(361\) 8.11129e53 0.0836922
\(362\) −1.21058e55 −1.17695
\(363\) −5.18121e54 −0.474722
\(364\) 3.39155e54 0.292899
\(365\) −1.79318e54 −0.145992
\(366\) 1.00016e55 0.767760
\(367\) 1.02989e55 0.745541 0.372771 0.927924i \(-0.378408\pi\)
0.372771 + 0.927924i \(0.378408\pi\)
\(368\) −9.55435e53 −0.0652339
\(369\) 9.32077e54 0.600323
\(370\) 3.96168e54 0.240737
\(371\) 5.47228e52 0.00313783
\(372\) −1.44187e55 −0.780287
\(373\) −2.97486e55 −1.51959 −0.759796 0.650161i \(-0.774701\pi\)
−0.759796 + 0.650161i \(0.774701\pi\)
\(374\) −1.36992e55 −0.660628
\(375\) 1.62221e55 0.738642
\(376\) 3.27229e54 0.140706
\(377\) 2.29494e55 0.932036
\(378\) −5.55053e54 −0.212942
\(379\) 5.02500e55 1.82135 0.910675 0.413123i \(-0.135562\pi\)
0.910675 + 0.413123i \(0.135562\pi\)
\(380\) −5.22913e54 −0.179094
\(381\) 5.34632e55 1.73048
\(382\) −1.01947e55 −0.311898
\(383\) 4.98480e54 0.144170 0.0720848 0.997399i \(-0.477035\pi\)
0.0720848 + 0.997399i \(0.477035\pi\)
\(384\) −3.68775e54 −0.100842
\(385\) 3.84314e54 0.0993758
\(386\) 2.46454e54 0.0602712
\(387\) 2.81451e54 0.0651055
\(388\) 4.15486e55 0.909230
\(389\) 6.53476e54 0.135305 0.0676524 0.997709i \(-0.478449\pi\)
0.0676524 + 0.997709i \(0.478449\pi\)
\(390\) −2.19571e55 −0.430216
\(391\) −1.72042e55 −0.319032
\(392\) −2.87745e54 −0.0505076
\(393\) 1.06208e56 1.76489
\(394\) −4.69789e55 −0.739153
\(395\) 1.22089e55 0.181903
\(396\) 8.16724e54 0.115247
\(397\) −5.26489e55 −0.703709 −0.351854 0.936055i \(-0.614449\pi\)
−0.351854 + 0.936055i \(0.614449\pi\)
\(398\) −7.98989e55 −1.01171
\(399\) −3.74168e55 −0.448900
\(400\) −1.93868e55 −0.220402
\(401\) 1.46043e56 1.57354 0.786770 0.617246i \(-0.211752\pi\)
0.786770 + 0.617246i \(0.211752\pi\)
\(402\) −8.23513e55 −0.841027
\(403\) 2.18975e56 2.12000
\(404\) 2.75118e55 0.252534
\(405\) 4.78588e55 0.416561
\(406\) −1.94707e55 −0.160721
\(407\) 9.65714e55 0.756082
\(408\) −6.64042e55 −0.493176
\(409\) 7.46368e55 0.525899 0.262949 0.964810i \(-0.415305\pi\)
0.262949 + 0.964810i \(0.415305\pi\)
\(410\) 7.24258e55 0.484218
\(411\) 2.28618e56 1.45048
\(412\) −1.37018e56 −0.825061
\(413\) −4.69989e55 −0.268634
\(414\) 1.02568e55 0.0556553
\(415\) 8.15351e55 0.420059
\(416\) 5.60053e55 0.273982
\(417\) −1.20704e56 −0.560783
\(418\) −1.27467e56 −0.562482
\(419\) −4.53948e56 −1.90285 −0.951424 0.307883i \(-0.900379\pi\)
−0.951424 + 0.307883i \(0.900379\pi\)
\(420\) 1.86288e55 0.0741866
\(421\) 1.29970e56 0.491788 0.245894 0.969297i \(-0.420919\pi\)
0.245894 + 0.969297i \(0.420919\pi\)
\(422\) 1.05176e56 0.378181
\(423\) −3.51289e55 −0.120046
\(424\) 9.03648e53 0.00293517
\(425\) −3.49092e56 −1.07790
\(426\) −3.10780e56 −0.912319
\(427\) 1.28868e56 0.359705
\(428\) 3.55964e56 0.944853
\(429\) −5.35236e56 −1.35118
\(430\) 2.18698e55 0.0525138
\(431\) 1.28068e56 0.292535 0.146268 0.989245i \(-0.453274\pi\)
0.146268 + 0.989245i \(0.453274\pi\)
\(432\) −9.16570e55 −0.199189
\(433\) −5.03861e56 −1.04189 −0.520943 0.853591i \(-0.674420\pi\)
−0.520943 + 0.853591i \(0.674420\pi\)
\(434\) −1.85782e56 −0.365574
\(435\) 1.26055e56 0.236070
\(436\) −4.13856e56 −0.737716
\(437\) −1.60080e56 −0.271635
\(438\) −2.11881e56 −0.342294
\(439\) −6.67116e56 −1.02616 −0.513079 0.858341i \(-0.671495\pi\)
−0.513079 + 0.858341i \(0.671495\pi\)
\(440\) 6.34625e55 0.0929576
\(441\) 3.08901e55 0.0430914
\(442\) 1.00847e57 1.33993
\(443\) −7.20830e56 −0.912331 −0.456166 0.889895i \(-0.650778\pi\)
−0.456166 + 0.889895i \(0.650778\pi\)
\(444\) 4.68109e56 0.564434
\(445\) −7.58007e55 −0.0870829
\(446\) −3.81688e56 −0.417839
\(447\) 5.96358e56 0.622151
\(448\) −4.75158e55 −0.0472456
\(449\) 1.18545e57 1.12353 0.561767 0.827296i \(-0.310122\pi\)
0.561767 + 0.827296i \(0.310122\pi\)
\(450\) 2.08122e56 0.188040
\(451\) 1.76548e57 1.52078
\(452\) −2.71286e56 −0.222819
\(453\) −1.98453e57 −1.55434
\(454\) 9.66654e56 0.722055
\(455\) −2.82913e56 −0.201561
\(456\) −6.17871e56 −0.419907
\(457\) 4.60969e56 0.298864 0.149432 0.988772i \(-0.452256\pi\)
0.149432 + 0.988772i \(0.452256\pi\)
\(458\) −8.40491e56 −0.519907
\(459\) −1.65044e57 −0.974152
\(460\) 7.96995e55 0.0448913
\(461\) −2.91635e57 −1.56772 −0.783861 0.620936i \(-0.786753\pi\)
−0.783861 + 0.620936i \(0.786753\pi\)
\(462\) 4.54103e56 0.232998
\(463\) 2.73355e57 1.33886 0.669432 0.742873i \(-0.266538\pi\)
0.669432 + 0.742873i \(0.266538\pi\)
\(464\) −3.21523e56 −0.150340
\(465\) 1.20277e57 0.536962
\(466\) 9.25389e56 0.394482
\(467\) 9.00737e56 0.366678 0.183339 0.983050i \(-0.441309\pi\)
0.183339 + 0.983050i \(0.441309\pi\)
\(468\) −6.01231e56 −0.233752
\(469\) −1.06108e57 −0.394031
\(470\) −2.72965e56 −0.0968284
\(471\) −8.49029e56 −0.287722
\(472\) −7.76102e56 −0.251284
\(473\) 5.33107e56 0.164930
\(474\) 1.44260e57 0.426491
\(475\) −3.24819e57 −0.917760
\(476\) −8.55602e56 −0.231059
\(477\) −9.70090e54 −0.00250419
\(478\) −2.52110e55 −0.00622143
\(479\) 1.39825e57 0.329892 0.164946 0.986303i \(-0.447255\pi\)
0.164946 + 0.986303i \(0.447255\pi\)
\(480\) 3.07621e56 0.0693952
\(481\) −7.10909e57 −1.53354
\(482\) −1.21126e56 −0.0249876
\(483\) 5.70286e56 0.112520
\(484\) −1.10240e57 −0.208048
\(485\) −3.46585e57 −0.625695
\(486\) 2.39292e57 0.413284
\(487\) −3.33071e57 −0.550382 −0.275191 0.961390i \(-0.588741\pi\)
−0.275191 + 0.961390i \(0.588741\pi\)
\(488\) 2.12802e57 0.336473
\(489\) 5.12279e57 0.775115
\(490\) 2.40028e56 0.0347573
\(491\) 1.03954e58 1.44075 0.720375 0.693585i \(-0.243970\pi\)
0.720375 + 0.693585i \(0.243970\pi\)
\(492\) 8.55779e57 1.13530
\(493\) −5.78957e57 −0.735254
\(494\) 9.38349e57 1.14087
\(495\) −6.81287e56 −0.0793082
\(496\) −3.06786e57 −0.341963
\(497\) −4.00433e57 −0.427432
\(498\) 9.63414e57 0.984877
\(499\) 1.49044e58 1.45933 0.729665 0.683805i \(-0.239676\pi\)
0.729665 + 0.683805i \(0.239676\pi\)
\(500\) 3.45155e57 0.323712
\(501\) 6.73560e57 0.605153
\(502\) −3.63708e57 −0.313056
\(503\) 4.84460e57 0.399527 0.199763 0.979844i \(-0.435983\pi\)
0.199763 + 0.979844i \(0.435983\pi\)
\(504\) 5.10095e56 0.0403083
\(505\) −2.29495e57 −0.173784
\(506\) 1.94279e57 0.140990
\(507\) 2.29986e58 1.59967
\(508\) 1.13753e58 0.758389
\(509\) −6.54767e57 −0.418460 −0.209230 0.977866i \(-0.567096\pi\)
−0.209230 + 0.977866i \(0.567096\pi\)
\(510\) 5.53923e57 0.339384
\(511\) −2.73004e57 −0.160369
\(512\) −7.84638e56 −0.0441942
\(513\) −1.53568e58 −0.829427
\(514\) 1.52141e58 0.788026
\(515\) 1.14296e58 0.567773
\(516\) 2.58412e57 0.123125
\(517\) −6.65390e57 −0.304109
\(518\) 6.03148e57 0.264444
\(519\) 4.77882e57 0.201012
\(520\) −4.67179e57 −0.188543
\(521\) −3.64719e58 −1.41237 −0.706183 0.708029i \(-0.749585\pi\)
−0.706183 + 0.708029i \(0.749585\pi\)
\(522\) 3.45163e57 0.128265
\(523\) −1.19708e58 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(524\) 2.25977e58 0.773467
\(525\) 1.15717e58 0.380165
\(526\) −1.06155e58 −0.334770
\(527\) −5.52419e58 −1.67240
\(528\) 7.49869e57 0.217950
\(529\) −3.33943e58 −0.931913
\(530\) −7.53796e55 −0.00201987
\(531\) 8.33165e57 0.214387
\(532\) −7.96112e57 −0.196732
\(533\) −1.29966e59 −3.08456
\(534\) −8.95656e57 −0.204176
\(535\) −2.96934e58 −0.650210
\(536\) −1.75218e58 −0.368583
\(537\) 3.35258e58 0.677536
\(538\) −5.18697e58 −1.00715
\(539\) 5.85101e57 0.109162
\(540\) 7.64575e57 0.137074
\(541\) 7.03759e58 1.21250 0.606252 0.795273i \(-0.292672\pi\)
0.606252 + 0.795273i \(0.292672\pi\)
\(542\) −6.26305e58 −1.03705
\(543\) 1.19321e59 1.89898
\(544\) −1.41287e58 −0.216136
\(545\) 3.45226e58 0.507666
\(546\) −3.34288e58 −0.472583
\(547\) −1.00937e59 −1.37190 −0.685948 0.727650i \(-0.740612\pi\)
−0.685948 + 0.727650i \(0.740612\pi\)
\(548\) 4.86428e58 0.635677
\(549\) −2.28449e58 −0.287067
\(550\) 3.94212e58 0.476356
\(551\) −5.38701e58 −0.626021
\(552\) 9.41724e57 0.105253
\(553\) 1.85875e58 0.199816
\(554\) −3.43430e58 −0.355123
\(555\) −3.90482e58 −0.388421
\(556\) −2.56819e58 −0.245765
\(557\) −1.75260e59 −1.61360 −0.806802 0.590822i \(-0.798804\pi\)
−0.806802 + 0.590822i \(0.798804\pi\)
\(558\) 3.29342e58 0.291751
\(559\) −3.92446e58 −0.334523
\(560\) 3.96363e57 0.0325125
\(561\) 1.35027e59 1.06590
\(562\) −7.18368e58 −0.545779
\(563\) 1.88748e59 1.38023 0.690114 0.723700i \(-0.257560\pi\)
0.690114 + 0.723700i \(0.257560\pi\)
\(564\) −3.22533e58 −0.227025
\(565\) 2.26299e58 0.153335
\(566\) −4.70394e58 −0.306838
\(567\) 7.28629e58 0.457584
\(568\) −6.61243e58 −0.399826
\(569\) 2.38127e59 1.38642 0.693211 0.720735i \(-0.256195\pi\)
0.693211 + 0.720735i \(0.256195\pi\)
\(570\) 5.15409e58 0.288963
\(571\) −7.10372e58 −0.383539 −0.191770 0.981440i \(-0.561423\pi\)
−0.191770 + 0.981440i \(0.561423\pi\)
\(572\) −1.13881e59 −0.592158
\(573\) 1.00484e59 0.503237
\(574\) 1.10265e59 0.531903
\(575\) 4.95072e58 0.230043
\(576\) 8.42329e57 0.0377049
\(577\) −1.65236e59 −0.712566 −0.356283 0.934378i \(-0.615956\pi\)
−0.356283 + 0.934378i \(0.615956\pi\)
\(578\) −8.42217e58 −0.349925
\(579\) −2.42918e58 −0.0972456
\(580\) 2.68205e58 0.103458
\(581\) 1.24134e59 0.461427
\(582\) −4.09523e59 −1.46701
\(583\) −1.83748e57 −0.00634380
\(584\) −4.50817e58 −0.150011
\(585\) 5.01528e58 0.160859
\(586\) 3.51403e59 1.08644
\(587\) 4.61453e59 1.37534 0.687668 0.726026i \(-0.258635\pi\)
0.687668 + 0.726026i \(0.258635\pi\)
\(588\) 2.83615e58 0.0814924
\(589\) −5.14009e59 −1.42394
\(590\) 6.47400e58 0.172924
\(591\) 4.63047e59 1.19260
\(592\) 9.95989e58 0.247365
\(593\) −3.31627e59 −0.794280 −0.397140 0.917758i \(-0.629997\pi\)
−0.397140 + 0.917758i \(0.629997\pi\)
\(594\) 1.86376e59 0.430507
\(595\) 7.13717e58 0.159005
\(596\) 1.26886e59 0.272659
\(597\) 7.87523e59 1.63236
\(598\) −1.43018e59 −0.285967
\(599\) −1.90049e59 −0.366598 −0.183299 0.983057i \(-0.558678\pi\)
−0.183299 + 0.983057i \(0.558678\pi\)
\(600\) 1.91086e59 0.355612
\(601\) −1.24909e59 −0.224281 −0.112141 0.993692i \(-0.535771\pi\)
−0.112141 + 0.993692i \(0.535771\pi\)
\(602\) 3.32958e58 0.0576853
\(603\) 1.88101e59 0.314462
\(604\) −4.22245e59 −0.681193
\(605\) 9.19588e58 0.143170
\(606\) −2.71170e59 −0.407456
\(607\) 3.67382e59 0.532795 0.266398 0.963863i \(-0.414167\pi\)
0.266398 + 0.963863i \(0.414167\pi\)
\(608\) −1.31463e59 −0.184025
\(609\) 1.91913e59 0.259318
\(610\) −1.77513e59 −0.231547
\(611\) 4.89826e59 0.616816
\(612\) 1.51676e59 0.184400
\(613\) 1.60293e60 1.88155 0.940774 0.339035i \(-0.110101\pi\)
0.940774 + 0.339035i \(0.110101\pi\)
\(614\) −1.04322e60 −1.18238
\(615\) −7.13865e59 −0.781270
\(616\) 9.66189e58 0.102112
\(617\) −5.57012e59 −0.568504 −0.284252 0.958750i \(-0.591745\pi\)
−0.284252 + 0.958750i \(0.591745\pi\)
\(618\) 1.35051e60 1.33121
\(619\) −4.32518e59 −0.411771 −0.205885 0.978576i \(-0.566007\pi\)
−0.205885 + 0.978576i \(0.566007\pi\)
\(620\) 2.55911e59 0.235325
\(621\) 2.34060e59 0.207902
\(622\) −6.47205e59 −0.555326
\(623\) −1.15403e59 −0.0956588
\(624\) −5.52015e59 −0.442061
\(625\) 8.51536e59 0.658844
\(626\) −1.37384e60 −1.02704
\(627\) 1.25638e60 0.907547
\(628\) −1.80647e59 −0.126095
\(629\) 1.79345e60 1.20976
\(630\) −4.25505e58 −0.0277385
\(631\) −7.08414e59 −0.446330 −0.223165 0.974781i \(-0.571639\pi\)
−0.223165 + 0.974781i \(0.571639\pi\)
\(632\) 3.06939e59 0.186911
\(633\) −1.03667e60 −0.610184
\(634\) 4.12954e59 0.234954
\(635\) −9.48891e59 −0.521893
\(636\) −8.90680e57 −0.00473581
\(637\) −4.30722e59 −0.221411
\(638\) 6.53786e59 0.324931
\(639\) 7.09861e59 0.341118
\(640\) 6.54521e58 0.0304126
\(641\) −1.47369e60 −0.662153 −0.331076 0.943604i \(-0.607412\pi\)
−0.331076 + 0.943604i \(0.607412\pi\)
\(642\) −3.50855e60 −1.52449
\(643\) −3.70803e60 −1.55814 −0.779072 0.626934i \(-0.784309\pi\)
−0.779072 + 0.626934i \(0.784309\pi\)
\(644\) 1.21339e59 0.0493122
\(645\) −2.15560e59 −0.0847293
\(646\) −2.36722e60 −0.899994
\(647\) −3.86925e59 −0.142293 −0.0711467 0.997466i \(-0.522666\pi\)
−0.0711467 + 0.997466i \(0.522666\pi\)
\(648\) 1.20320e60 0.428031
\(649\) 1.57813e60 0.543102
\(650\) −2.90199e60 −0.966180
\(651\) 1.83116e60 0.589841
\(652\) 1.08997e60 0.339696
\(653\) 5.48528e59 0.165412 0.0827058 0.996574i \(-0.473644\pi\)
0.0827058 + 0.996574i \(0.473644\pi\)
\(654\) 4.07916e60 1.19028
\(655\) −1.88503e60 −0.532269
\(656\) 1.82083e60 0.497550
\(657\) 4.83964e59 0.127984
\(658\) −4.15577e59 −0.106364
\(659\) −1.39153e60 −0.344712 −0.172356 0.985035i \(-0.555138\pi\)
−0.172356 + 0.985035i \(0.555138\pi\)
\(660\) −6.25518e59 −0.149984
\(661\) 1.52924e60 0.354932 0.177466 0.984127i \(-0.443210\pi\)
0.177466 + 0.984127i \(0.443210\pi\)
\(662\) −6.41880e59 −0.144214
\(663\) −9.93997e60 −2.16194
\(664\) 2.04984e60 0.431625
\(665\) 6.64092e59 0.135383
\(666\) −1.06922e60 −0.211043
\(667\) 8.21059e59 0.156917
\(668\) 1.43312e60 0.265210
\(669\) 3.76211e60 0.674170
\(670\) 1.46161e60 0.253644
\(671\) −4.32713e60 −0.727220
\(672\) 4.68339e59 0.0762292
\(673\) −2.93034e60 −0.461949 −0.230974 0.972960i \(-0.574191\pi\)
−0.230974 + 0.972960i \(0.574191\pi\)
\(674\) 2.46495e60 0.376375
\(675\) 4.74933e60 0.702427
\(676\) 4.89337e60 0.701059
\(677\) −1.36592e61 −1.89570 −0.947849 0.318719i \(-0.896748\pi\)
−0.947849 + 0.318719i \(0.896748\pi\)
\(678\) 2.67393e60 0.359511
\(679\) −5.27661e60 −0.687314
\(680\) 1.17858e60 0.148736
\(681\) −9.52782e60 −1.16501
\(682\) 6.23819e60 0.739085
\(683\) −3.03155e59 −0.0348032 −0.0174016 0.999849i \(-0.505539\pi\)
−0.0174016 + 0.999849i \(0.505539\pi\)
\(684\) 1.41129e60 0.157004
\(685\) −4.05763e60 −0.437447
\(686\) 3.65432e59 0.0381802
\(687\) 8.28430e60 0.838853
\(688\) 5.49820e59 0.0539597
\(689\) 1.35266e59 0.0128670
\(690\) −7.85558e59 −0.0724307
\(691\) −2.14721e61 −1.91909 −0.959546 0.281553i \(-0.909151\pi\)
−0.959546 + 0.281553i \(0.909151\pi\)
\(692\) 1.01678e60 0.0880942
\(693\) −1.03723e60 −0.0871184
\(694\) 1.79966e60 0.146542
\(695\) 2.14231e60 0.169125
\(696\) 3.16909e60 0.242569
\(697\) 3.27871e61 2.43331
\(698\) −2.14921e60 −0.154663
\(699\) −9.12109e60 −0.636484
\(700\) 2.46210e60 0.166608
\(701\) 9.40948e59 0.0617488 0.0308744 0.999523i \(-0.490171\pi\)
0.0308744 + 0.999523i \(0.490171\pi\)
\(702\) −1.37200e61 −0.873187
\(703\) 1.66875e61 1.03003
\(704\) 1.59549e60 0.0955170
\(705\) 2.69048e60 0.156229
\(706\) 6.39034e60 0.359934
\(707\) −3.49396e60 −0.190898
\(708\) 7.64964e60 0.405439
\(709\) 1.53584e61 0.789681 0.394841 0.918750i \(-0.370800\pi\)
0.394841 + 0.918750i \(0.370800\pi\)
\(710\) 5.51588e60 0.275144
\(711\) −3.29507e60 −0.159466
\(712\) −1.90568e60 −0.0894806
\(713\) 7.83424e60 0.356921
\(714\) 8.43324e60 0.372806
\(715\) 9.49963e60 0.407499
\(716\) 7.13325e60 0.296932
\(717\) 2.48492e59 0.0100381
\(718\) 7.75605e58 0.00304064
\(719\) −2.98425e61 −1.13544 −0.567720 0.823222i \(-0.692174\pi\)
−0.567720 + 0.823222i \(0.692174\pi\)
\(720\) −7.02645e59 −0.0259470
\(721\) 1.74010e61 0.623687
\(722\) −1.70106e60 −0.0591793
\(723\) 1.19388e60 0.0403168
\(724\) 2.53877e61 0.832232
\(725\) 1.66601e61 0.530166
\(726\) 1.08658e61 0.335679
\(727\) 4.38325e61 1.31464 0.657320 0.753612i \(-0.271690\pi\)
0.657320 + 0.753612i \(0.271690\pi\)
\(728\) −7.11259e60 −0.207111
\(729\) 1.92357e61 0.543833
\(730\) 3.76058e60 0.103232
\(731\) 9.90044e60 0.263895
\(732\) −2.09748e61 −0.542888
\(733\) 1.34759e61 0.338706 0.169353 0.985555i \(-0.445832\pi\)
0.169353 + 0.985555i \(0.445832\pi\)
\(734\) −2.15984e61 −0.527177
\(735\) −2.36583e60 −0.0560798
\(736\) 2.00369e60 0.0461273
\(737\) 3.56288e61 0.796619
\(738\) −1.95471e61 −0.424492
\(739\) −5.28176e61 −1.11410 −0.557049 0.830480i \(-0.688066\pi\)
−0.557049 + 0.830480i \(0.688066\pi\)
\(740\) −8.30824e60 −0.170226
\(741\) −9.24883e61 −1.84075
\(742\) −1.14762e59 −0.00221878
\(743\) 8.11706e61 1.52454 0.762271 0.647258i \(-0.224084\pi\)
0.762271 + 0.647258i \(0.224084\pi\)
\(744\) 3.02383e61 0.551746
\(745\) −1.05845e61 −0.187633
\(746\) 6.23874e61 1.07451
\(747\) −2.20056e61 −0.368248
\(748\) 2.87294e61 0.467135
\(749\) −4.52069e61 −0.714242
\(750\) −3.40201e61 −0.522299
\(751\) −2.88556e61 −0.430498 −0.215249 0.976559i \(-0.569056\pi\)
−0.215249 + 0.976559i \(0.569056\pi\)
\(752\) −6.86250e60 −0.0994944
\(753\) 3.58488e61 0.505107
\(754\) −4.81284e61 −0.659049
\(755\) 3.52224e61 0.468769
\(756\) 1.16403e61 0.150573
\(757\) −1.57431e62 −1.97938 −0.989690 0.143224i \(-0.954253\pi\)
−0.989690 + 0.143224i \(0.954253\pi\)
\(758\) −1.05382e62 −1.28789
\(759\) −1.91491e61 −0.227483
\(760\) 1.09663e61 0.126639
\(761\) −6.37765e61 −0.715963 −0.357981 0.933729i \(-0.616535\pi\)
−0.357981 + 0.933729i \(0.616535\pi\)
\(762\) −1.12120e62 −1.22364
\(763\) 5.25591e61 0.557661
\(764\) 2.13799e61 0.220545
\(765\) −1.26523e61 −0.126896
\(766\) −1.04539e61 −0.101943
\(767\) −1.16174e62 −1.10156
\(768\) 7.73378e60 0.0713059
\(769\) −8.43935e61 −0.756646 −0.378323 0.925674i \(-0.623499\pi\)
−0.378323 + 0.925674i \(0.623499\pi\)
\(770\) −8.05965e60 −0.0702693
\(771\) −1.49958e62 −1.27145
\(772\) −5.16852e60 −0.0426182
\(773\) −2.28687e62 −1.83393 −0.916966 0.398965i \(-0.869369\pi\)
−0.916966 + 0.398965i \(0.869369\pi\)
\(774\) −5.90246e60 −0.0460365
\(775\) 1.58965e62 1.20591
\(776\) −8.71337e61 −0.642923
\(777\) −5.94492e61 −0.426672
\(778\) −1.37044e61 −0.0956749
\(779\) 3.05074e62 2.07181
\(780\) 4.60474e61 0.304209
\(781\) 1.34457e62 0.864146
\(782\) 3.60799e61 0.225590
\(783\) 7.87659e61 0.479138
\(784\) 6.03444e60 0.0357143
\(785\) 1.50690e61 0.0867734
\(786\) −2.22734e62 −1.24796
\(787\) −6.62818e61 −0.361358 −0.180679 0.983542i \(-0.557830\pi\)
−0.180679 + 0.983542i \(0.557830\pi\)
\(788\) 9.85219e61 0.522660
\(789\) 1.04632e62 0.540141
\(790\) −2.56039e61 −0.128625
\(791\) 3.44530e61 0.168435
\(792\) −1.71280e61 −0.0814918
\(793\) 3.18541e62 1.47500
\(794\) 1.10413e62 0.497597
\(795\) 7.42978e59 0.00325899
\(796\) 1.67560e62 0.715385
\(797\) 3.24845e62 1.34997 0.674983 0.737834i \(-0.264151\pi\)
0.674983 + 0.737834i \(0.264151\pi\)
\(798\) 7.84687e61 0.317420
\(799\) −1.23571e62 −0.486587
\(800\) 4.06570e61 0.155848
\(801\) 2.04579e61 0.0763418
\(802\) −3.06275e62 −1.11266
\(803\) 9.16693e61 0.324220
\(804\) 1.72703e62 0.594696
\(805\) −1.01217e61 −0.0339346
\(806\) −4.59224e62 −1.49907
\(807\) 5.11254e62 1.62501
\(808\) −5.76965e61 −0.178569
\(809\) −5.06218e62 −1.52561 −0.762806 0.646627i \(-0.776179\pi\)
−0.762806 + 0.646627i \(0.776179\pi\)
\(810\) −1.00367e62 −0.294553
\(811\) 6.33281e62 1.80987 0.904937 0.425546i \(-0.139918\pi\)
0.904937 + 0.425546i \(0.139918\pi\)
\(812\) 4.08330e61 0.113647
\(813\) 6.17318e62 1.67325
\(814\) −2.02525e62 −0.534630
\(815\) −9.09219e61 −0.233765
\(816\) 1.39260e62 0.348728
\(817\) 9.21205e61 0.224689
\(818\) −1.56525e62 −0.371867
\(819\) 7.63555e61 0.176700
\(820\) −1.51888e62 −0.342394
\(821\) −8.68631e62 −1.90747 −0.953735 0.300649i \(-0.902797\pi\)
−0.953735 + 0.300649i \(0.902797\pi\)
\(822\) −4.79447e62 −1.02564
\(823\) −6.68844e62 −1.39389 −0.696945 0.717125i \(-0.745458\pi\)
−0.696945 + 0.717125i \(0.745458\pi\)
\(824\) 2.87347e62 0.583406
\(825\) −3.88555e62 −0.768585
\(826\) 9.85638e61 0.189953
\(827\) 2.87051e62 0.539001 0.269501 0.963000i \(-0.413141\pi\)
0.269501 + 0.963000i \(0.413141\pi\)
\(828\) −2.15102e61 −0.0393542
\(829\) 4.01819e62 0.716321 0.358161 0.933660i \(-0.383404\pi\)
0.358161 + 0.933660i \(0.383404\pi\)
\(830\) −1.70992e62 −0.297027
\(831\) 3.38502e62 0.572979
\(832\) −1.17452e62 −0.193735
\(833\) 1.08660e62 0.174664
\(834\) 2.53134e62 0.396533
\(835\) −1.19547e62 −0.182507
\(836\) 2.67318e62 0.397735
\(837\) 7.51556e62 1.08984
\(838\) 9.51997e62 1.34552
\(839\) 1.79352e62 0.247073 0.123536 0.992340i \(-0.460576\pi\)
0.123536 + 0.992340i \(0.460576\pi\)
\(840\) −3.90674e61 −0.0524578
\(841\) −4.87733e62 −0.638364
\(842\) −2.72567e62 −0.347746
\(843\) 7.08059e62 0.880596
\(844\) −2.20571e62 −0.267415
\(845\) −4.08190e62 −0.482440
\(846\) 7.36707e61 0.0848852
\(847\) 1.40003e62 0.157270
\(848\) −1.89509e60 −0.00207548
\(849\) 4.63644e62 0.495073
\(850\) 7.32099e62 0.762189
\(851\) −2.54341e62 −0.258185
\(852\) 6.51753e62 0.645107
\(853\) 1.47682e63 1.42535 0.712676 0.701493i \(-0.247483\pi\)
0.712676 + 0.701493i \(0.247483\pi\)
\(854\) −2.70256e62 −0.254350
\(855\) −1.17726e62 −0.108044
\(856\) −7.46510e62 −0.668112
\(857\) −2.12969e63 −1.85878 −0.929391 0.369098i \(-0.879667\pi\)
−0.929391 + 0.369098i \(0.879667\pi\)
\(858\) 1.12247e63 0.955429
\(859\) 1.28077e62 0.106321 0.0531603 0.998586i \(-0.483071\pi\)
0.0531603 + 0.998586i \(0.483071\pi\)
\(860\) −4.58643e61 −0.0371328
\(861\) −1.08683e63 −0.858209
\(862\) −2.68578e62 −0.206854
\(863\) −9.62637e62 −0.723154 −0.361577 0.932342i \(-0.617761\pi\)
−0.361577 + 0.932342i \(0.617761\pi\)
\(864\) 1.92219e62 0.140848
\(865\) −8.48170e61 −0.0606229
\(866\) 1.05667e63 0.736725
\(867\) 8.30130e62 0.564593
\(868\) 3.89613e62 0.258500
\(869\) −6.24131e62 −0.403971
\(870\) −2.64356e62 −0.166926
\(871\) −2.62281e63 −1.61576
\(872\) 8.67918e62 0.521644
\(873\) 9.35402e62 0.548520
\(874\) 3.35712e62 0.192075
\(875\) −4.38341e62 −0.244703
\(876\) 4.44347e62 0.242038
\(877\) 3.01221e63 1.60101 0.800504 0.599327i \(-0.204565\pi\)
0.800504 + 0.599327i \(0.204565\pi\)
\(878\) 1.39904e63 0.725603
\(879\) −3.46360e63 −1.75294
\(880\) −1.33091e62 −0.0657309
\(881\) −1.23291e63 −0.594223 −0.297112 0.954843i \(-0.596023\pi\)
−0.297112 + 0.954843i \(0.596023\pi\)
\(882\) −6.47813e61 −0.0304702
\(883\) 3.53664e62 0.162344 0.0811720 0.996700i \(-0.474134\pi\)
0.0811720 + 0.996700i \(0.474134\pi\)
\(884\) −2.11491e63 −0.947477
\(885\) −6.38110e62 −0.279007
\(886\) 1.51169e63 0.645116
\(887\) −2.79600e63 −1.16461 −0.582304 0.812971i \(-0.697849\pi\)
−0.582304 + 0.812971i \(0.697849\pi\)
\(888\) −9.81696e62 −0.399115
\(889\) −1.44464e63 −0.573288
\(890\) 1.58966e62 0.0615769
\(891\) −2.44659e63 −0.925104
\(892\) 8.00458e62 0.295457
\(893\) −1.14979e63 −0.414297
\(894\) −1.25065e63 −0.439927
\(895\) −5.95034e62 −0.204337
\(896\) 9.96479e61 0.0334077
\(897\) 1.40966e63 0.461398
\(898\) −2.48606e63 −0.794458
\(899\) 2.63638e63 0.822573
\(900\) −4.36464e62 −0.132964
\(901\) −3.41243e61 −0.0101503
\(902\) −3.70248e63 −1.07536
\(903\) −3.28180e62 −0.0930734
\(904\) 5.68928e62 0.157557
\(905\) −2.11777e63 −0.572708
\(906\) 4.16185e63 1.09908
\(907\) −5.54261e63 −1.42941 −0.714706 0.699425i \(-0.753440\pi\)
−0.714706 + 0.699425i \(0.753440\pi\)
\(908\) −2.02722e63 −0.510570
\(909\) 6.19387e62 0.152349
\(910\) 5.93311e62 0.142525
\(911\) 5.94792e63 1.39547 0.697734 0.716357i \(-0.254192\pi\)
0.697734 + 0.716357i \(0.254192\pi\)
\(912\) 1.29577e63 0.296919
\(913\) −4.16816e63 −0.932873
\(914\) −9.66721e62 −0.211328
\(915\) 1.74966e63 0.373594
\(916\) 1.76264e63 0.367630
\(917\) −2.86988e63 −0.584686
\(918\) 3.46122e63 0.688829
\(919\) 8.09148e63 1.57306 0.786528 0.617554i \(-0.211876\pi\)
0.786528 + 0.617554i \(0.211876\pi\)
\(920\) −1.67142e62 −0.0317429
\(921\) 1.02825e64 1.90774
\(922\) 6.11602e63 1.10855
\(923\) −9.89806e63 −1.75272
\(924\) −9.52323e62 −0.164754
\(925\) −5.16085e63 −0.872316
\(926\) −5.73268e63 −0.946720
\(927\) −3.08474e63 −0.497742
\(928\) 6.74283e62 0.106307
\(929\) −4.69455e62 −0.0723197 −0.0361598 0.999346i \(-0.511513\pi\)
−0.0361598 + 0.999346i \(0.511513\pi\)
\(930\) −2.52239e63 −0.379689
\(931\) 1.01105e63 0.148715
\(932\) −1.94068e63 −0.278941
\(933\) 6.37917e63 0.896001
\(934\) −1.88898e63 −0.259281
\(935\) −2.39652e63 −0.321463
\(936\) 1.26087e63 0.165288
\(937\) 1.10223e64 1.41212 0.706061 0.708151i \(-0.250471\pi\)
0.706061 + 0.708151i \(0.250471\pi\)
\(938\) 2.22524e63 0.278622
\(939\) 1.35412e64 1.65710
\(940\) 5.72449e62 0.0684680
\(941\) 7.10273e63 0.830326 0.415163 0.909747i \(-0.363725\pi\)
0.415163 + 0.909747i \(0.363725\pi\)
\(942\) 1.78054e63 0.203450
\(943\) −4.64977e63 −0.519314
\(944\) 1.62760e63 0.177685
\(945\) −9.70999e62 −0.103618
\(946\) −1.11801e63 −0.116623
\(947\) −1.52477e64 −1.55482 −0.777408 0.628997i \(-0.783466\pi\)
−0.777408 + 0.628997i \(0.783466\pi\)
\(948\) −3.02534e63 −0.301575
\(949\) −6.74823e63 −0.657607
\(950\) 6.81195e63 0.648954
\(951\) −4.07028e63 −0.379090
\(952\) 1.79433e63 0.163383
\(953\) 1.47199e64 1.31041 0.655206 0.755450i \(-0.272582\pi\)
0.655206 + 0.755450i \(0.272582\pi\)
\(954\) 2.03443e61 0.00177073
\(955\) −1.78344e63 −0.151770
\(956\) 5.28713e61 0.00439922
\(957\) −6.44404e63 −0.524266
\(958\) −2.93234e63 −0.233269
\(959\) −6.17757e63 −0.480527
\(960\) −6.45128e62 −0.0490698
\(961\) 1.17106e64 0.871017
\(962\) 1.49089e64 1.08438
\(963\) 8.01397e63 0.570010
\(964\) 2.54019e62 0.0176689
\(965\) 4.31143e62 0.0293281
\(966\) −1.19598e63 −0.0795636
\(967\) 4.38850e63 0.285527 0.142764 0.989757i \(-0.454401\pi\)
0.142764 + 0.989757i \(0.454401\pi\)
\(968\) 2.31190e63 0.147112
\(969\) 2.33325e64 1.45211
\(970\) 7.26842e63 0.442433
\(971\) 5.34892e63 0.318459 0.159229 0.987242i \(-0.449099\pi\)
0.159229 + 0.987242i \(0.449099\pi\)
\(972\) −5.01832e63 −0.292236
\(973\) 3.26157e63 0.185781
\(974\) 6.98501e63 0.389179
\(975\) 2.86034e64 1.55890
\(976\) −4.46279e63 −0.237922
\(977\) −1.15112e64 −0.600324 −0.300162 0.953888i \(-0.597041\pi\)
−0.300162 + 0.953888i \(0.597041\pi\)
\(978\) −1.07433e64 −0.548089
\(979\) 3.87501e63 0.193395
\(980\) −5.03375e62 −0.0245771
\(981\) −9.31732e63 −0.445049
\(982\) −2.18007e64 −1.01876
\(983\) 1.21385e63 0.0554965 0.0277483 0.999615i \(-0.491166\pi\)
0.0277483 + 0.999615i \(0.491166\pi\)
\(984\) −1.79470e64 −0.802781
\(985\) −8.21840e63 −0.359673
\(986\) 1.21416e64 0.519903
\(987\) 4.09613e63 0.171615
\(988\) −1.96786e64 −0.806715
\(989\) −1.40405e63 −0.0563200
\(990\) 1.42876e63 0.0560794
\(991\) 6.90479e63 0.265196 0.132598 0.991170i \(-0.457668\pi\)
0.132598 + 0.991170i \(0.457668\pi\)
\(992\) 6.43376e63 0.241804
\(993\) 6.32669e63 0.232684
\(994\) 8.39769e63 0.302240
\(995\) −1.39774e64 −0.492299
\(996\) −2.02043e64 −0.696413
\(997\) 2.20463e64 0.743688 0.371844 0.928295i \(-0.378726\pi\)
0.371844 + 0.928295i \(0.378726\pi\)
\(998\) −3.12568e64 −1.03190
\(999\) −2.43995e64 −0.788357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.44.a.c.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.44.a.c.1.4 6 1.1 even 1 trivial