Properties

Label 14.44.a.c
Level $14$
Weight $44$
Character orbit 14.a
Self dual yes
Analytic conductor $163.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,44,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12582912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(163.954553484\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 62\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{33}\cdot 3^{11}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2097152 q^{2} + ( - \beta_1 + 981345577) q^{3} + 4398046511104 q^{4} + ( - \beta_{2} - 526 \beta_1 + 183592652324431) q^{5} + (2097152 \beta_1 - 20\!\cdots\!04) q^{6} - 55\!\cdots\!07 q^{7} - 92\!\cdots\!08 q^{8}+ \cdots + (26\!\cdots\!85 \beta_{5} + \cdots - 53\!\cdots\!49) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12582912 q^{2} + 5888073464 q^{3} + 26388279066624 q^{4} + 11\!\cdots\!36 q^{5} - 12\!\cdots\!28 q^{6} - 33\!\cdots\!42 q^{7} - 55\!\cdots\!48 q^{8} + 92\!\cdots\!42 q^{9} - 23\!\cdots\!72 q^{10}+ \cdots - 32\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} + \cdots - 62\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 15\!\cdots\!49 \nu^{5} + \cdots - 88\!\cdots\!20 ) / 20\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 75\!\cdots\!69 \nu^{5} + \cdots + 45\!\cdots\!80 ) / 51\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 11\!\cdots\!93 \nu^{5} + \cdots + 69\!\cdots\!00 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 48\!\cdots\!61 \nu^{5} + \cdots + 29\!\cdots\!40 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -11\beta_{4} - 56\beta_{3} - 181601\beta_{2} + 7929500891\beta _1 + 480661604359064410657 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 9713280105 \beta_{5} + 315585534118 \beta_{4} - 1472110413152 \beta_{3} + \cdots + 38\!\cdots\!13 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 43\!\cdots\!40 \beta_{5} + \cdots + 34\!\cdots\!74 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 47\!\cdots\!95 \beta_{5} + \cdots + 16\!\cdots\!35 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.70560e10
1.02419e10
3.36871e9
−9.84461e9
−1.01367e10
−1.06852e10
−2.09715e6 −3.31306e10 4.39805e12 9.93092e14 6.94798e16 −5.58546e17 −9.22337e18 7.69378e20 −2.08266e21
1.2 −2.09715e6 −1.95024e10 4.39805e12 −1.73111e14 4.08994e16 −5.58546e17 −9.22337e18 5.20852e19 3.63040e20
1.3 −2.09715e6 −5.75608e9 4.39805e12 −8.77444e14 1.20714e16 −5.58546e17 −9.22337e18 −2.95124e20 1.84013e21
1.4 −2.09715e6 2.06706e10 4.39805e12 −3.66872e14 −4.33493e16 −5.58546e17 −9.22337e18 9.90153e19 7.69386e20
1.5 −2.09715e6 2.12548e10 4.39805e12 −5.00494e14 −4.45746e16 −5.58546e17 −9.22337e18 1.23511e20 1.04961e21
1.6 −2.09715e6 2.23517e10 4.39805e12 2.02638e15 −4.68749e16 −5.58546e17 −9.22337e18 1.71341e20 −4.24964e21
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.44.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.44.a.c 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 5888073464 T_{3}^{5} + \cdots - 36\!\cdots\!96 \) acting on \(S_{44}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2097152)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 36\!\cdots\!96 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 55\!\cdots\!07)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 16\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 30\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 90\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 39\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 28\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 15\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 18\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 93\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 12\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 56\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 45\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
show more
show less