Properties

Label 2-14-1.1-c43-0-2
Degree $2$
Conductor $14$
Sign $1$
Analytic cond. $163.954$
Root an. cond. $12.8044$
Motivic weight $43$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.09e6·2-s − 5.75e9·3-s + 4.39e12·4-s − 8.77e14·5-s + 1.20e16·6-s − 5.58e17·7-s − 9.22e18·8-s − 2.95e20·9-s + 1.84e21·10-s + 2.59e22·11-s − 2.53e22·12-s + 1.25e24·13-s + 1.17e24·14-s + 5.05e24·15-s + 1.93e25·16-s + 1.55e26·17-s + 6.18e26·18-s − 3.27e27·19-s − 3.85e27·20-s + 3.21e27·21-s − 5.43e28·22-s − 9.13e28·23-s + 5.30e28·24-s − 3.66e29·25-s − 2.62e30·26-s + 3.58e30·27-s − 2.45e30·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.317·3-s + 0.5·4-s − 0.822·5-s + 0.224·6-s − 0.377·7-s − 0.353·8-s − 0.899·9-s + 0.581·10-s + 1.05·11-s − 0.158·12-s + 1.40·13-s + 0.267·14-s + 0.261·15-s + 0.250·16-s + 0.544·17-s + 0.635·18-s − 1.05·19-s − 0.411·20-s + 0.120·21-s − 0.746·22-s − 0.482·23-s + 0.112·24-s − 0.322·25-s − 0.993·26-s + 0.603·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(44-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+43/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $1$
Analytic conductor: \(163.954\)
Root analytic conductor: \(12.8044\)
Motivic weight: \(43\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :43/2),\ 1)\)

Particular Values

\(L(22)\) \(\approx\) \(0.7376002102\)
\(L(\frac12)\) \(\approx\) \(0.7376002102\)
\(L(\frac{45}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2.09e6T \)
7 \( 1 + 5.58e17T \)
good3 \( 1 + 5.75e9T + 3.28e20T^{2} \)
5 \( 1 + 8.77e14T + 1.13e30T^{2} \)
11 \( 1 - 2.59e22T + 6.02e44T^{2} \)
13 \( 1 - 1.25e24T + 7.93e47T^{2} \)
17 \( 1 - 1.55e26T + 8.11e52T^{2} \)
19 \( 1 + 3.27e27T + 9.69e54T^{2} \)
23 \( 1 + 9.13e28T + 3.58e58T^{2} \)
29 \( 1 - 4.60e31T + 7.64e62T^{2} \)
31 \( 1 + 9.90e31T + 1.34e64T^{2} \)
37 \( 1 + 1.17e33T + 2.70e67T^{2} \)
41 \( 1 + 3.11e34T + 2.23e69T^{2} \)
43 \( 1 + 1.85e35T + 1.73e70T^{2} \)
47 \( 1 - 1.01e36T + 7.94e71T^{2} \)
53 \( 1 - 8.71e36T + 1.39e74T^{2} \)
59 \( 1 + 1.22e38T + 1.40e76T^{2} \)
61 \( 1 + 2.33e38T + 5.87e76T^{2} \)
67 \( 1 + 4.76e38T + 3.32e78T^{2} \)
71 \( 1 + 4.50e39T + 4.01e79T^{2} \)
73 \( 1 - 1.43e40T + 1.32e80T^{2} \)
79 \( 1 + 1.20e41T + 3.96e81T^{2} \)
83 \( 1 + 6.29e40T + 3.31e82T^{2} \)
89 \( 1 + 5.31e41T + 6.66e83T^{2} \)
97 \( 1 + 2.11e42T + 2.69e85T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.45742939447761334387055954514, −10.42080619635626255491799810173, −8.894719289144715692626500548734, −8.205772732309953665362711640115, −6.71549006246719528397667605751, −5.88104301941881634680144999170, −4.08062247379992267029222191952, −3.12616234156629445995470037707, −1.53388693768990336573572175316, −0.44019237250485438074065282989, 0.44019237250485438074065282989, 1.53388693768990336573572175316, 3.12616234156629445995470037707, 4.08062247379992267029222191952, 5.88104301941881634680144999170, 6.71549006246719528397667605751, 8.205772732309953665362711640115, 8.894719289144715692626500548734, 10.42080619635626255491799810173, 11.45742939447761334387055954514

Graph of the $Z$-function along the critical line