Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 2 | 6 |
Cusp forms | 4 | 2 | 2 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
14.4.a.a | $1$ | $0.826$ | \(\Q\) | None | \(-2\) | \(8\) | \(-14\) | \(-7\) | $+$ | $+$ | \(q-2q^{2}+8q^{3}+4q^{4}-14q^{5}-2^{4}q^{6}+\cdots\) | |
14.4.a.b | $1$ | $0.826$ | \(\Q\) | None | \(2\) | \(-2\) | \(-12\) | \(7\) | $-$ | $-$ | \(q+2q^{2}-2q^{3}+4q^{4}-12q^{5}-4q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)