Properties

Label 14.4.a
Level $14$
Weight $4$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $8$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(14))\).

Total New Old
Modular forms 8 2 6
Cusp forms 4 2 2
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(0\)

Trace form

\( 2 q + 6 q^{3} + 8 q^{4} - 26 q^{5} - 20 q^{6} + 14 q^{9} + 4 q^{10} + 20 q^{11} + 24 q^{12} + 74 q^{13} + 28 q^{14} - 88 q^{15} + 32 q^{16} - 40 q^{17} - 120 q^{18} + 82 q^{19} - 104 q^{20} - 70 q^{21}+ \cdots - 2140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.4.a.a 14.a 1.a $1$ $0.826$ \(\Q\) None 14.4.a.a \(-2\) \(8\) \(-14\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+8q^{3}+4q^{4}-14q^{5}-2^{4}q^{6}+\cdots\)
14.4.a.b 14.a 1.a $1$ $0.826$ \(\Q\) None 14.4.a.b \(2\) \(-2\) \(-12\) \(7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-2q^{3}+4q^{4}-12q^{5}-4q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)