Properties

Label 14.4
Level 14
Weight 4
Dimension 6
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 48
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 14 = 2 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(14))\).

Total New Old
Modular forms 24 6 18
Cusp forms 12 6 6
Eisenstein series 12 0 12

Trace form

\( 6 q + 12 q^{3} - 24 q^{5} - 36 q^{6} - 48 q^{7} + 42 q^{9} + 36 q^{10} + 42 q^{11} + 48 q^{12} + 66 q^{13} + 132 q^{14} - 12 q^{15} - 150 q^{17} - 168 q^{18} - 60 q^{19} - 120 q^{20} - 72 q^{21} - 216 q^{22}+ \cdots - 3732 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
14.4.a \(\chi_{14}(1, \cdot)\) 14.4.a.a 1 1
14.4.a.b 1
14.4.c \(\chi_{14}(9, \cdot)\) 14.4.c.a 2 2
14.4.c.b 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)