Properties

 Label 1386.2.k.u Level $1386$ Weight $2$ Character orbit 1386.k Analytic conductor $11.067$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1386.k (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$11.0672657201$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 + \beta_{2} ) q^{2} + \beta_{2} q^{4} + ( 1 + \beta_{1} + \beta_{2} ) q^{5} + ( -1 - \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{7} - q^{8} +O(q^{10})$$ $$q + ( 1 + \beta_{2} ) q^{2} + \beta_{2} q^{4} + ( 1 + \beta_{1} + \beta_{2} ) q^{5} + ( -1 - \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{7} - q^{8} + ( \beta_{1} + \beta_{2} + \beta_{3} ) q^{10} -\beta_{2} q^{11} + ( -4 + 2 \beta_{3} ) q^{13} + ( \beta_{1} - \beta_{2} - \beta_{3} ) q^{14} + ( -1 - \beta_{2} ) q^{16} + ( 2 \beta_{1} + 5 \beta_{2} + 2 \beta_{3} ) q^{17} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{19} + ( -1 + \beta_{3} ) q^{20} + q^{22} + ( 1 + 3 \beta_{1} + \beta_{2} ) q^{23} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{25} + ( -4 - 2 \beta_{1} - 4 \beta_{2} ) q^{26} + ( 1 + 2 \beta_{1} + \beta_{3} ) q^{28} -2 \beta_{3} q^{29} + ( 6 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{31} -\beta_{2} q^{32} + ( -5 + 2 \beta_{3} ) q^{34} + ( 4 + \beta_{2} - 2 \beta_{3} ) q^{35} + ( -4 + 4 \beta_{1} - 4 \beta_{2} ) q^{37} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{38} + ( -1 - \beta_{1} - \beta_{2} ) q^{40} + ( 1 - 4 \beta_{3} ) q^{41} -2 \beta_{3} q^{43} + ( 1 + \beta_{2} ) q^{44} + ( 3 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{46} + ( -5 + 3 \beta_{1} - 5 \beta_{2} ) q^{47} + ( -2 \beta_{1} - 5 \beta_{2} + 2 \beta_{3} ) q^{49} + ( 2 + 2 \beta_{3} ) q^{50} + ( -2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{52} + ( 2 \beta_{1} + 8 \beta_{2} + 2 \beta_{3} ) q^{53} + ( 1 - \beta_{3} ) q^{55} + ( 1 + \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{56} + 2 \beta_{1} q^{58} + ( -4 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} ) q^{59} + ( 3 + \beta_{1} + 3 \beta_{2} ) q^{61} + ( -2 + 6 \beta_{3} ) q^{62} + q^{64} + ( -8 - 6 \beta_{1} - 8 \beta_{2} ) q^{65} + ( 6 \beta_{1} - 5 \beta_{2} + 6 \beta_{3} ) q^{67} + ( -5 - 2 \beta_{1} - 5 \beta_{2} ) q^{68} + ( 3 + 2 \beta_{1} + 4 \beta_{2} ) q^{70} + ( -2 - 8 \beta_{3} ) q^{71} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{73} + ( 4 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{74} + ( -2 + 2 \beta_{3} ) q^{76} + ( -1 - 2 \beta_{1} - \beta_{3} ) q^{77} + ( -9 - 3 \beta_{1} - 9 \beta_{2} ) q^{79} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{80} + ( 1 + 4 \beta_{1} + \beta_{2} ) q^{82} + ( 7 + 2 \beta_{3} ) q^{83} + ( -9 + 7 \beta_{3} ) q^{85} + 2 \beta_{1} q^{86} + \beta_{2} q^{88} + ( 4 - 6 \beta_{1} + 4 \beta_{2} ) q^{89} + ( 6 \beta_{1} + 8 \beta_{2} + 8 \beta_{3} ) q^{91} + ( -1 + 3 \beta_{3} ) q^{92} + ( 3 \beta_{1} - 5 \beta_{2} + 3 \beta_{3} ) q^{94} + ( 4 \beta_{1} + 6 \beta_{2} + 4 \beta_{3} ) q^{95} + ( -13 + 2 \beta_{3} ) q^{97} + ( 5 - 4 \beta_{1} - 2 \beta_{3} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{2} - 2q^{4} + 2q^{5} - 2q^{7} - 4q^{8} + O(q^{10})$$ $$4q + 2q^{2} - 2q^{4} + 2q^{5} - 2q^{7} - 4q^{8} - 2q^{10} + 2q^{11} - 16q^{13} + 2q^{14} - 2q^{16} - 10q^{17} + 4q^{19} - 4q^{20} + 4q^{22} + 2q^{23} + 4q^{25} - 8q^{26} + 4q^{28} - 4q^{31} + 2q^{32} - 20q^{34} + 14q^{35} - 8q^{37} - 4q^{38} - 2q^{40} + 4q^{41} + 2q^{44} - 2q^{46} - 10q^{47} + 10q^{49} + 8q^{50} + 8q^{52} - 16q^{53} + 4q^{55} + 2q^{56} + 4q^{59} + 6q^{61} - 8q^{62} + 4q^{64} - 16q^{65} + 10q^{67} - 10q^{68} + 4q^{70} - 8q^{71} + 4q^{73} + 8q^{74} - 8q^{76} - 4q^{77} - 18q^{79} + 2q^{80} + 2q^{82} + 28q^{83} - 36q^{85} - 2q^{88} + 8q^{89} - 16q^{91} - 4q^{92} + 10q^{94} - 12q^{95} - 52q^{97} + 20q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$$$/2$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$$$/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$2 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{3}$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$1135$$ $$\chi(n)$$ $$1$$ $$-1 - \beta_{2}$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
793.1
 −0.707107 + 1.22474i 0.707107 − 1.22474i −0.707107 − 1.22474i 0.707107 + 1.22474i
0.500000 0.866025i 0 −0.500000 0.866025i −0.207107 + 0.358719i 0 −2.62132 0.358719i −1.00000 0 0.207107 + 0.358719i
793.2 0.500000 0.866025i 0 −0.500000 0.866025i 1.20711 2.09077i 0 1.62132 + 2.09077i −1.00000 0 −1.20711 2.09077i
991.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.207107 0.358719i 0 −2.62132 + 0.358719i −1.00000 0 0.207107 0.358719i
991.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.20711 + 2.09077i 0 1.62132 2.09077i −1.00000 0 −1.20711 + 2.09077i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.k.u yes 4
3.b odd 2 1 1386.2.k.q 4
7.c even 3 1 inner 1386.2.k.u yes 4
7.c even 3 1 9702.2.a.cj 2
7.d odd 6 1 9702.2.a.cv 2
21.g even 6 1 9702.2.a.da 2
21.h odd 6 1 1386.2.k.q 4
21.h odd 6 1 9702.2.a.ds 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1386.2.k.q 4 3.b odd 2 1
1386.2.k.q 4 21.h odd 6 1
1386.2.k.u yes 4 1.a even 1 1 trivial
1386.2.k.u yes 4 7.c even 3 1 inner
9702.2.a.cj 2 7.c even 3 1
9702.2.a.cv 2 7.d odd 6 1
9702.2.a.da 2 21.g even 6 1
9702.2.a.ds 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1386, [\chi])$$:

 $$T_{5}^{4} - 2 T_{5}^{3} + 5 T_{5}^{2} + 2 T_{5} + 1$$ $$T_{13}^{2} + 8 T_{13} + 8$$ $$T_{17}^{4} + 10 T_{17}^{3} + 83 T_{17}^{2} + 170 T_{17} + 289$$ $$T_{23}^{4} - 2 T_{23}^{3} + 21 T_{23}^{2} + 34 T_{23} + 289$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 - T + T^{2} )^{2}$$
$3$ $$T^{4}$$
$5$ $$1 + 2 T + 5 T^{2} - 2 T^{3} + T^{4}$$
$7$ $$49 + 14 T - 3 T^{2} + 2 T^{3} + T^{4}$$
$11$ $$( 1 - T + T^{2} )^{2}$$
$13$ $$( 8 + 8 T + T^{2} )^{2}$$
$17$ $$289 + 170 T + 83 T^{2} + 10 T^{3} + T^{4}$$
$19$ $$16 + 16 T + 20 T^{2} - 4 T^{3} + T^{4}$$
$23$ $$289 + 34 T + 21 T^{2} - 2 T^{3} + T^{4}$$
$29$ $$( -8 + T^{2} )^{2}$$
$31$ $$4624 - 272 T + 84 T^{2} + 4 T^{3} + T^{4}$$
$37$ $$256 - 128 T + 80 T^{2} + 8 T^{3} + T^{4}$$
$41$ $$( -31 - 2 T + T^{2} )^{2}$$
$43$ $$( -8 + T^{2} )^{2}$$
$47$ $$49 + 70 T + 93 T^{2} + 10 T^{3} + T^{4}$$
$53$ $$3136 + 896 T + 200 T^{2} + 16 T^{3} + T^{4}$$
$59$ $$784 + 112 T + 44 T^{2} - 4 T^{3} + T^{4}$$
$61$ $$49 - 42 T + 29 T^{2} - 6 T^{3} + T^{4}$$
$67$ $$2209 + 470 T + 147 T^{2} - 10 T^{3} + T^{4}$$
$71$ $$( -124 + 4 T + T^{2} )^{2}$$
$73$ $$16 + 16 T + 20 T^{2} - 4 T^{3} + T^{4}$$
$79$ $$3969 + 1134 T + 261 T^{2} + 18 T^{3} + T^{4}$$
$83$ $$( 41 - 14 T + T^{2} )^{2}$$
$89$ $$3136 + 448 T + 120 T^{2} - 8 T^{3} + T^{4}$$
$97$ $$( 161 + 26 T + T^{2} )^{2}$$