Defining parameters
Level: | \( N \) | \(=\) | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1386.k (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(13\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 608 | 64 | 544 |
Cusp forms | 544 | 64 | 480 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(462, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)