Properties

Label 1386.2.k
Level $1386$
Weight $2$
Character orbit 1386.k
Rep. character $\chi_{1386}(793,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $23$
Sturm bound $576$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.k (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 23 \)
Sturm bound: \(576\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(13\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).

Total New Old
Modular forms 608 64 544
Cusp forms 544 64 480
Eisenstein series 64 0 64

Trace form

\( 64 q - 32 q^{4} - 4 q^{5} - 8 q^{7} + O(q^{10}) \) \( 64 q - 32 q^{4} - 4 q^{5} - 8 q^{7} + 8 q^{13} + 8 q^{14} - 32 q^{16} + 12 q^{17} + 16 q^{19} + 8 q^{20} - 16 q^{25} - 12 q^{26} + 4 q^{28} - 8 q^{29} - 28 q^{31} - 24 q^{34} + 28 q^{35} - 16 q^{37} - 20 q^{38} - 40 q^{41} + 56 q^{43} - 20 q^{46} + 8 q^{47} + 16 q^{49} - 4 q^{52} + 4 q^{53} - 4 q^{56} + 12 q^{58} - 20 q^{59} - 20 q^{61} - 24 q^{62} + 64 q^{64} + 44 q^{65} - 36 q^{67} + 12 q^{68} - 4 q^{70} + 8 q^{71} + 48 q^{73} + 36 q^{74} - 32 q^{76} + 4 q^{77} + 4 q^{79} - 4 q^{80} + 8 q^{82} - 72 q^{83} - 96 q^{85} - 4 q^{86} - 40 q^{89} - 4 q^{91} + 40 q^{94} + 12 q^{95} + 80 q^{97} + 48 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1386.2.k.a 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 154.2.e.d \(-1\) \(0\) \(-4\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-4\zeta_{6}q^{5}+\cdots\)
1386.2.k.b 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.b \(-1\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
1386.2.k.c 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 462.2.i.c \(-1\) \(0\) \(-3\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
1386.2.k.d 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 462.2.i.b \(-1\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(-3+2\zeta_{6})q^{7}+\cdots\)
1386.2.k.e 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 154.2.e.c \(-1\) \(0\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(-2+3\zeta_{6})q^{7}+\cdots\)
1386.2.k.f 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 462.2.i.d \(-1\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(3-2\zeta_{6})q^{7}+\cdots\)
1386.2.k.g 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.g \(-1\) \(0\) \(1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
1386.2.k.h 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.h \(-1\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+2\zeta_{6}q^{5}+\cdots\)
1386.2.k.i 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.i \(-1\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+2\zeta_{6}q^{5}+\cdots\)
1386.2.k.j 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 462.2.i.a \(-1\) \(0\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
1386.2.k.k 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.i \(1\) \(0\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-2\zeta_{6}q^{5}+\cdots\)
1386.2.k.l 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.h \(1\) \(0\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-2\zeta_{6}q^{5}+\cdots\)
1386.2.k.m 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.g \(1\) \(0\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
1386.2.k.n 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 154.2.e.b \(1\) \(0\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(2+\zeta_{6})q^{7}+\cdots\)
1386.2.k.o 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 154.2.e.a \(1\) \(0\) \(2\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+2\zeta_{6}q^{5}+\cdots\)
1386.2.k.p 1386.k 7.c $2$ $11.067$ \(\Q(\sqrt{-3}) \) None 1386.2.k.b \(1\) \(0\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
1386.2.k.q 1386.k 7.c $4$ $11.067$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1386.2.k.q \(-2\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{2}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
1386.2.k.r 1386.k 7.c $4$ $11.067$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 462.2.i.e \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{2}q^{4}+\beta _{1}q^{5}-\beta _{1}q^{7}+\cdots\)
1386.2.k.s 1386.k 7.c $4$ $11.067$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 154.2.e.f \(-2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{2}q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
1386.2.k.t 1386.k 7.c $4$ $11.067$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 154.2.e.e \(2\) \(0\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(-\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\)
1386.2.k.u 1386.k 7.c $4$ $11.067$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1386.2.k.q \(2\) \(0\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{2}+\beta _{2}q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
1386.2.k.v 1386.k 7.c $6$ $11.067$ 6.0.21870000.1 None 462.2.i.g \(3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\)
1386.2.k.w 1386.k 7.c $6$ $11.067$ 6.0.1156923.1 None 462.2.i.f \(3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+\beta _{4}q^{5}+(\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(462, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)