Properties

Label 1368.2.g.b.685.7
Level $1368$
Weight $2$
Character 1368.685
Analytic conductor $10.924$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1368,2,Mod(685,1368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1368, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1368.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,2,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 685.7
Root \(1.33852 + 0.456455i\) of defining polynomial
Character \(\chi\) \(=\) 1368.685
Dual form 1368.2.g.b.685.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.456455 - 1.33852i) q^{2} +(-1.58330 + 1.22195i) q^{4} -3.36827i q^{5} +4.47116 q^{7} +(2.35832 + 1.56152i) q^{8} +(-4.50852 + 1.53746i) q^{10} -0.608709i q^{11} -1.03922i q^{13} +(-2.04088 - 5.98476i) q^{14} +(1.01366 - 3.86943i) q^{16} +3.06367 q^{17} -1.00000i q^{19} +(4.11587 + 5.33298i) q^{20} +(-0.814773 + 0.277848i) q^{22} +8.50224 q^{23} -6.34525 q^{25} +(-1.39102 + 0.474357i) q^{26} +(-7.07918 + 5.46355i) q^{28} +7.27343i q^{29} +4.02054 q^{31} +(-5.64202 + 0.409404i) q^{32} +(-1.39843 - 4.10080i) q^{34} -15.0601i q^{35} +4.31265i q^{37} +(-1.33852 + 0.456455i) q^{38} +(5.25962 - 7.94345i) q^{40} +4.15770 q^{41} -6.27910i q^{43} +(0.743814 + 0.963768i) q^{44} +(-3.88089 - 11.3805i) q^{46} -4.73522 q^{47} +12.9913 q^{49} +(2.89632 + 8.49328i) q^{50} +(1.26988 + 1.64539i) q^{52} -6.98132i q^{53} -2.05030 q^{55} +(10.5444 + 6.98180i) q^{56} +(9.73567 - 3.31999i) q^{58} +2.64652i q^{59} +5.11145i q^{61} +(-1.83520 - 5.38159i) q^{62} +(3.12332 + 7.36511i) q^{64} -3.50037 q^{65} -2.62178i q^{67} +(-4.85071 + 3.74366i) q^{68} +(-20.1583 + 6.87425i) q^{70} -12.0085 q^{71} -12.5175 q^{73} +(5.77259 - 1.96853i) q^{74} +(1.22195 + 1.58330i) q^{76} -2.72164i q^{77} -0.913307 q^{79} +(-13.0333 - 3.41430i) q^{80} +(-1.89780 - 5.56518i) q^{82} -0.887809i q^{83} -10.3193i q^{85} +(-8.40473 + 2.86613i) q^{86} +(0.950510 - 1.43553i) q^{88} +7.61792 q^{89} -4.64652i q^{91} +(-13.4616 + 10.3893i) q^{92} +(2.16141 + 6.33820i) q^{94} -3.36827 q^{95} -5.93426 q^{97} +(-5.92994 - 17.3892i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{4} - 8 q^{7} + 12 q^{8} - 8 q^{10} - 4 q^{14} + 2 q^{16} + 8 q^{17} - 8 q^{20} + 20 q^{22} - 24 q^{25} + 10 q^{26} - 14 q^{28} + 16 q^{31} + 20 q^{32} - 2 q^{38} + 28 q^{40} - 16 q^{41} + 28 q^{44}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.456455 1.33852i −0.322762 0.946480i
\(3\) 0 0
\(4\) −1.58330 + 1.22195i −0.791649 + 0.610976i
\(5\) 3.36827i 1.50634i −0.657828 0.753168i \(-0.728525\pi\)
0.657828 0.753168i \(-0.271475\pi\)
\(6\) 0 0
\(7\) 4.47116 1.68994 0.844970 0.534813i \(-0.179618\pi\)
0.844970 + 0.534813i \(0.179618\pi\)
\(8\) 2.35832 + 1.56152i 0.833791 + 0.552080i
\(9\) 0 0
\(10\) −4.50852 + 1.53746i −1.42572 + 0.486189i
\(11\) 0.608709i 0.183533i −0.995781 0.0917664i \(-0.970749\pi\)
0.995781 0.0917664i \(-0.0292513\pi\)
\(12\) 0 0
\(13\) 1.03922i 0.288228i −0.989561 0.144114i \(-0.953967\pi\)
0.989561 0.144114i \(-0.0460331\pi\)
\(14\) −2.04088 5.98476i −0.545449 1.59950i
\(15\) 0 0
\(16\) 1.01366 3.86943i 0.253416 0.967357i
\(17\) 3.06367 0.743050 0.371525 0.928423i \(-0.378835\pi\)
0.371525 + 0.928423i \(0.378835\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 4.11587 + 5.33298i 0.920336 + 1.19249i
\(21\) 0 0
\(22\) −0.814773 + 0.277848i −0.173710 + 0.0592375i
\(23\) 8.50224 1.77284 0.886419 0.462883i \(-0.153185\pi\)
0.886419 + 0.462883i \(0.153185\pi\)
\(24\) 0 0
\(25\) −6.34525 −1.26905
\(26\) −1.39102 + 0.474357i −0.272802 + 0.0930290i
\(27\) 0 0
\(28\) −7.07918 + 5.46355i −1.33784 + 1.03251i
\(29\) 7.27343i 1.35064i 0.737524 + 0.675321i \(0.235995\pi\)
−0.737524 + 0.675321i \(0.764005\pi\)
\(30\) 0 0
\(31\) 4.02054 0.722111 0.361055 0.932544i \(-0.382417\pi\)
0.361055 + 0.932544i \(0.382417\pi\)
\(32\) −5.64202 + 0.409404i −0.997378 + 0.0723731i
\(33\) 0 0
\(34\) −1.39843 4.10080i −0.239828 0.703282i
\(35\) 15.0601i 2.54562i
\(36\) 0 0
\(37\) 4.31265i 0.708995i 0.935057 + 0.354498i \(0.115348\pi\)
−0.935057 + 0.354498i \(0.884652\pi\)
\(38\) −1.33852 + 0.456455i −0.217137 + 0.0740468i
\(39\) 0 0
\(40\) 5.25962 7.94345i 0.831618 1.25597i
\(41\) 4.15770 0.649323 0.324661 0.945830i \(-0.394750\pi\)
0.324661 + 0.945830i \(0.394750\pi\)
\(42\) 0 0
\(43\) 6.27910i 0.957554i −0.877937 0.478777i \(-0.841080\pi\)
0.877937 0.478777i \(-0.158920\pi\)
\(44\) 0.743814 + 0.963768i 0.112134 + 0.145294i
\(45\) 0 0
\(46\) −3.88089 11.3805i −0.572205 1.67796i
\(47\) −4.73522 −0.690702 −0.345351 0.938474i \(-0.612240\pi\)
−0.345351 + 0.938474i \(0.612240\pi\)
\(48\) 0 0
\(49\) 12.9913 1.85590
\(50\) 2.89632 + 8.49328i 0.409602 + 1.20113i
\(51\) 0 0
\(52\) 1.26988 + 1.64539i 0.176100 + 0.228175i
\(53\) 6.98132i 0.958958i −0.877553 0.479479i \(-0.840826\pi\)
0.877553 0.479479i \(-0.159174\pi\)
\(54\) 0 0
\(55\) −2.05030 −0.276462
\(56\) 10.5444 + 6.98180i 1.40906 + 0.932982i
\(57\) 0 0
\(58\) 9.73567 3.31999i 1.27836 0.435936i
\(59\) 2.64652i 0.344547i 0.985049 + 0.172274i \(0.0551113\pi\)
−0.985049 + 0.172274i \(0.944889\pi\)
\(60\) 0 0
\(61\) 5.11145i 0.654454i 0.944946 + 0.327227i \(0.106114\pi\)
−0.944946 + 0.327227i \(0.893886\pi\)
\(62\) −1.83520 5.38159i −0.233070 0.683463i
\(63\) 0 0
\(64\) 3.12332 + 7.36511i 0.390416 + 0.920639i
\(65\) −3.50037 −0.434168
\(66\) 0 0
\(67\) 2.62178i 0.320301i −0.987093 0.160150i \(-0.948802\pi\)
0.987093 0.160150i \(-0.0511979\pi\)
\(68\) −4.85071 + 3.74366i −0.588235 + 0.453986i
\(69\) 0 0
\(70\) −20.1583 + 6.87425i −2.40938 + 0.821630i
\(71\) −12.0085 −1.42514 −0.712572 0.701599i \(-0.752470\pi\)
−0.712572 + 0.701599i \(0.752470\pi\)
\(72\) 0 0
\(73\) −12.5175 −1.46507 −0.732533 0.680731i \(-0.761662\pi\)
−0.732533 + 0.680731i \(0.761662\pi\)
\(74\) 5.77259 1.96853i 0.671050 0.228837i
\(75\) 0 0
\(76\) 1.22195 + 1.58330i 0.140168 + 0.181617i
\(77\) 2.72164i 0.310159i
\(78\) 0 0
\(79\) −0.913307 −0.102755 −0.0513775 0.998679i \(-0.516361\pi\)
−0.0513775 + 0.998679i \(0.516361\pi\)
\(80\) −13.0333 3.41430i −1.45717 0.381730i
\(81\) 0 0
\(82\) −1.89780 5.56518i −0.209577 0.614571i
\(83\) 0.887809i 0.0974497i −0.998812 0.0487249i \(-0.984484\pi\)
0.998812 0.0487249i \(-0.0155158\pi\)
\(84\) 0 0
\(85\) 10.3193i 1.11928i
\(86\) −8.40473 + 2.86613i −0.906306 + 0.309062i
\(87\) 0 0
\(88\) 0.950510 1.43553i 0.101325 0.153028i
\(89\) 7.61792 0.807498 0.403749 0.914870i \(-0.367707\pi\)
0.403749 + 0.914870i \(0.367707\pi\)
\(90\) 0 0
\(91\) 4.64652i 0.487087i
\(92\) −13.4616 + 10.3893i −1.40347 + 1.08316i
\(93\) 0 0
\(94\) 2.16141 + 6.33820i 0.222933 + 0.653736i
\(95\) −3.36827 −0.345577
\(96\) 0 0
\(97\) −5.93426 −0.602533 −0.301267 0.953540i \(-0.597409\pi\)
−0.301267 + 0.953540i \(0.597409\pi\)
\(98\) −5.92994 17.3892i −0.599014 1.75657i
\(99\) 0 0
\(100\) 10.0464 7.75360i 1.00464 0.775360i
\(101\) 16.5793i 1.64970i −0.565353 0.824849i \(-0.691260\pi\)
0.565353 0.824849i \(-0.308740\pi\)
\(102\) 0 0
\(103\) −11.6631 −1.14920 −0.574600 0.818434i \(-0.694842\pi\)
−0.574600 + 0.818434i \(0.694842\pi\)
\(104\) 1.62276 2.45081i 0.159125 0.240322i
\(105\) 0 0
\(106\) −9.34467 + 3.18666i −0.907635 + 0.309516i
\(107\) 10.3213i 0.997801i 0.866659 + 0.498900i \(0.166263\pi\)
−0.866659 + 0.498900i \(0.833737\pi\)
\(108\) 0 0
\(109\) 1.85592i 0.177765i −0.996042 0.0888824i \(-0.971670\pi\)
0.996042 0.0888824i \(-0.0283295\pi\)
\(110\) 0.935868 + 2.74438i 0.0892316 + 0.261666i
\(111\) 0 0
\(112\) 4.53226 17.3008i 0.428258 1.63478i
\(113\) −18.4343 −1.73415 −0.867077 0.498174i \(-0.834004\pi\)
−0.867077 + 0.498174i \(0.834004\pi\)
\(114\) 0 0
\(115\) 28.6378i 2.67049i
\(116\) −8.88779 11.5160i −0.825210 1.06923i
\(117\) 0 0
\(118\) 3.54243 1.20802i 0.326107 0.111207i
\(119\) 13.6982 1.25571
\(120\) 0 0
\(121\) 10.6295 0.966316
\(122\) 6.84181 2.33315i 0.619428 0.211233i
\(123\) 0 0
\(124\) −6.36571 + 4.91291i −0.571658 + 0.441192i
\(125\) 4.53117i 0.405281i
\(126\) 0 0
\(127\) −9.29686 −0.824963 −0.412481 0.910966i \(-0.635338\pi\)
−0.412481 + 0.910966i \(0.635338\pi\)
\(128\) 8.43273 7.54249i 0.745355 0.666668i
\(129\) 0 0
\(130\) 1.59776 + 4.68534i 0.140133 + 0.410931i
\(131\) 8.15016i 0.712083i −0.934470 0.356042i \(-0.884126\pi\)
0.934470 0.356042i \(-0.115874\pi\)
\(132\) 0 0
\(133\) 4.47116i 0.387699i
\(134\) −3.50931 + 1.19672i −0.303158 + 0.103381i
\(135\) 0 0
\(136\) 7.22511 + 4.78398i 0.619548 + 0.410223i
\(137\) −11.0756 −0.946254 −0.473127 0.880994i \(-0.656875\pi\)
−0.473127 + 0.880994i \(0.656875\pi\)
\(138\) 0 0
\(139\) 12.2091i 1.03557i 0.855512 + 0.517783i \(0.173242\pi\)
−0.855512 + 0.517783i \(0.826758\pi\)
\(140\) 18.4027 + 23.8446i 1.55531 + 2.01524i
\(141\) 0 0
\(142\) 5.48133 + 16.0736i 0.459983 + 1.34887i
\(143\) −0.632582 −0.0528992
\(144\) 0 0
\(145\) 24.4989 2.03452
\(146\) 5.71369 + 16.7550i 0.472868 + 1.38666i
\(147\) 0 0
\(148\) −5.26985 6.82821i −0.433179 0.561275i
\(149\) 4.31060i 0.353138i 0.984288 + 0.176569i \(0.0564998\pi\)
−0.984288 + 0.176569i \(0.943500\pi\)
\(150\) 0 0
\(151\) −9.89022 −0.804855 −0.402428 0.915452i \(-0.631833\pi\)
−0.402428 + 0.915452i \(0.631833\pi\)
\(152\) 1.56152 2.35832i 0.126656 0.191285i
\(153\) 0 0
\(154\) −3.64298 + 1.24230i −0.293560 + 0.100108i
\(155\) 13.5423i 1.08774i
\(156\) 0 0
\(157\) 7.39359i 0.590073i 0.955486 + 0.295036i \(0.0953318\pi\)
−0.955486 + 0.295036i \(0.904668\pi\)
\(158\) 0.416883 + 1.22248i 0.0331655 + 0.0972556i
\(159\) 0 0
\(160\) 1.37898 + 19.0039i 0.109018 + 1.50239i
\(161\) 38.0149 2.99599
\(162\) 0 0
\(163\) 12.5566i 0.983509i −0.870734 0.491755i \(-0.836356\pi\)
0.870734 0.491755i \(-0.163644\pi\)
\(164\) −6.58287 + 5.08051i −0.514036 + 0.396721i
\(165\) 0 0
\(166\) −1.18836 + 0.405245i −0.0922342 + 0.0314531i
\(167\) 0.00624861 0.000483532 0.000241766 1.00000i \(-0.499923\pi\)
0.000241766 1.00000i \(0.499923\pi\)
\(168\) 0 0
\(169\) 11.9200 0.916925
\(170\) −13.8126 + 4.71029i −1.05938 + 0.361262i
\(171\) 0 0
\(172\) 7.67276 + 9.94169i 0.585043 + 0.758046i
\(173\) 4.45345i 0.338589i 0.985565 + 0.169295i \(0.0541489\pi\)
−0.985565 + 0.169295i \(0.945851\pi\)
\(174\) 0 0
\(175\) −28.3707 −2.14462
\(176\) −2.35536 0.617027i −0.177542 0.0465102i
\(177\) 0 0
\(178\) −3.47724 10.1968i −0.260630 0.764281i
\(179\) 9.80470i 0.732838i −0.930450 0.366419i \(-0.880584\pi\)
0.930450 0.366419i \(-0.119416\pi\)
\(180\) 0 0
\(181\) 17.9475i 1.33403i 0.745046 + 0.667013i \(0.232427\pi\)
−0.745046 + 0.667013i \(0.767573\pi\)
\(182\) −6.21948 + 2.12093i −0.461019 + 0.157213i
\(183\) 0 0
\(184\) 20.0510 + 13.2764i 1.47818 + 0.978749i
\(185\) 14.5262 1.06799
\(186\) 0 0
\(187\) 1.86489i 0.136374i
\(188\) 7.49726 5.78621i 0.546794 0.422003i
\(189\) 0 0
\(190\) 1.53746 + 4.50852i 0.111539 + 0.327082i
\(191\) −3.85328 −0.278814 −0.139407 0.990235i \(-0.544520\pi\)
−0.139407 + 0.990235i \(0.544520\pi\)
\(192\) 0 0
\(193\) 19.5610 1.40803 0.704017 0.710183i \(-0.251388\pi\)
0.704017 + 0.710183i \(0.251388\pi\)
\(194\) 2.70872 + 7.94316i 0.194475 + 0.570285i
\(195\) 0 0
\(196\) −20.5691 + 15.8747i −1.46922 + 1.13391i
\(197\) 3.44831i 0.245682i 0.992426 + 0.122841i \(0.0392006\pi\)
−0.992426 + 0.122841i \(0.960799\pi\)
\(198\) 0 0
\(199\) −7.64829 −0.542173 −0.271087 0.962555i \(-0.587383\pi\)
−0.271087 + 0.962555i \(0.587383\pi\)
\(200\) −14.9641 9.90822i −1.05812 0.700617i
\(201\) 0 0
\(202\) −22.1918 + 7.56768i −1.56141 + 0.532460i
\(203\) 32.5207i 2.28251i
\(204\) 0 0
\(205\) 14.0042i 0.978099i
\(206\) 5.32368 + 15.6114i 0.370919 + 1.08770i
\(207\) 0 0
\(208\) −4.02118 1.05342i −0.278819 0.0730415i
\(209\) −0.608709 −0.0421053
\(210\) 0 0
\(211\) 14.4648i 0.995801i 0.867234 + 0.497900i \(0.165895\pi\)
−0.867234 + 0.497900i \(0.834105\pi\)
\(212\) 8.53084 + 11.0535i 0.585901 + 0.759158i
\(213\) 0 0
\(214\) 13.8154 4.71122i 0.944398 0.322052i
\(215\) −21.1497 −1.44240
\(216\) 0 0
\(217\) 17.9765 1.22032
\(218\) −2.48419 + 0.847143i −0.168251 + 0.0573758i
\(219\) 0 0
\(220\) 3.24623 2.50537i 0.218861 0.168912i
\(221\) 3.18383i 0.214167i
\(222\) 0 0
\(223\) 4.74734 0.317906 0.158953 0.987286i \(-0.449188\pi\)
0.158953 + 0.987286i \(0.449188\pi\)
\(224\) −25.2264 + 1.83051i −1.68551 + 0.122306i
\(225\) 0 0
\(226\) 8.41443 + 24.6748i 0.559719 + 1.64134i
\(227\) 2.67149i 0.177313i −0.996062 0.0886566i \(-0.971743\pi\)
0.996062 0.0886566i \(-0.0282574\pi\)
\(228\) 0 0
\(229\) 7.87392i 0.520323i 0.965565 + 0.260162i \(0.0837758\pi\)
−0.965565 + 0.260162i \(0.916224\pi\)
\(230\) −38.3325 + 13.0719i −2.52757 + 0.861934i
\(231\) 0 0
\(232\) −11.3576 + 17.1531i −0.745662 + 1.12615i
\(233\) 10.2320 0.670321 0.335160 0.942161i \(-0.391209\pi\)
0.335160 + 0.942161i \(0.391209\pi\)
\(234\) 0 0
\(235\) 15.9495i 1.04043i
\(236\) −3.23392 4.19023i −0.210510 0.272760i
\(237\) 0 0
\(238\) −6.25260 18.3354i −0.405296 1.18850i
\(239\) 15.1051 0.977067 0.488533 0.872545i \(-0.337532\pi\)
0.488533 + 0.872545i \(0.337532\pi\)
\(240\) 0 0
\(241\) 6.17274 0.397621 0.198811 0.980038i \(-0.436292\pi\)
0.198811 + 0.980038i \(0.436292\pi\)
\(242\) −4.85187 14.2278i −0.311890 0.914599i
\(243\) 0 0
\(244\) −6.24595 8.09295i −0.399856 0.518098i
\(245\) 43.7582i 2.79561i
\(246\) 0 0
\(247\) −1.03922 −0.0661239
\(248\) 9.48171 + 6.27815i 0.602089 + 0.398663i
\(249\) 0 0
\(250\) 6.06509 2.06828i 0.383590 0.130809i
\(251\) 6.78315i 0.428149i 0.976817 + 0.214074i \(0.0686735\pi\)
−0.976817 + 0.214074i \(0.931327\pi\)
\(252\) 0 0
\(253\) 5.17539i 0.325374i
\(254\) 4.24360 + 12.4441i 0.266267 + 0.780811i
\(255\) 0 0
\(256\) −13.9450 7.84461i −0.871560 0.490288i
\(257\) 26.6333 1.66134 0.830669 0.556766i \(-0.187958\pi\)
0.830669 + 0.556766i \(0.187958\pi\)
\(258\) 0 0
\(259\) 19.2826i 1.19816i
\(260\) 5.54213 4.27729i 0.343708 0.265266i
\(261\) 0 0
\(262\) −10.9092 + 3.72018i −0.673972 + 0.229834i
\(263\) −14.6785 −0.905117 −0.452559 0.891735i \(-0.649489\pi\)
−0.452559 + 0.891735i \(0.649489\pi\)
\(264\) 0 0
\(265\) −23.5150 −1.44451
\(266\) −5.98476 + 2.04088i −0.366949 + 0.125135i
\(267\) 0 0
\(268\) 3.20369 + 4.15105i 0.195696 + 0.253566i
\(269\) 11.6590i 0.710862i 0.934702 + 0.355431i \(0.115666\pi\)
−0.934702 + 0.355431i \(0.884334\pi\)
\(270\) 0 0
\(271\) 0.125029 0.00759496 0.00379748 0.999993i \(-0.498791\pi\)
0.00379748 + 0.999993i \(0.498791\pi\)
\(272\) 3.10554 11.8547i 0.188301 0.718795i
\(273\) 0 0
\(274\) 5.05552 + 14.8250i 0.305415 + 0.895610i
\(275\) 3.86241i 0.232912i
\(276\) 0 0
\(277\) 19.8203i 1.19088i 0.803398 + 0.595442i \(0.203023\pi\)
−0.803398 + 0.595442i \(0.796977\pi\)
\(278\) 16.3422 5.57292i 0.980142 0.334242i
\(279\) 0 0
\(280\) 23.5166 35.5165i 1.40539 2.12252i
\(281\) −9.24019 −0.551223 −0.275612 0.961269i \(-0.588880\pi\)
−0.275612 + 0.961269i \(0.588880\pi\)
\(282\) 0 0
\(283\) 30.3491i 1.80407i −0.431664 0.902035i \(-0.642073\pi\)
0.431664 0.902035i \(-0.357927\pi\)
\(284\) 19.0130 14.6738i 1.12821 0.870729i
\(285\) 0 0
\(286\) 0.288745 + 0.846727i 0.0170739 + 0.0500680i
\(287\) 18.5897 1.09732
\(288\) 0 0
\(289\) −7.61391 −0.447877
\(290\) −11.1826 32.7924i −0.656667 1.92563i
\(291\) 0 0
\(292\) 19.8190 15.2958i 1.15982 0.895121i
\(293\) 19.5780i 1.14376i 0.820337 + 0.571880i \(0.193786\pi\)
−0.820337 + 0.571880i \(0.806214\pi\)
\(294\) 0 0
\(295\) 8.91419 0.519004
\(296\) −6.73428 + 10.1706i −0.391422 + 0.591154i
\(297\) 0 0
\(298\) 5.76984 1.96759i 0.334238 0.113980i
\(299\) 8.83569i 0.510981i
\(300\) 0 0
\(301\) 28.0749i 1.61821i
\(302\) 4.51444 + 13.2383i 0.259777 + 0.761779i
\(303\) 0 0
\(304\) −3.86943 1.01366i −0.221927 0.0581377i
\(305\) 17.2168 0.985829
\(306\) 0 0
\(307\) 1.54809i 0.0883541i 0.999024 + 0.0441770i \(0.0140666\pi\)
−0.999024 + 0.0441770i \(0.985933\pi\)
\(308\) 3.32571 + 4.30916i 0.189500 + 0.245537i
\(309\) 0 0
\(310\) −18.1267 + 6.18144i −1.02953 + 0.351082i
\(311\) 3.34671 0.189774 0.0948872 0.995488i \(-0.469751\pi\)
0.0948872 + 0.995488i \(0.469751\pi\)
\(312\) 0 0
\(313\) 6.40232 0.361881 0.180940 0.983494i \(-0.442086\pi\)
0.180940 + 0.983494i \(0.442086\pi\)
\(314\) 9.89651 3.37484i 0.558492 0.190453i
\(315\) 0 0
\(316\) 1.44604 1.11602i 0.0813459 0.0627809i
\(317\) 9.23830i 0.518875i −0.965760 0.259437i \(-0.916463\pi\)
0.965760 0.259437i \(-0.0835371\pi\)
\(318\) 0 0
\(319\) 4.42741 0.247887
\(320\) 24.8077 10.5202i 1.38679 0.588097i
\(321\) 0 0
\(322\) −17.3521 50.8839i −0.966993 2.83565i
\(323\) 3.06367i 0.170467i
\(324\) 0 0
\(325\) 6.59411i 0.365775i
\(326\) −16.8073 + 5.73152i −0.930872 + 0.317440i
\(327\) 0 0
\(328\) 9.80517 + 6.49232i 0.541400 + 0.358478i
\(329\) −21.1719 −1.16725
\(330\) 0 0
\(331\) 4.65778i 0.256015i 0.991773 + 0.128007i \(0.0408582\pi\)
−0.991773 + 0.128007i \(0.959142\pi\)
\(332\) 1.08486 + 1.40567i 0.0595395 + 0.0771460i
\(333\) 0 0
\(334\) −0.00285221 0.00836392i −0.000156066 0.000457654i
\(335\) −8.83085 −0.482481
\(336\) 0 0
\(337\) −9.34371 −0.508984 −0.254492 0.967075i \(-0.581908\pi\)
−0.254492 + 0.967075i \(0.581908\pi\)
\(338\) −5.44095 15.9552i −0.295949 0.867851i
\(339\) 0 0
\(340\) 12.6097 + 16.3385i 0.683855 + 0.886079i
\(341\) 2.44734i 0.132531i
\(342\) 0 0
\(343\) 26.7881 1.44642
\(344\) 9.80493 14.8081i 0.528646 0.798400i
\(345\) 0 0
\(346\) 5.96105 2.03280i 0.320468 0.109284i
\(347\) 30.9185i 1.65979i 0.557917 + 0.829897i \(0.311601\pi\)
−0.557917 + 0.829897i \(0.688399\pi\)
\(348\) 0 0
\(349\) 25.2445i 1.35131i 0.737220 + 0.675653i \(0.236138\pi\)
−0.737220 + 0.675653i \(0.763862\pi\)
\(350\) 12.9499 + 37.9748i 0.692202 + 2.02984i
\(351\) 0 0
\(352\) 0.249208 + 3.43435i 0.0132828 + 0.183051i
\(353\) 2.15727 0.114820 0.0574099 0.998351i \(-0.481716\pi\)
0.0574099 + 0.998351i \(0.481716\pi\)
\(354\) 0 0
\(355\) 40.4478i 2.14675i
\(356\) −12.0614 + 9.30874i −0.639255 + 0.493362i
\(357\) 0 0
\(358\) −13.1238 + 4.47540i −0.693616 + 0.236532i
\(359\) −32.0925 −1.69378 −0.846889 0.531770i \(-0.821527\pi\)
−0.846889 + 0.531770i \(0.821527\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 24.0231 8.19221i 1.26263 0.430573i
\(363\) 0 0
\(364\) 5.67782 + 7.35682i 0.297599 + 0.385602i
\(365\) 42.1624i 2.20688i
\(366\) 0 0
\(367\) 10.3206 0.538729 0.269365 0.963038i \(-0.413186\pi\)
0.269365 + 0.963038i \(0.413186\pi\)
\(368\) 8.61842 32.8988i 0.449266 1.71497i
\(369\) 0 0
\(370\) −6.63054 19.4437i −0.344706 1.01083i
\(371\) 31.2146i 1.62058i
\(372\) 0 0
\(373\) 20.3031i 1.05125i −0.850715 0.525627i \(-0.823831\pi\)
0.850715 0.525627i \(-0.176169\pi\)
\(374\) −2.49620 + 0.851236i −0.129075 + 0.0440164i
\(375\) 0 0
\(376\) −11.1671 7.39412i −0.575901 0.381323i
\(377\) 7.55869 0.389292
\(378\) 0 0
\(379\) 15.4355i 0.792867i 0.918063 + 0.396433i \(0.129752\pi\)
−0.918063 + 0.396433i \(0.870248\pi\)
\(380\) 5.33298 4.11587i 0.273576 0.211140i
\(381\) 0 0
\(382\) 1.75885 + 5.15771i 0.0899906 + 0.263892i
\(383\) 37.7837 1.93066 0.965328 0.261041i \(-0.0840658\pi\)
0.965328 + 0.261041i \(0.0840658\pi\)
\(384\) 0 0
\(385\) −9.16722 −0.467205
\(386\) −8.92873 26.1829i −0.454460 1.33268i
\(387\) 0 0
\(388\) 9.39571 7.25139i 0.476995 0.368133i
\(389\) 13.7943i 0.699399i 0.936862 + 0.349700i \(0.113716\pi\)
−0.936862 + 0.349700i \(0.886284\pi\)
\(390\) 0 0
\(391\) 26.0481 1.31731
\(392\) 30.6376 + 20.2861i 1.54743 + 1.02460i
\(393\) 0 0
\(394\) 4.61566 1.57400i 0.232533 0.0792970i
\(395\) 3.07627i 0.154784i
\(396\) 0 0
\(397\) 33.1665i 1.66458i 0.554343 + 0.832288i \(0.312970\pi\)
−0.554343 + 0.832288i \(0.687030\pi\)
\(398\) 3.49110 + 10.2374i 0.174993 + 0.513156i
\(399\) 0 0
\(400\) −6.43196 + 24.5525i −0.321598 + 1.22763i
\(401\) 8.24620 0.411796 0.205898 0.978573i \(-0.433989\pi\)
0.205898 + 0.978573i \(0.433989\pi\)
\(402\) 0 0
\(403\) 4.17822i 0.208132i
\(404\) 20.2591 + 26.2499i 1.00793 + 1.30598i
\(405\) 0 0
\(406\) 43.5298 14.8442i 2.16035 0.736707i
\(407\) 2.62515 0.130124
\(408\) 0 0
\(409\) 30.4291 1.50462 0.752312 0.658807i \(-0.228939\pi\)
0.752312 + 0.658807i \(0.228939\pi\)
\(410\) −18.7450 + 6.39231i −0.925751 + 0.315694i
\(411\) 0 0
\(412\) 18.4662 14.2518i 0.909763 0.702134i
\(413\) 11.8330i 0.582264i
\(414\) 0 0
\(415\) −2.99038 −0.146792
\(416\) 0.425460 + 5.86329i 0.0208599 + 0.287472i
\(417\) 0 0
\(418\) 0.277848 + 0.814773i 0.0135900 + 0.0398518i
\(419\) 5.11734i 0.249999i 0.992157 + 0.124999i \(0.0398929\pi\)
−0.992157 + 0.124999i \(0.960107\pi\)
\(420\) 0 0
\(421\) 28.8854i 1.40779i −0.710305 0.703894i \(-0.751443\pi\)
0.710305 0.703894i \(-0.248557\pi\)
\(422\) 19.3616 6.60255i 0.942506 0.321407i
\(423\) 0 0
\(424\) 10.9015 16.4642i 0.529422 0.799571i
\(425\) −19.4398 −0.942967
\(426\) 0 0
\(427\) 22.8541i 1.10599i
\(428\) −12.6122 16.3417i −0.609632 0.789908i
\(429\) 0 0
\(430\) 9.65389 + 28.3094i 0.465552 + 1.36520i
\(431\) 19.3963 0.934288 0.467144 0.884181i \(-0.345283\pi\)
0.467144 + 0.884181i \(0.345283\pi\)
\(432\) 0 0
\(433\) 30.5791 1.46954 0.734770 0.678317i \(-0.237290\pi\)
0.734770 + 0.678317i \(0.237290\pi\)
\(434\) −8.20546 24.0620i −0.393875 1.15501i
\(435\) 0 0
\(436\) 2.26784 + 2.93847i 0.108610 + 0.140727i
\(437\) 8.50224i 0.406717i
\(438\) 0 0
\(439\) −21.4056 −1.02163 −0.510817 0.859690i \(-0.670657\pi\)
−0.510817 + 0.859690i \(0.670657\pi\)
\(440\) −4.83525 3.20158i −0.230512 0.152629i
\(441\) 0 0
\(442\) −4.26163 + 1.45327i −0.202705 + 0.0691252i
\(443\) 8.83665i 0.419842i −0.977718 0.209921i \(-0.932679\pi\)
0.977718 0.209921i \(-0.0673207\pi\)
\(444\) 0 0
\(445\) 25.6592i 1.21636i
\(446\) −2.16695 6.35444i −0.102608 0.300891i
\(447\) 0 0
\(448\) 13.9649 + 32.9306i 0.659779 + 1.55582i
\(449\) −17.9257 −0.845968 −0.422984 0.906137i \(-0.639017\pi\)
−0.422984 + 0.906137i \(0.639017\pi\)
\(450\) 0 0
\(451\) 2.53083i 0.119172i
\(452\) 29.1870 22.5258i 1.37284 1.05953i
\(453\) 0 0
\(454\) −3.57586 + 1.21942i −0.167823 + 0.0572300i
\(455\) −15.6507 −0.733718
\(456\) 0 0
\(457\) −11.8630 −0.554930 −0.277465 0.960736i \(-0.589494\pi\)
−0.277465 + 0.960736i \(0.589494\pi\)
\(458\) 10.5394 3.59409i 0.492475 0.167941i
\(459\) 0 0
\(460\) 34.9941 + 45.3422i 1.63161 + 2.11409i
\(461\) 7.03036i 0.327436i 0.986507 + 0.163718i \(0.0523488\pi\)
−0.986507 + 0.163718i \(0.947651\pi\)
\(462\) 0 0
\(463\) −0.523381 −0.0243236 −0.0121618 0.999926i \(-0.503871\pi\)
−0.0121618 + 0.999926i \(0.503871\pi\)
\(464\) 28.1440 + 7.37282i 1.30655 + 0.342275i
\(465\) 0 0
\(466\) −4.67045 13.6958i −0.216354 0.634445i
\(467\) 15.1010i 0.698789i −0.936976 0.349395i \(-0.886387\pi\)
0.936976 0.349395i \(-0.113613\pi\)
\(468\) 0 0
\(469\) 11.7224i 0.541290i
\(470\) 21.3488 7.28022i 0.984746 0.335812i
\(471\) 0 0
\(472\) −4.13258 + 6.24133i −0.190218 + 0.287280i
\(473\) −3.82215 −0.175742
\(474\) 0 0
\(475\) 6.34525i 0.291140i
\(476\) −21.6883 + 16.7385i −0.994081 + 0.767209i
\(477\) 0 0
\(478\) −6.89479 20.2185i −0.315360 0.924774i
\(479\) −42.8653 −1.95857 −0.979284 0.202493i \(-0.935096\pi\)
−0.979284 + 0.202493i \(0.935096\pi\)
\(480\) 0 0
\(481\) 4.48179 0.204352
\(482\) −2.81758 8.26237i −0.128337 0.376340i
\(483\) 0 0
\(484\) −16.8296 + 12.9887i −0.764983 + 0.590396i
\(485\) 19.9882i 0.907618i
\(486\) 0 0
\(487\) −26.1098 −1.18315 −0.591573 0.806251i \(-0.701493\pi\)
−0.591573 + 0.806251i \(0.701493\pi\)
\(488\) −7.98162 + 12.0544i −0.361311 + 0.545678i
\(489\) 0 0
\(490\) −58.5715 + 19.9736i −2.64599 + 0.902317i
\(491\) 31.5875i 1.42552i −0.701407 0.712761i \(-0.747444\pi\)
0.701407 0.712761i \(-0.252556\pi\)
\(492\) 0 0
\(493\) 22.2834i 1.00359i
\(494\) 0.474357 + 1.39102i 0.0213423 + 0.0625850i
\(495\) 0 0
\(496\) 4.07548 15.5572i 0.182995 0.698539i
\(497\) −53.6919 −2.40841
\(498\) 0 0
\(499\) 16.1119i 0.721268i −0.932707 0.360634i \(-0.882560\pi\)
0.932707 0.360634i \(-0.117440\pi\)
\(500\) −5.53688 7.17420i −0.247617 0.320840i
\(501\) 0 0
\(502\) 9.07941 3.09620i 0.405234 0.138190i
\(503\) −6.81093 −0.303684 −0.151842 0.988405i \(-0.548521\pi\)
−0.151842 + 0.988405i \(0.548521\pi\)
\(504\) 0 0
\(505\) −55.8435 −2.48500
\(506\) −6.92739 + 2.36233i −0.307960 + 0.105018i
\(507\) 0 0
\(508\) 14.7197 11.3603i 0.653081 0.504033i
\(509\) 15.5299i 0.688350i 0.938905 + 0.344175i \(0.111841\pi\)
−0.938905 + 0.344175i \(0.888159\pi\)
\(510\) 0 0
\(511\) −55.9679 −2.47588
\(512\) −4.13496 + 22.2464i −0.182741 + 0.983161i
\(513\) 0 0
\(514\) −12.1569 35.6493i −0.536217 1.57242i
\(515\) 39.2845i 1.73108i
\(516\) 0 0
\(517\) 2.88237i 0.126766i
\(518\) 25.8102 8.80162i 1.13403 0.386721i
\(519\) 0 0
\(520\) −8.25499 5.46589i −0.362005 0.239695i
\(521\) 4.33054 0.189724 0.0948622 0.995490i \(-0.469759\pi\)
0.0948622 + 0.995490i \(0.469759\pi\)
\(522\) 0 0
\(523\) 5.17275i 0.226189i −0.993584 0.113094i \(-0.963924\pi\)
0.993584 0.113094i \(-0.0360762\pi\)
\(524\) 9.95911 + 12.9041i 0.435066 + 0.563720i
\(525\) 0 0
\(526\) 6.70009 + 19.6476i 0.292138 + 0.856675i
\(527\) 12.3176 0.536564
\(528\) 0 0
\(529\) 49.2880 2.14296
\(530\) 10.7335 + 31.4754i 0.466235 + 1.36720i
\(531\) 0 0
\(532\) 5.46355 + 7.07918i 0.236875 + 0.306922i
\(533\) 4.32076i 0.187153i
\(534\) 0 0
\(535\) 34.7650 1.50302
\(536\) 4.09395 6.18298i 0.176832 0.267064i
\(537\) 0 0
\(538\) 15.6059 5.32181i 0.672817 0.229440i
\(539\) 7.90792i 0.340618i
\(540\) 0 0
\(541\) 18.2195i 0.783316i −0.920111 0.391658i \(-0.871902\pi\)
0.920111 0.391658i \(-0.128098\pi\)
\(542\) −0.0570700 0.167354i −0.00245137 0.00718848i
\(543\) 0 0
\(544\) −17.2853 + 1.25428i −0.741101 + 0.0537768i
\(545\) −6.25124 −0.267774
\(546\) 0 0
\(547\) 39.0195i 1.66835i −0.551499 0.834176i \(-0.685944\pi\)
0.551499 0.834176i \(-0.314056\pi\)
\(548\) 17.5360 13.5339i 0.749101 0.578139i
\(549\) 0 0
\(550\) 5.16994 1.76302i 0.220447 0.0751753i
\(551\) 7.27343 0.309859
\(552\) 0 0
\(553\) −4.08354 −0.173650
\(554\) 26.5299 9.04706i 1.12715 0.384373i
\(555\) 0 0
\(556\) −14.9190 19.3307i −0.632706 0.819805i
\(557\) 17.3116i 0.733516i 0.930316 + 0.366758i \(0.119532\pi\)
−0.930316 + 0.366758i \(0.880468\pi\)
\(558\) 0 0
\(559\) −6.52536 −0.275993
\(560\) −58.2740 15.2659i −2.46252 0.645101i
\(561\) 0 0
\(562\) 4.21773 + 12.3682i 0.177914 + 0.521722i
\(563\) 1.53556i 0.0647162i 0.999476 + 0.0323581i \(0.0103017\pi\)
−0.999476 + 0.0323581i \(0.989698\pi\)
\(564\) 0 0
\(565\) 62.0917i 2.61222i
\(566\) −40.6231 + 13.8530i −1.70752 + 0.582286i
\(567\) 0 0
\(568\) −28.3198 18.7515i −1.18827 0.786793i
\(569\) −25.4671 −1.06764 −0.533818 0.845600i \(-0.679243\pi\)
−0.533818 + 0.845600i \(0.679243\pi\)
\(570\) 0 0
\(571\) 31.1021i 1.30158i −0.759256 0.650792i \(-0.774437\pi\)
0.759256 0.650792i \(-0.225563\pi\)
\(572\) 1.00157 0.772985i 0.0418776 0.0323201i
\(573\) 0 0
\(574\) −8.48537 24.8828i −0.354173 1.03859i
\(575\) −53.9488 −2.24982
\(576\) 0 0
\(577\) 6.93064 0.288526 0.144263 0.989539i \(-0.453919\pi\)
0.144263 + 0.989539i \(0.453919\pi\)
\(578\) 3.47541 + 10.1914i 0.144558 + 0.423907i
\(579\) 0 0
\(580\) −38.7890 + 29.9365i −1.61063 + 1.24304i
\(581\) 3.96954i 0.164684i
\(582\) 0 0
\(583\) −4.24960 −0.176000
\(584\) −29.5203 19.5463i −1.22156 0.808834i
\(585\) 0 0
\(586\) 26.2057 8.93649i 1.08255 0.369163i
\(587\) 14.2948i 0.590009i −0.955496 0.295005i \(-0.904679\pi\)
0.955496 0.295005i \(-0.0953212\pi\)
\(588\) 0 0
\(589\) 4.02054i 0.165664i
\(590\) −4.06893 11.9319i −0.167515 0.491227i
\(591\) 0 0
\(592\) 16.6875 + 4.37158i 0.685852 + 0.179671i
\(593\) 21.2046 0.870770 0.435385 0.900244i \(-0.356612\pi\)
0.435385 + 0.900244i \(0.356612\pi\)
\(594\) 0 0
\(595\) 46.1392i 1.89152i
\(596\) −5.26734 6.82496i −0.215759 0.279561i
\(597\) 0 0
\(598\) −11.8268 + 4.03309i −0.483633 + 0.164925i
\(599\) −6.52684 −0.266679 −0.133340 0.991070i \(-0.542570\pi\)
−0.133340 + 0.991070i \(0.542570\pi\)
\(600\) 0 0
\(601\) −37.6306 −1.53498 −0.767492 0.641059i \(-0.778495\pi\)
−0.767492 + 0.641059i \(0.778495\pi\)
\(602\) −37.5789 + 12.8149i −1.53160 + 0.522297i
\(603\) 0 0
\(604\) 15.6592 12.0854i 0.637163 0.491747i
\(605\) 35.8029i 1.45560i
\(606\) 0 0
\(607\) −24.8911 −1.01030 −0.505150 0.863032i \(-0.668563\pi\)
−0.505150 + 0.863032i \(0.668563\pi\)
\(608\) 0.409404 + 5.64202i 0.0166035 + 0.228814i
\(609\) 0 0
\(610\) −7.85867 23.0451i −0.318188 0.933067i
\(611\) 4.92093i 0.199079i
\(612\) 0 0
\(613\) 0.491774i 0.0198626i 0.999951 + 0.00993128i \(0.00316128\pi\)
−0.999951 + 0.00993128i \(0.996839\pi\)
\(614\) 2.07216 0.706633i 0.0836254 0.0285174i
\(615\) 0 0
\(616\) 4.24989 6.41849i 0.171233 0.258608i
\(617\) −14.2755 −0.574711 −0.287356 0.957824i \(-0.592776\pi\)
−0.287356 + 0.957824i \(0.592776\pi\)
\(618\) 0 0
\(619\) 17.6251i 0.708411i −0.935168 0.354206i \(-0.884751\pi\)
0.935168 0.354206i \(-0.115249\pi\)
\(620\) 16.5480 + 21.4415i 0.664584 + 0.861110i
\(621\) 0 0
\(622\) −1.52762 4.47965i −0.0612520 0.179618i
\(623\) 34.0610 1.36462
\(624\) 0 0
\(625\) −16.4640 −0.658561
\(626\) −2.92237 8.56967i −0.116801 0.342513i
\(627\) 0 0
\(628\) −9.03462 11.7063i −0.360520 0.467130i
\(629\) 13.2125i 0.526819i
\(630\) 0 0
\(631\) −0.532668 −0.0212052 −0.0106026 0.999944i \(-0.503375\pi\)
−0.0106026 + 0.999944i \(0.503375\pi\)
\(632\) −2.15387 1.42615i −0.0856763 0.0567290i
\(633\) 0 0
\(634\) −12.3657 + 4.21687i −0.491105 + 0.167473i
\(635\) 31.3143i 1.24267i
\(636\) 0 0
\(637\) 13.5008i 0.534921i
\(638\) −2.02091 5.92619i −0.0800086 0.234620i
\(639\) 0 0
\(640\) −25.4051 28.4037i −1.00423 1.12276i
\(641\) −16.5745 −0.654654 −0.327327 0.944911i \(-0.606148\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(642\) 0 0
\(643\) 9.17617i 0.361873i 0.983495 + 0.180936i \(0.0579128\pi\)
−0.983495 + 0.180936i \(0.942087\pi\)
\(644\) −60.1889 + 46.4524i −2.37177 + 1.83048i
\(645\) 0 0
\(646\) −4.10080 + 1.39843i −0.161344 + 0.0550204i
\(647\) 20.1025 0.790311 0.395155 0.918614i \(-0.370691\pi\)
0.395155 + 0.918614i \(0.370691\pi\)
\(648\) 0 0
\(649\) 1.61096 0.0632357
\(650\) 8.82638 3.00991i 0.346199 0.118058i
\(651\) 0 0
\(652\) 15.3436 + 19.8809i 0.600901 + 0.778594i
\(653\) 42.6830i 1.67031i −0.550012 0.835157i \(-0.685377\pi\)
0.550012 0.835157i \(-0.314623\pi\)
\(654\) 0 0
\(655\) −27.4520 −1.07264
\(656\) 4.21451 16.0879i 0.164549 0.628127i
\(657\) 0 0
\(658\) 9.66403 + 28.3391i 0.376743 + 1.10477i
\(659\) 34.7270i 1.35277i 0.736548 + 0.676385i \(0.236454\pi\)
−0.736548 + 0.676385i \(0.763546\pi\)
\(660\) 0 0
\(661\) 0.0670508i 0.00260797i −0.999999 0.00130399i \(-0.999585\pi\)
0.999999 0.00130399i \(-0.000415072\pi\)
\(662\) 6.23456 2.12607i 0.242313 0.0826320i
\(663\) 0 0
\(664\) 1.38633 2.09374i 0.0538000 0.0812527i
\(665\) −15.0601 −0.584005
\(666\) 0 0
\(667\) 61.8404i 2.39447i
\(668\) −0.00989342 + 0.00763551i −0.000382788 + 0.000295427i
\(669\) 0 0
\(670\) 4.03089 + 11.8203i 0.155727 + 0.456659i
\(671\) 3.11139 0.120114
\(672\) 0 0
\(673\) −26.4049 −1.01783 −0.508917 0.860816i \(-0.669954\pi\)
−0.508917 + 0.860816i \(0.669954\pi\)
\(674\) 4.26498 + 12.5068i 0.164281 + 0.481743i
\(675\) 0 0
\(676\) −18.8729 + 14.5657i −0.725883 + 0.560219i
\(677\) 17.9627i 0.690361i 0.938536 + 0.345181i \(0.112182\pi\)
−0.938536 + 0.345181i \(0.887818\pi\)
\(678\) 0 0
\(679\) −26.5331 −1.01825
\(680\) 16.1137 24.3361i 0.617934 0.933248i
\(681\) 0 0
\(682\) −3.27583 + 1.11710i −0.125438 + 0.0427760i
\(683\) 32.3268i 1.23695i −0.785805 0.618475i \(-0.787751\pi\)
0.785805 0.618475i \(-0.212249\pi\)
\(684\) 0 0
\(685\) 37.3057i 1.42538i
\(686\) −12.2275 35.8565i −0.466850 1.36901i
\(687\) 0 0
\(688\) −24.2965 6.36490i −0.926297 0.242660i
\(689\) −7.25512 −0.276398
\(690\) 0 0
\(691\) 1.75007i 0.0665757i 0.999446 + 0.0332878i \(0.0105978\pi\)
−0.999446 + 0.0332878i \(0.989402\pi\)
\(692\) −5.44190 7.05113i −0.206870 0.268044i
\(693\) 0 0
\(694\) 41.3852 14.1129i 1.57096 0.535719i
\(695\) 41.1237 1.55991
\(696\) 0 0
\(697\) 12.7378 0.482479
\(698\) 33.7903 11.5230i 1.27898 0.436150i
\(699\) 0 0
\(700\) 44.9192 34.6676i 1.69779 1.31031i
\(701\) 27.7248i 1.04715i 0.851979 + 0.523576i \(0.175403\pi\)
−0.851979 + 0.523576i \(0.824597\pi\)
\(702\) 0 0
\(703\) 4.31265 0.162655
\(704\) 4.48321 1.90120i 0.168967 0.0716540i
\(705\) 0 0
\(706\) −0.984696 2.88756i −0.0370595 0.108675i
\(707\) 74.1286i 2.78789i
\(708\) 0 0
\(709\) 50.2818i 1.88837i 0.329412 + 0.944186i \(0.393150\pi\)
−0.329412 + 0.944186i \(0.606850\pi\)
\(710\) 54.1404 18.4626i 2.03185 0.692889i
\(711\) 0 0
\(712\) 17.9655 + 11.8955i 0.673285 + 0.445804i
\(713\) 34.1836 1.28019
\(714\) 0 0
\(715\) 2.13071i 0.0796840i
\(716\) 11.9809 + 15.5238i 0.447746 + 0.580150i
\(717\) 0 0
\(718\) 14.6488 + 42.9566i 0.546687 + 1.60313i
\(719\) 13.1202 0.489300 0.244650 0.969611i \(-0.421327\pi\)
0.244650 + 0.969611i \(0.421327\pi\)
\(720\) 0 0
\(721\) −52.1477 −1.94208
\(722\) 0.456455 + 1.33852i 0.0169875 + 0.0498147i
\(723\) 0 0
\(724\) −21.9310 28.4162i −0.815058 1.05608i
\(725\) 46.1518i 1.71403i
\(726\) 0 0
\(727\) 32.5922 1.20878 0.604389 0.796690i \(-0.293417\pi\)
0.604389 + 0.796690i \(0.293417\pi\)
\(728\) 7.25562 10.9580i 0.268911 0.406129i
\(729\) 0 0
\(730\) 56.4355 19.2453i 2.08877 0.712299i
\(731\) 19.2371i 0.711510i
\(732\) 0 0
\(733\) 8.28509i 0.306017i −0.988225 0.153008i \(-0.951104\pi\)
0.988225 0.153008i \(-0.0488961\pi\)
\(734\) −4.71087 13.8143i −0.173882 0.509897i
\(735\) 0 0
\(736\) −47.9698 + 3.48085i −1.76819 + 0.128306i
\(737\) −1.59590 −0.0587857
\(738\) 0 0
\(739\) 48.5291i 1.78517i 0.450876 + 0.892587i \(0.351112\pi\)
−0.450876 + 0.892587i \(0.648888\pi\)
\(740\) −22.9993 + 17.7503i −0.845470 + 0.652514i
\(741\) 0 0
\(742\) −41.7816 + 14.2481i −1.53385 + 0.523063i
\(743\) −3.81374 −0.139913 −0.0699563 0.997550i \(-0.522286\pi\)
−0.0699563 + 0.997550i \(0.522286\pi\)
\(744\) 0 0
\(745\) 14.5193 0.531945
\(746\) −27.1762 + 9.26743i −0.994990 + 0.339305i
\(747\) 0 0
\(748\) 2.27880 + 2.95267i 0.0833212 + 0.107960i
\(749\) 46.1483i 1.68622i
\(750\) 0 0
\(751\) 46.7083 1.70441 0.852205 0.523208i \(-0.175265\pi\)
0.852205 + 0.523208i \(0.175265\pi\)
\(752\) −4.79992 + 18.3226i −0.175035 + 0.668156i
\(753\) 0 0
\(754\) −3.45020 10.1175i −0.125649 0.368457i
\(755\) 33.3130i 1.21238i
\(756\) 0 0
\(757\) 38.8886i 1.41343i −0.707498 0.706716i \(-0.750176\pi\)
0.707498 0.706716i \(-0.249824\pi\)
\(758\) 20.6608 7.04560i 0.750433 0.255908i
\(759\) 0 0
\(760\) −7.94345 5.25962i −0.288139 0.190786i
\(761\) −36.7676 −1.33283 −0.666413 0.745583i \(-0.732171\pi\)
−0.666413 + 0.745583i \(0.732171\pi\)
\(762\) 0 0
\(763\) 8.29812i 0.300412i
\(764\) 6.10089 4.70853i 0.220723 0.170349i
\(765\) 0 0
\(766\) −17.2465 50.5744i −0.623143 1.82733i
\(767\) 2.75031 0.0993080
\(768\) 0 0
\(769\) 52.3408 1.88746 0.943730 0.330718i \(-0.107291\pi\)
0.943730 + 0.330718i \(0.107291\pi\)
\(770\) 4.18442 + 12.2705i 0.150796 + 0.442200i
\(771\) 0 0
\(772\) −30.9709 + 23.9026i −1.11467 + 0.860275i
\(773\) 13.8632i 0.498626i 0.968423 + 0.249313i \(0.0802048\pi\)
−0.968423 + 0.249313i \(0.919795\pi\)
\(774\) 0 0
\(775\) −25.5113 −0.916395
\(776\) −13.9949 9.26646i −0.502387 0.332646i
\(777\) 0 0
\(778\) 18.4640 6.29648i 0.661967 0.225740i
\(779\) 4.15770i 0.148965i
\(780\) 0 0
\(781\) 7.30967i 0.261561i
\(782\) −11.8898 34.8660i −0.425177 1.24680i
\(783\) 0 0
\(784\) 13.1688 50.2689i 0.470315 1.79532i
\(785\) 24.9036 0.888848
\(786\) 0 0
\(787\) 7.53623i 0.268638i 0.990938 + 0.134319i \(0.0428846\pi\)
−0.990938 + 0.134319i \(0.957115\pi\)
\(788\) −4.21368 5.45971i −0.150106 0.194494i
\(789\) 0 0
\(790\) 4.11766 1.40418i 0.146500 0.0499584i
\(791\) −82.4228 −2.93062
\(792\) 0 0
\(793\) 5.31192 0.188632
\(794\) 44.3941 15.1390i 1.57549 0.537263i
\(795\) 0 0
\(796\) 12.1095 9.34585i 0.429211 0.331255i
\(797\) 44.5030i 1.57638i 0.615433 + 0.788189i \(0.288981\pi\)
−0.615433 + 0.788189i \(0.711019\pi\)
\(798\) 0 0
\(799\) −14.5071 −0.513226
\(800\) 35.8000 2.59777i 1.26572 0.0918451i
\(801\) 0 0
\(802\) −3.76402 11.0377i −0.132912 0.389756i
\(803\) 7.61954i 0.268888i
\(804\) 0 0
\(805\) 128.044i 4.51297i
\(806\) −5.59266 + 1.90717i −0.196993 + 0.0671772i
\(807\) 0 0
\(808\) 25.8888 39.0992i 0.910765 1.37550i
\(809\) 3.45607 0.121509 0.0607544 0.998153i \(-0.480649\pi\)
0.0607544 + 0.998153i \(0.480649\pi\)
\(810\) 0 0
\(811\) 14.9470i 0.524860i 0.964951 + 0.262430i \(0.0845239\pi\)
−0.964951 + 0.262430i \(0.915476\pi\)
\(812\) −39.7387 51.4900i −1.39456 1.80694i
\(813\) 0 0
\(814\) −1.19826 3.51383i −0.0419991 0.123160i
\(815\) −42.2941 −1.48150
\(816\) 0 0
\(817\) −6.27910 −0.219678
\(818\) −13.8895 40.7302i −0.485636 1.42410i
\(819\) 0 0
\(820\) 17.1125 + 22.1729i 0.597595 + 0.774311i
\(821\) 3.72440i 0.129982i 0.997886 + 0.0649912i \(0.0207019\pi\)
−0.997886 + 0.0649912i \(0.979298\pi\)
\(822\) 0 0
\(823\) 15.0687 0.525262 0.262631 0.964896i \(-0.415410\pi\)
0.262631 + 0.964896i \(0.415410\pi\)
\(824\) −27.5053 18.2122i −0.958193 0.634450i
\(825\) 0 0
\(826\) 15.8388 5.40124i 0.551102 0.187933i
\(827\) 37.8202i 1.31514i 0.753395 + 0.657568i \(0.228415\pi\)
−0.753395 + 0.657568i \(0.771585\pi\)
\(828\) 0 0
\(829\) 38.8523i 1.34940i 0.738094 + 0.674698i \(0.235726\pi\)
−0.738094 + 0.674698i \(0.764274\pi\)
\(830\) 1.36497 + 4.00270i 0.0473790 + 0.138936i
\(831\) 0 0
\(832\) 7.65396 3.24582i 0.265353 0.112529i
\(833\) 39.8011 1.37903
\(834\) 0 0
\(835\) 0.0210470i 0.000728362i
\(836\) 0.963768 0.743814i 0.0333326 0.0257253i
\(837\) 0 0
\(838\) 6.84969 2.33584i 0.236619 0.0806901i
\(839\) 15.8272 0.546417 0.273209 0.961955i \(-0.411915\pi\)
0.273209 + 0.961955i \(0.411915\pi\)
\(840\) 0 0
\(841\) −23.9028 −0.824235
\(842\) −38.6638 + 13.1849i −1.33244 + 0.454381i
\(843\) 0 0
\(844\) −17.6753 22.9022i −0.608411 0.788325i
\(845\) 40.1499i 1.38120i
\(846\) 0 0
\(847\) 47.5261 1.63302
\(848\) −27.0137 7.07672i −0.927655 0.243016i
\(849\) 0 0
\(850\) 8.87338 + 26.0206i 0.304354 + 0.892500i
\(851\) 36.6672i 1.25693i
\(852\) 0 0
\(853\) 6.18601i 0.211805i 0.994377 + 0.105902i \(0.0337731\pi\)
−0.994377 + 0.105902i \(0.966227\pi\)
\(854\) 30.5908 10.4319i 1.04680 0.356972i
\(855\) 0 0
\(856\) −16.1169 + 24.3410i −0.550866 + 0.831957i
\(857\) −12.2246 −0.417583 −0.208792 0.977960i \(-0.566953\pi\)
−0.208792 + 0.977960i \(0.566953\pi\)
\(858\) 0 0
\(859\) 44.9215i 1.53270i −0.642423 0.766350i \(-0.722071\pi\)
0.642423 0.766350i \(-0.277929\pi\)
\(860\) 33.4863 25.8439i 1.14187 0.881271i
\(861\) 0 0
\(862\) −8.85355 25.9625i −0.301553 0.884285i
\(863\) −21.2268 −0.722568 −0.361284 0.932456i \(-0.617661\pi\)
−0.361284 + 0.932456i \(0.617661\pi\)
\(864\) 0 0
\(865\) 15.0004 0.510029
\(866\) −13.9580 40.9309i −0.474312 1.39089i
\(867\) 0 0
\(868\) −28.4621 + 21.9664i −0.966068 + 0.745589i
\(869\) 0.555938i 0.0188589i
\(870\) 0 0
\(871\) −2.72460 −0.0923196
\(872\) 2.89805 4.37685i 0.0981404 0.148219i
\(873\) 0 0
\(874\) −11.3805 + 3.88089i −0.384950 + 0.131273i
\(875\) 20.2596i 0.684900i
\(876\) 0 0
\(877\) 15.4462i 0.521582i 0.965395 + 0.260791i \(0.0839834\pi\)
−0.965395 + 0.260791i \(0.916017\pi\)
\(878\) 9.77069 + 28.6519i 0.329745 + 0.966956i
\(879\) 0 0
\(880\) −2.07832 + 7.93348i −0.0700600 + 0.267438i
\(881\) 25.4049 0.855912 0.427956 0.903800i \(-0.359234\pi\)
0.427956 + 0.903800i \(0.359234\pi\)
\(882\) 0 0
\(883\) 29.9928i 1.00934i −0.863313 0.504669i \(-0.831615\pi\)
0.863313 0.504669i \(-0.168385\pi\)
\(884\) 3.89048 + 5.04095i 0.130851 + 0.169545i
\(885\) 0 0
\(886\) −11.8281 + 4.03353i −0.397372 + 0.135509i
\(887\) 27.5162 0.923903 0.461952 0.886905i \(-0.347149\pi\)
0.461952 + 0.886905i \(0.347149\pi\)
\(888\) 0 0
\(889\) −41.5678 −1.39414
\(890\) −34.3455 + 11.7123i −1.15126 + 0.392597i
\(891\) 0 0
\(892\) −7.51646 + 5.80103i −0.251670 + 0.194233i
\(893\) 4.73522i 0.158458i
\(894\) 0 0
\(895\) −33.0249 −1.10390
\(896\) 37.7041 33.7237i 1.25961 1.12663i
\(897\) 0 0
\(898\) 8.18229 + 23.9940i 0.273046 + 0.800692i
\(899\) 29.2431i 0.975313i
\(900\) 0 0
\(901\) 21.3885i 0.712554i
\(902\) −3.38758 + 1.15521i −0.112794 + 0.0384642i
\(903\) 0 0
\(904\) −43.4739 28.7855i −1.44592 0.957391i
\(905\) 60.4520 2.00949
\(906\) 0 0
\(907\) 26.8589i 0.891837i −0.895074 0.445918i \(-0.852877\pi\)
0.895074 0.445918i \(-0.147123\pi\)
\(908\) 3.26444 + 4.22977i 0.108334 + 0.140370i
\(909\) 0 0
\(910\) 7.14385 + 20.9489i 0.236816 + 0.694449i
\(911\) 34.5330 1.14413 0.572065 0.820208i \(-0.306142\pi\)
0.572065 + 0.820208i \(0.306142\pi\)
\(912\) 0 0
\(913\) −0.540418 −0.0178852
\(914\) 5.41494 + 15.8790i 0.179110 + 0.525230i
\(915\) 0 0
\(916\) −9.62155 12.4668i −0.317905 0.411913i
\(917\) 36.4407i 1.20338i
\(918\) 0 0
\(919\) −20.0300 −0.660729 −0.330365 0.943853i \(-0.607172\pi\)
−0.330365 + 0.943853i \(0.607172\pi\)
\(920\) 44.7185 67.5371i 1.47432 2.22663i
\(921\) 0 0
\(922\) 9.41031 3.20904i 0.309912 0.105684i
\(923\) 12.4794i 0.410766i
\(924\) 0 0
\(925\) 27.3649i 0.899751i
\(926\) 0.238900 + 0.700559i 0.00785073 + 0.0230218i
\(927\) 0 0
\(928\) −2.97777 41.0368i −0.0977502 1.34710i
\(929\) −2.91198 −0.0955389 −0.0477695 0.998858i \(-0.515211\pi\)
−0.0477695 + 0.998858i \(0.515211\pi\)
\(930\) 0 0
\(931\) 12.9913i 0.425773i
\(932\) −16.2003 + 12.5030i −0.530659 + 0.409550i
\(933\) 0 0
\(934\) −20.2130 + 6.89291i −0.661390 + 0.225543i
\(935\) −6.28144 −0.205425
\(936\) 0 0
\(937\) 4.03574 0.131842 0.0659210 0.997825i \(-0.479001\pi\)
0.0659210 + 0.997825i \(0.479001\pi\)
\(938\) −15.6907 + 5.35074i −0.512320 + 0.174708i
\(939\) 0 0
\(940\) −19.4895 25.2528i −0.635678 0.823655i
\(941\) 51.2751i 1.67152i 0.549096 + 0.835760i \(0.314972\pi\)
−0.549096 + 0.835760i \(0.685028\pi\)
\(942\) 0 0
\(943\) 35.3497 1.15114
\(944\) 10.2405 + 2.68268i 0.333300 + 0.0873139i
\(945\) 0 0
\(946\) 1.74464 + 5.11604i 0.0567230 + 0.166337i
\(947\) 37.7009i 1.22511i 0.790426 + 0.612557i \(0.209859\pi\)
−0.790426 + 0.612557i \(0.790141\pi\)
\(948\) 0 0
\(949\) 13.0085i 0.422272i
\(950\) 8.49328 2.89632i 0.275558 0.0939691i
\(951\) 0 0
\(952\) 32.3047 + 21.3899i 1.04700 + 0.693252i
\(953\) −41.4066 −1.34129 −0.670645 0.741779i \(-0.733983\pi\)
−0.670645 + 0.741779i \(0.733983\pi\)
\(954\) 0 0
\(955\) 12.9789i 0.419987i
\(956\) −23.9159 + 18.4577i −0.773494 + 0.596964i
\(957\) 0 0
\(958\) 19.5661 + 57.3763i 0.632152 + 1.85375i
\(959\) −49.5209 −1.59911
\(960\) 0 0
\(961\) −14.8352 −0.478556
\(962\) −2.04573 5.99899i −0.0659571 0.193415i
\(963\) 0 0
\(964\) −9.77329 + 7.54279i −0.314776 + 0.242937i
\(965\) 65.8869i 2.12097i
\(966\) 0 0
\(967\) 29.9529 0.963220 0.481610 0.876386i \(-0.340052\pi\)
0.481610 + 0.876386i \(0.340052\pi\)
\(968\) 25.0677 + 16.5981i 0.805706 + 0.533483i
\(969\) 0 0
\(970\) 26.7547 9.12371i 0.859042 0.292945i
\(971\) 53.5633i 1.71893i −0.511195 0.859465i \(-0.670797\pi\)
0.511195 0.859465i \(-0.329203\pi\)
\(972\) 0 0
\(973\) 54.5890i 1.75004i
\(974\) 11.9179 + 34.9486i 0.381875 + 1.11982i
\(975\) 0 0
\(976\) 19.7784 + 5.18130i 0.633091 + 0.165849i
\(977\) 26.2092 0.838506 0.419253 0.907869i \(-0.362292\pi\)
0.419253 + 0.907869i \(0.362292\pi\)
\(978\) 0 0
\(979\) 4.63710i 0.148202i
\(980\) 53.4704 + 69.2823i 1.70805 + 2.21314i
\(981\) 0 0
\(982\) −42.2806 + 14.4182i −1.34923 + 0.460105i
\(983\) −6.77344 −0.216039 −0.108020 0.994149i \(-0.534451\pi\)
−0.108020 + 0.994149i \(0.534451\pi\)
\(984\) 0 0
\(985\) 11.6149 0.370080
\(986\) 29.8269 10.1714i 0.949882 0.323922i
\(987\) 0 0
\(988\) 1.64539 1.26988i 0.0523469 0.0404001i
\(989\) 53.3864i 1.69759i
\(990\) 0 0
\(991\) −8.71348 −0.276793 −0.138396 0.990377i \(-0.544195\pi\)
−0.138396 + 0.990377i \(0.544195\pi\)
\(992\) −22.6840 + 1.64603i −0.720217 + 0.0522614i
\(993\) 0 0
\(994\) 24.5079 + 71.8679i 0.777344 + 2.27951i
\(995\) 25.7615i 0.816695i
\(996\) 0 0
\(997\) 58.7540i 1.86076i −0.366599 0.930379i \(-0.619478\pi\)
0.366599 0.930379i \(-0.380522\pi\)
\(998\) −21.5662 + 7.35436i −0.682666 + 0.232798i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.2.g.b.685.7 16
3.2 odd 2 152.2.c.b.77.10 yes 16
4.3 odd 2 5472.2.g.b.2737.2 16
8.3 odd 2 5472.2.g.b.2737.15 16
8.5 even 2 inner 1368.2.g.b.685.8 16
12.11 even 2 608.2.c.b.305.13 16
24.5 odd 2 152.2.c.b.77.9 16
24.11 even 2 608.2.c.b.305.4 16
48.5 odd 4 4864.2.a.bo.1.2 8
48.11 even 4 4864.2.a.bn.1.7 8
48.29 odd 4 4864.2.a.bq.1.7 8
48.35 even 4 4864.2.a.bp.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.9 16 24.5 odd 2
152.2.c.b.77.10 yes 16 3.2 odd 2
608.2.c.b.305.4 16 24.11 even 2
608.2.c.b.305.13 16 12.11 even 2
1368.2.g.b.685.7 16 1.1 even 1 trivial
1368.2.g.b.685.8 16 8.5 even 2 inner
4864.2.a.bn.1.7 8 48.11 even 4
4864.2.a.bo.1.2 8 48.5 odd 4
4864.2.a.bp.1.2 8 48.35 even 4
4864.2.a.bq.1.7 8 48.29 odd 4
5472.2.g.b.2737.2 16 4.3 odd 2
5472.2.g.b.2737.15 16 8.3 odd 2