Properties

Label 1360.2.bt.a.81.1
Level $1360$
Weight $2$
Character 1360.81
Analytic conductor $10.860$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(81,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bt (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1360.81
Dual form 1360.2.bt.a.1041.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 - 1.70711i) q^{3} +(0.707107 + 0.707107i) q^{5} +(0.414214 - 0.414214i) q^{7} +2.82843i q^{9} +(-1.00000 + 1.00000i) q^{11} +1.00000 q^{13} -2.41421i q^{15} +(-4.12132 - 0.121320i) q^{17} +2.41421i q^{19} -1.41421 q^{21} +(-2.24264 + 2.24264i) q^{23} +1.00000i q^{25} +(-0.292893 + 0.292893i) q^{27} +(-6.94975 - 6.94975i) q^{29} +(3.70711 + 3.70711i) q^{31} +3.41421 q^{33} +0.585786 q^{35} +(1.58579 + 1.58579i) q^{37} +(-1.70711 - 1.70711i) q^{39} +(-6.65685 + 6.65685i) q^{41} -10.2426i q^{43} +(-2.00000 + 2.00000i) q^{45} -3.24264 q^{47} +6.65685i q^{49} +(6.82843 + 7.24264i) q^{51} -3.48528i q^{53} -1.41421 q^{55} +(4.12132 - 4.12132i) q^{57} +10.8995i q^{59} +(-5.77817 + 5.77817i) q^{61} +(1.17157 + 1.17157i) q^{63} +(0.707107 + 0.707107i) q^{65} -8.82843 q^{67} +7.65685 q^{69} +(8.29289 + 8.29289i) q^{71} +(5.53553 + 5.53553i) q^{73} +(1.70711 - 1.70711i) q^{75} +0.828427i q^{77} +(-8.24264 + 8.24264i) q^{79} +9.48528 q^{81} -9.89949i q^{83} +(-2.82843 - 3.00000i) q^{85} +23.7279i q^{87} +14.6569 q^{89} +(0.414214 - 0.414214i) q^{91} -12.6569i q^{93} +(-1.70711 + 1.70711i) q^{95} +(10.1213 + 10.1213i) q^{97} +(-2.82843 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{7} - 4 q^{11} + 4 q^{13} - 8 q^{17} + 8 q^{23} - 4 q^{27} - 8 q^{29} + 12 q^{31} + 8 q^{33} + 8 q^{35} + 12 q^{37} - 4 q^{39} - 4 q^{41} - 8 q^{45} + 4 q^{47} + 16 q^{51} + 8 q^{57}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 1.70711i −0.985599 0.985599i 0.0142992 0.999898i \(-0.495448\pi\)
−0.999898 + 0.0142992i \(0.995448\pi\)
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.414214 0.414214i 0.156558 0.156558i −0.624482 0.781040i \(-0.714690\pi\)
0.781040 + 0.624482i \(0.214690\pi\)
\(8\) 0 0
\(9\) 2.82843i 0.942809i
\(10\) 0 0
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 2.41421i 0.623347i
\(16\) 0 0
\(17\) −4.12132 0.121320i −0.999567 0.0294245i
\(18\) 0 0
\(19\) 2.41421i 0.553859i 0.960890 + 0.276929i \(0.0893168\pi\)
−0.960890 + 0.276929i \(0.910683\pi\)
\(20\) 0 0
\(21\) −1.41421 −0.308607
\(22\) 0 0
\(23\) −2.24264 + 2.24264i −0.467623 + 0.467623i −0.901144 0.433521i \(-0.857271\pi\)
0.433521 + 0.901144i \(0.357271\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −0.292893 + 0.292893i −0.0563673 + 0.0563673i
\(28\) 0 0
\(29\) −6.94975 6.94975i −1.29054 1.29054i −0.934455 0.356080i \(-0.884113\pi\)
−0.356080 0.934455i \(-0.615887\pi\)
\(30\) 0 0
\(31\) 3.70711 + 3.70711i 0.665816 + 0.665816i 0.956745 0.290929i \(-0.0939642\pi\)
−0.290929 + 0.956745i \(0.593964\pi\)
\(32\) 0 0
\(33\) 3.41421 0.594338
\(34\) 0 0
\(35\) 0.585786 0.0990160
\(36\) 0 0
\(37\) 1.58579 + 1.58579i 0.260702 + 0.260702i 0.825339 0.564637i \(-0.190984\pi\)
−0.564637 + 0.825339i \(0.690984\pi\)
\(38\) 0 0
\(39\) −1.70711 1.70711i −0.273356 0.273356i
\(40\) 0 0
\(41\) −6.65685 + 6.65685i −1.03963 + 1.03963i −0.0404442 + 0.999182i \(0.512877\pi\)
−0.999182 + 0.0404442i \(0.987123\pi\)
\(42\) 0 0
\(43\) 10.2426i 1.56199i −0.624538 0.780994i \(-0.714713\pi\)
0.624538 0.780994i \(-0.285287\pi\)
\(44\) 0 0
\(45\) −2.00000 + 2.00000i −0.298142 + 0.298142i
\(46\) 0 0
\(47\) −3.24264 −0.472988 −0.236494 0.971633i \(-0.575998\pi\)
−0.236494 + 0.971633i \(0.575998\pi\)
\(48\) 0 0
\(49\) 6.65685i 0.950979i
\(50\) 0 0
\(51\) 6.82843 + 7.24264i 0.956171 + 1.01417i
\(52\) 0 0
\(53\) 3.48528i 0.478740i −0.970928 0.239370i \(-0.923059\pi\)
0.970928 0.239370i \(-0.0769409\pi\)
\(54\) 0 0
\(55\) −1.41421 −0.190693
\(56\) 0 0
\(57\) 4.12132 4.12132i 0.545882 0.545882i
\(58\) 0 0
\(59\) 10.8995i 1.41899i 0.704709 + 0.709497i \(0.251078\pi\)
−0.704709 + 0.709497i \(0.748922\pi\)
\(60\) 0 0
\(61\) −5.77817 + 5.77817i −0.739819 + 0.739819i −0.972543 0.232723i \(-0.925236\pi\)
0.232723 + 0.972543i \(0.425236\pi\)
\(62\) 0 0
\(63\) 1.17157 + 1.17157i 0.147604 + 0.147604i
\(64\) 0 0
\(65\) 0.707107 + 0.707107i 0.0877058 + 0.0877058i
\(66\) 0 0
\(67\) −8.82843 −1.07856 −0.539282 0.842125i \(-0.681304\pi\)
−0.539282 + 0.842125i \(0.681304\pi\)
\(68\) 0 0
\(69\) 7.65685 0.921777
\(70\) 0 0
\(71\) 8.29289 + 8.29289i 0.984185 + 0.984185i 0.999877 0.0156915i \(-0.00499497\pi\)
−0.0156915 + 0.999877i \(0.504995\pi\)
\(72\) 0 0
\(73\) 5.53553 + 5.53553i 0.647885 + 0.647885i 0.952482 0.304596i \(-0.0985215\pi\)
−0.304596 + 0.952482i \(0.598522\pi\)
\(74\) 0 0
\(75\) 1.70711 1.70711i 0.197120 0.197120i
\(76\) 0 0
\(77\) 0.828427i 0.0944080i
\(78\) 0 0
\(79\) −8.24264 + 8.24264i −0.927370 + 0.927370i −0.997535 0.0701658i \(-0.977647\pi\)
0.0701658 + 0.997535i \(0.477647\pi\)
\(80\) 0 0
\(81\) 9.48528 1.05392
\(82\) 0 0
\(83\) 9.89949i 1.08661i −0.839535 0.543305i \(-0.817173\pi\)
0.839535 0.543305i \(-0.182827\pi\)
\(84\) 0 0
\(85\) −2.82843 3.00000i −0.306786 0.325396i
\(86\) 0 0
\(87\) 23.7279i 2.54390i
\(88\) 0 0
\(89\) 14.6569 1.55362 0.776812 0.629733i \(-0.216836\pi\)
0.776812 + 0.629733i \(0.216836\pi\)
\(90\) 0 0
\(91\) 0.414214 0.414214i 0.0434214 0.0434214i
\(92\) 0 0
\(93\) 12.6569i 1.31245i
\(94\) 0 0
\(95\) −1.70711 + 1.70711i −0.175145 + 0.175145i
\(96\) 0 0
\(97\) 10.1213 + 10.1213i 1.02766 + 1.02766i 0.999606 + 0.0280581i \(0.00893234\pi\)
0.0280581 + 0.999606i \(0.491068\pi\)
\(98\) 0 0
\(99\) −2.82843 2.82843i −0.284268 0.284268i
\(100\) 0 0
\(101\) −4.34315 −0.432159 −0.216080 0.976376i \(-0.569327\pi\)
−0.216080 + 0.976376i \(0.569327\pi\)
\(102\) 0 0
\(103\) 2.34315 0.230877 0.115439 0.993315i \(-0.463173\pi\)
0.115439 + 0.993315i \(0.463173\pi\)
\(104\) 0 0
\(105\) −1.00000 1.00000i −0.0975900 0.0975900i
\(106\) 0 0
\(107\) 8.82843 + 8.82843i 0.853476 + 0.853476i 0.990560 0.137083i \(-0.0437728\pi\)
−0.137083 + 0.990560i \(0.543773\pi\)
\(108\) 0 0
\(109\) −8.36396 + 8.36396i −0.801122 + 0.801122i −0.983271 0.182149i \(-0.941695\pi\)
0.182149 + 0.983271i \(0.441695\pi\)
\(110\) 0 0
\(111\) 5.41421i 0.513894i
\(112\) 0 0
\(113\) 2.46447 2.46447i 0.231837 0.231837i −0.581622 0.813459i \(-0.697582\pi\)
0.813459 + 0.581622i \(0.197582\pi\)
\(114\) 0 0
\(115\) −3.17157 −0.295751
\(116\) 0 0
\(117\) 2.82843i 0.261488i
\(118\) 0 0
\(119\) −1.75736 + 1.65685i −0.161097 + 0.151884i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 22.7279 2.04931
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 7.72792i 0.685742i 0.939382 + 0.342871i \(0.111399\pi\)
−0.939382 + 0.342871i \(0.888601\pi\)
\(128\) 0 0
\(129\) −17.4853 + 17.4853i −1.53949 + 1.53949i
\(130\) 0 0
\(131\) −14.0711 14.0711i −1.22939 1.22939i −0.964193 0.265202i \(-0.914561\pi\)
−0.265202 0.964193i \(-0.585439\pi\)
\(132\) 0 0
\(133\) 1.00000 + 1.00000i 0.0867110 + 0.0867110i
\(134\) 0 0
\(135\) −0.414214 −0.0356498
\(136\) 0 0
\(137\) −16.7279 −1.42916 −0.714581 0.699552i \(-0.753383\pi\)
−0.714581 + 0.699552i \(0.753383\pi\)
\(138\) 0 0
\(139\) 0.656854 + 0.656854i 0.0557137 + 0.0557137i 0.734415 0.678701i \(-0.237457\pi\)
−0.678701 + 0.734415i \(0.737457\pi\)
\(140\) 0 0
\(141\) 5.53553 + 5.53553i 0.466176 + 0.466176i
\(142\) 0 0
\(143\) −1.00000 + 1.00000i −0.0836242 + 0.0836242i
\(144\) 0 0
\(145\) 9.82843i 0.816206i
\(146\) 0 0
\(147\) 11.3640 11.3640i 0.937284 0.937284i
\(148\) 0 0
\(149\) −1.75736 −0.143968 −0.0719842 0.997406i \(-0.522933\pi\)
−0.0719842 + 0.997406i \(0.522933\pi\)
\(150\) 0 0
\(151\) 4.82843i 0.392932i −0.980511 0.196466i \(-0.937053\pi\)
0.980511 0.196466i \(-0.0629465\pi\)
\(152\) 0 0
\(153\) 0.343146 11.6569i 0.0277417 0.942401i
\(154\) 0 0
\(155\) 5.24264i 0.421099i
\(156\) 0 0
\(157\) 2.82843 0.225733 0.112867 0.993610i \(-0.463997\pi\)
0.112867 + 0.993610i \(0.463997\pi\)
\(158\) 0 0
\(159\) −5.94975 + 5.94975i −0.471846 + 0.471846i
\(160\) 0 0
\(161\) 1.85786i 0.146420i
\(162\) 0 0
\(163\) −0.343146 + 0.343146i −0.0268772 + 0.0268772i −0.720418 0.693540i \(-0.756050\pi\)
0.693540 + 0.720418i \(0.256050\pi\)
\(164\) 0 0
\(165\) 2.41421 + 2.41421i 0.187946 + 0.187946i
\(166\) 0 0
\(167\) −10.7279 10.7279i −0.830152 0.830152i 0.157386 0.987537i \(-0.449693\pi\)
−0.987537 + 0.157386i \(0.949693\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −6.82843 −0.522183
\(172\) 0 0
\(173\) 0.928932 + 0.928932i 0.0706254 + 0.0706254i 0.741537 0.670912i \(-0.234097\pi\)
−0.670912 + 0.741537i \(0.734097\pi\)
\(174\) 0 0
\(175\) 0.414214 + 0.414214i 0.0313116 + 0.0313116i
\(176\) 0 0
\(177\) 18.6066 18.6066i 1.39856 1.39856i
\(178\) 0 0
\(179\) 6.82843i 0.510381i −0.966891 0.255190i \(-0.917862\pi\)
0.966891 0.255190i \(-0.0821381\pi\)
\(180\) 0 0
\(181\) 6.82843 6.82843i 0.507553 0.507553i −0.406222 0.913775i \(-0.633154\pi\)
0.913775 + 0.406222i \(0.133154\pi\)
\(182\) 0 0
\(183\) 19.7279 1.45833
\(184\) 0 0
\(185\) 2.24264i 0.164882i
\(186\) 0 0
\(187\) 4.24264 4.00000i 0.310253 0.292509i
\(188\) 0 0
\(189\) 0.242641i 0.0176495i
\(190\) 0 0
\(191\) −0.242641 −0.0175569 −0.00877843 0.999961i \(-0.502794\pi\)
−0.00877843 + 0.999961i \(0.502794\pi\)
\(192\) 0 0
\(193\) 2.82843 2.82843i 0.203595 0.203595i −0.597944 0.801538i \(-0.704015\pi\)
0.801538 + 0.597944i \(0.204015\pi\)
\(194\) 0 0
\(195\) 2.41421i 0.172885i
\(196\) 0 0
\(197\) −18.0711 + 18.0711i −1.28751 + 1.28751i −0.351216 + 0.936295i \(0.614232\pi\)
−0.936295 + 0.351216i \(0.885768\pi\)
\(198\) 0 0
\(199\) 8.05025 + 8.05025i 0.570667 + 0.570667i 0.932315 0.361648i \(-0.117786\pi\)
−0.361648 + 0.932315i \(0.617786\pi\)
\(200\) 0 0
\(201\) 15.0711 + 15.0711i 1.06303 + 1.06303i
\(202\) 0 0
\(203\) −5.75736 −0.404087
\(204\) 0 0
\(205\) −9.41421 −0.657517
\(206\) 0 0
\(207\) −6.34315 6.34315i −0.440879 0.440879i
\(208\) 0 0
\(209\) −2.41421 2.41421i −0.166995 0.166995i
\(210\) 0 0
\(211\) −3.41421 + 3.41421i −0.235044 + 0.235044i −0.814794 0.579750i \(-0.803150\pi\)
0.579750 + 0.814794i \(0.303150\pi\)
\(212\) 0 0
\(213\) 28.3137i 1.94002i
\(214\) 0 0
\(215\) 7.24264 7.24264i 0.493944 0.493944i
\(216\) 0 0
\(217\) 3.07107 0.208478
\(218\) 0 0
\(219\) 18.8995i 1.27711i
\(220\) 0 0
\(221\) −4.12132 0.121320i −0.277230 0.00816089i
\(222\) 0 0
\(223\) 25.3848i 1.69989i −0.526871 0.849945i \(-0.676635\pi\)
0.526871 0.849945i \(-0.323365\pi\)
\(224\) 0 0
\(225\) −2.82843 −0.188562
\(226\) 0 0
\(227\) 14.5355 14.5355i 0.964757 0.964757i −0.0346425 0.999400i \(-0.511029\pi\)
0.999400 + 0.0346425i \(0.0110293\pi\)
\(228\) 0 0
\(229\) 16.2426i 1.07334i −0.843791 0.536672i \(-0.819681\pi\)
0.843791 0.536672i \(-0.180319\pi\)
\(230\) 0 0
\(231\) 1.41421 1.41421i 0.0930484 0.0930484i
\(232\) 0 0
\(233\) −8.36396 8.36396i −0.547941 0.547941i 0.377904 0.925845i \(-0.376645\pi\)
−0.925845 + 0.377904i \(0.876645\pi\)
\(234\) 0 0
\(235\) −2.29289 2.29289i −0.149572 0.149572i
\(236\) 0 0
\(237\) 28.1421 1.82803
\(238\) 0 0
\(239\) −27.4142 −1.77328 −0.886639 0.462462i \(-0.846966\pi\)
−0.886639 + 0.462462i \(0.846966\pi\)
\(240\) 0 0
\(241\) −19.8284 19.8284i −1.27726 1.27726i −0.942194 0.335067i \(-0.891241\pi\)
−0.335067 0.942194i \(-0.608759\pi\)
\(242\) 0 0
\(243\) −15.3137 15.3137i −0.982375 0.982375i
\(244\) 0 0
\(245\) −4.70711 + 4.70711i −0.300726 + 0.300726i
\(246\) 0 0
\(247\) 2.41421i 0.153613i
\(248\) 0 0
\(249\) −16.8995 + 16.8995i −1.07096 + 1.07096i
\(250\) 0 0
\(251\) 2.14214 0.135210 0.0676052 0.997712i \(-0.478464\pi\)
0.0676052 + 0.997712i \(0.478464\pi\)
\(252\) 0 0
\(253\) 4.48528i 0.281987i
\(254\) 0 0
\(255\) −0.292893 + 9.94975i −0.0183417 + 0.623077i
\(256\) 0 0
\(257\) 22.5858i 1.40886i −0.709772 0.704431i \(-0.751202\pi\)
0.709772 0.704431i \(-0.248798\pi\)
\(258\) 0 0
\(259\) 1.31371 0.0816299
\(260\) 0 0
\(261\) 19.6569 19.6569i 1.21673 1.21673i
\(262\) 0 0
\(263\) 29.7279i 1.83310i 0.399918 + 0.916551i \(0.369039\pi\)
−0.399918 + 0.916551i \(0.630961\pi\)
\(264\) 0 0
\(265\) 2.46447 2.46447i 0.151391 0.151391i
\(266\) 0 0
\(267\) −25.0208 25.0208i −1.53125 1.53125i
\(268\) 0 0
\(269\) −2.46447 2.46447i −0.150261 0.150261i 0.627974 0.778235i \(-0.283885\pi\)
−0.778235 + 0.627974i \(0.783885\pi\)
\(270\) 0 0
\(271\) 6.34315 0.385319 0.192659 0.981266i \(-0.438289\pi\)
0.192659 + 0.981266i \(0.438289\pi\)
\(272\) 0 0
\(273\) −1.41421 −0.0855921
\(274\) 0 0
\(275\) −1.00000 1.00000i −0.0603023 0.0603023i
\(276\) 0 0
\(277\) 5.89949 + 5.89949i 0.354466 + 0.354466i 0.861768 0.507302i \(-0.169357\pi\)
−0.507302 + 0.861768i \(0.669357\pi\)
\(278\) 0 0
\(279\) −10.4853 + 10.4853i −0.627737 + 0.627737i
\(280\) 0 0
\(281\) 1.48528i 0.0886045i −0.999018 0.0443022i \(-0.985894\pi\)
0.999018 0.0443022i \(-0.0141065\pi\)
\(282\) 0 0
\(283\) −6.77817 + 6.77817i −0.402921 + 0.402921i −0.879261 0.476340i \(-0.841963\pi\)
0.476340 + 0.879261i \(0.341963\pi\)
\(284\) 0 0
\(285\) 5.82843 0.345246
\(286\) 0 0
\(287\) 5.51472i 0.325524i
\(288\) 0 0
\(289\) 16.9706 + 1.00000i 0.998268 + 0.0588235i
\(290\) 0 0
\(291\) 34.5563i 2.02573i
\(292\) 0 0
\(293\) 5.48528 0.320454 0.160227 0.987080i \(-0.448777\pi\)
0.160227 + 0.987080i \(0.448777\pi\)
\(294\) 0 0
\(295\) −7.70711 + 7.70711i −0.448725 + 0.448725i
\(296\) 0 0
\(297\) 0.585786i 0.0339908i
\(298\) 0 0
\(299\) −2.24264 + 2.24264i −0.129695 + 0.129695i
\(300\) 0 0
\(301\) −4.24264 4.24264i −0.244542 0.244542i
\(302\) 0 0
\(303\) 7.41421 + 7.41421i 0.425935 + 0.425935i
\(304\) 0 0
\(305\) −8.17157 −0.467903
\(306\) 0 0
\(307\) −9.89949 −0.564994 −0.282497 0.959268i \(-0.591163\pi\)
−0.282497 + 0.959268i \(0.591163\pi\)
\(308\) 0 0
\(309\) −4.00000 4.00000i −0.227552 0.227552i
\(310\) 0 0
\(311\) 2.58579 + 2.58579i 0.146626 + 0.146626i 0.776609 0.629983i \(-0.216938\pi\)
−0.629983 + 0.776609i \(0.716938\pi\)
\(312\) 0 0
\(313\) 6.48528 6.48528i 0.366570 0.366570i −0.499655 0.866225i \(-0.666540\pi\)
0.866225 + 0.499655i \(0.166540\pi\)
\(314\) 0 0
\(315\) 1.65685i 0.0933532i
\(316\) 0 0
\(317\) −24.4853 + 24.4853i −1.37523 + 1.37523i −0.522735 + 0.852495i \(0.675088\pi\)
−0.852495 + 0.522735i \(0.824912\pi\)
\(318\) 0 0
\(319\) 13.8995 0.778222
\(320\) 0 0
\(321\) 30.1421i 1.68237i
\(322\) 0 0
\(323\) 0.292893 9.94975i 0.0162970 0.553619i
\(324\) 0 0
\(325\) 1.00000i 0.0554700i
\(326\) 0 0
\(327\) 28.5563 1.57917
\(328\) 0 0
\(329\) −1.34315 + 1.34315i −0.0740500 + 0.0740500i
\(330\) 0 0
\(331\) 8.55635i 0.470299i 0.971959 + 0.235150i \(0.0755581\pi\)
−0.971959 + 0.235150i \(0.924442\pi\)
\(332\) 0 0
\(333\) −4.48528 + 4.48528i −0.245792 + 0.245792i
\(334\) 0 0
\(335\) −6.24264 6.24264i −0.341072 0.341072i
\(336\) 0 0
\(337\) −21.4350 21.4350i −1.16764 1.16764i −0.982761 0.184879i \(-0.940811\pi\)
−0.184879 0.982761i \(-0.559189\pi\)
\(338\) 0 0
\(339\) −8.41421 −0.456997
\(340\) 0 0
\(341\) −7.41421 −0.401502
\(342\) 0 0
\(343\) 5.65685 + 5.65685i 0.305441 + 0.305441i
\(344\) 0 0
\(345\) 5.41421 + 5.41421i 0.291491 + 0.291491i
\(346\) 0 0
\(347\) 10.4350 10.4350i 0.560182 0.560182i −0.369177 0.929359i \(-0.620360\pi\)
0.929359 + 0.369177i \(0.120360\pi\)
\(348\) 0 0
\(349\) 8.97056i 0.480183i 0.970750 + 0.240092i \(0.0771775\pi\)
−0.970750 + 0.240092i \(0.922823\pi\)
\(350\) 0 0
\(351\) −0.292893 + 0.292893i −0.0156335 + 0.0156335i
\(352\) 0 0
\(353\) 5.31371 0.282820 0.141410 0.989951i \(-0.454836\pi\)
0.141410 + 0.989951i \(0.454836\pi\)
\(354\) 0 0
\(355\) 11.7279i 0.622453i
\(356\) 0 0
\(357\) 5.82843 + 0.171573i 0.308473 + 0.00908060i
\(358\) 0 0
\(359\) 12.3848i 0.653643i 0.945086 + 0.326822i \(0.105978\pi\)
−0.945086 + 0.326822i \(0.894022\pi\)
\(360\) 0 0
\(361\) 13.1716 0.693241
\(362\) 0 0
\(363\) 15.3640 15.3640i 0.806399 0.806399i
\(364\) 0 0
\(365\) 7.82843i 0.409759i
\(366\) 0 0
\(367\) −5.55635 + 5.55635i −0.290039 + 0.290039i −0.837096 0.547057i \(-0.815748\pi\)
0.547057 + 0.837096i \(0.315748\pi\)
\(368\) 0 0
\(369\) −18.8284 18.8284i −0.980169 0.980169i
\(370\) 0 0
\(371\) −1.44365 1.44365i −0.0749506 0.0749506i
\(372\) 0 0
\(373\) 24.2843 1.25739 0.628696 0.777651i \(-0.283589\pi\)
0.628696 + 0.777651i \(0.283589\pi\)
\(374\) 0 0
\(375\) 2.41421 0.124669
\(376\) 0 0
\(377\) −6.94975 6.94975i −0.357930 0.357930i
\(378\) 0 0
\(379\) 4.00000 + 4.00000i 0.205466 + 0.205466i 0.802337 0.596871i \(-0.203590\pi\)
−0.596871 + 0.802337i \(0.703590\pi\)
\(380\) 0 0
\(381\) 13.1924 13.1924i 0.675867 0.675867i
\(382\) 0 0
\(383\) 22.2132i 1.13504i −0.823359 0.567521i \(-0.807903\pi\)
0.823359 0.567521i \(-0.192097\pi\)
\(384\) 0 0
\(385\) −0.585786 + 0.585786i −0.0298544 + 0.0298544i
\(386\) 0 0
\(387\) 28.9706 1.47266
\(388\) 0 0
\(389\) 10.6274i 0.538831i −0.963024 0.269416i \(-0.913169\pi\)
0.963024 0.269416i \(-0.0868306\pi\)
\(390\) 0 0
\(391\) 9.51472 8.97056i 0.481180 0.453661i
\(392\) 0 0
\(393\) 48.0416i 2.42338i
\(394\) 0 0
\(395\) −11.6569 −0.586520
\(396\) 0 0
\(397\) −16.4853 + 16.4853i −0.827373 + 0.827373i −0.987153 0.159780i \(-0.948921\pi\)
0.159780 + 0.987153i \(0.448921\pi\)
\(398\) 0 0
\(399\) 3.41421i 0.170924i
\(400\) 0 0
\(401\) 14.8284 14.8284i 0.740496 0.740496i −0.232177 0.972674i \(-0.574585\pi\)
0.972674 + 0.232177i \(0.0745849\pi\)
\(402\) 0 0
\(403\) 3.70711 + 3.70711i 0.184664 + 0.184664i
\(404\) 0 0
\(405\) 6.70711 + 6.70711i 0.333279 + 0.333279i
\(406\) 0 0
\(407\) −3.17157 −0.157209
\(408\) 0 0
\(409\) 11.4853 0.567911 0.283955 0.958838i \(-0.408353\pi\)
0.283955 + 0.958838i \(0.408353\pi\)
\(410\) 0 0
\(411\) 28.5563 + 28.5563i 1.40858 + 1.40858i
\(412\) 0 0
\(413\) 4.51472 + 4.51472i 0.222155 + 0.222155i
\(414\) 0 0
\(415\) 7.00000 7.00000i 0.343616 0.343616i
\(416\) 0 0
\(417\) 2.24264i 0.109823i
\(418\) 0 0
\(419\) −9.75736 + 9.75736i −0.476678 + 0.476678i −0.904068 0.427389i \(-0.859433\pi\)
0.427389 + 0.904068i \(0.359433\pi\)
\(420\) 0 0
\(421\) 22.9289 1.11749 0.558744 0.829340i \(-0.311283\pi\)
0.558744 + 0.829340i \(0.311283\pi\)
\(422\) 0 0
\(423\) 9.17157i 0.445937i
\(424\) 0 0
\(425\) 0.121320 4.12132i 0.00588490 0.199913i
\(426\) 0 0
\(427\) 4.78680i 0.231649i
\(428\) 0 0
\(429\) 3.41421 0.164840
\(430\) 0 0
\(431\) −16.0000 + 16.0000i −0.770693 + 0.770693i −0.978228 0.207535i \(-0.933456\pi\)
0.207535 + 0.978228i \(0.433456\pi\)
\(432\) 0 0
\(433\) 0.928932i 0.0446416i −0.999751 0.0223208i \(-0.992894\pi\)
0.999751 0.0223208i \(-0.00710553\pi\)
\(434\) 0 0
\(435\) −16.7782 + 16.7782i −0.804452 + 0.804452i
\(436\) 0 0
\(437\) −5.41421 5.41421i −0.258997 0.258997i
\(438\) 0 0
\(439\) 22.6274 + 22.6274i 1.07995 + 1.07995i 0.996513 + 0.0834344i \(0.0265889\pi\)
0.0834344 + 0.996513i \(0.473411\pi\)
\(440\) 0 0
\(441\) −18.8284 −0.896592
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 10.3640 + 10.3640i 0.491299 + 0.491299i
\(446\) 0 0
\(447\) 3.00000 + 3.00000i 0.141895 + 0.141895i
\(448\) 0 0
\(449\) −29.3848 + 29.3848i −1.38675 + 1.38675i −0.554709 + 0.832045i \(0.687170\pi\)
−0.832045 + 0.554709i \(0.812830\pi\)
\(450\) 0 0
\(451\) 13.3137i 0.626918i
\(452\) 0 0
\(453\) −8.24264 + 8.24264i −0.387273 + 0.387273i
\(454\) 0 0
\(455\) 0.585786 0.0274621
\(456\) 0 0
\(457\) 27.5563i 1.28903i −0.764591 0.644516i \(-0.777059\pi\)
0.764591 0.644516i \(-0.222941\pi\)
\(458\) 0 0
\(459\) 1.24264 1.17157i 0.0580015 0.0546843i
\(460\) 0 0
\(461\) 6.97056i 0.324651i −0.986737 0.162326i \(-0.948100\pi\)
0.986737 0.162326i \(-0.0518995\pi\)
\(462\) 0 0
\(463\) 1.10051 0.0511448 0.0255724 0.999673i \(-0.491859\pi\)
0.0255724 + 0.999673i \(0.491859\pi\)
\(464\) 0 0
\(465\) 8.94975 8.94975i 0.415035 0.415035i
\(466\) 0 0
\(467\) 25.2132i 1.16673i −0.812211 0.583364i \(-0.801736\pi\)
0.812211 0.583364i \(-0.198264\pi\)
\(468\) 0 0
\(469\) −3.65685 + 3.65685i −0.168858 + 0.168858i
\(470\) 0 0
\(471\) −4.82843 4.82843i −0.222482 0.222482i
\(472\) 0 0
\(473\) 10.2426 + 10.2426i 0.470957 + 0.470957i
\(474\) 0 0
\(475\) −2.41421 −0.110772
\(476\) 0 0
\(477\) 9.85786 0.451361
\(478\) 0 0
\(479\) −19.0208 19.0208i −0.869083 0.869083i 0.123288 0.992371i \(-0.460656\pi\)
−0.992371 + 0.123288i \(0.960656\pi\)
\(480\) 0 0
\(481\) 1.58579 + 1.58579i 0.0723056 + 0.0723056i
\(482\) 0 0
\(483\) 3.17157 3.17157i 0.144312 0.144312i
\(484\) 0 0
\(485\) 14.3137i 0.649952i
\(486\) 0 0
\(487\) −14.4142 + 14.4142i −0.653170 + 0.653170i −0.953755 0.300585i \(-0.902818\pi\)
0.300585 + 0.953755i \(0.402818\pi\)
\(488\) 0 0
\(489\) 1.17157 0.0529804
\(490\) 0 0
\(491\) 8.27208i 0.373314i 0.982425 + 0.186657i \(0.0597652\pi\)
−0.982425 + 0.186657i \(0.940235\pi\)
\(492\) 0 0
\(493\) 27.7990 + 29.4853i 1.25200 + 1.32795i
\(494\) 0 0
\(495\) 4.00000i 0.179787i
\(496\) 0 0
\(497\) 6.87006 0.308164
\(498\) 0 0
\(499\) 19.2426 19.2426i 0.861419 0.861419i −0.130084 0.991503i \(-0.541525\pi\)
0.991503 + 0.130084i \(0.0415247\pi\)
\(500\) 0 0
\(501\) 36.6274i 1.63639i
\(502\) 0 0
\(503\) −26.1421 + 26.1421i −1.16562 + 1.16562i −0.182395 + 0.983225i \(0.558385\pi\)
−0.983225 + 0.182395i \(0.941615\pi\)
\(504\) 0 0
\(505\) −3.07107 3.07107i −0.136661 0.136661i
\(506\) 0 0
\(507\) 20.4853 + 20.4853i 0.909783 + 0.909783i
\(508\) 0 0
\(509\) 32.0000 1.41838 0.709188 0.705020i \(-0.249062\pi\)
0.709188 + 0.705020i \(0.249062\pi\)
\(510\) 0 0
\(511\) 4.58579 0.202863
\(512\) 0 0
\(513\) −0.707107 0.707107i −0.0312195 0.0312195i
\(514\) 0 0
\(515\) 1.65685 + 1.65685i 0.0730097 + 0.0730097i
\(516\) 0 0
\(517\) 3.24264 3.24264i 0.142611 0.142611i
\(518\) 0 0
\(519\) 3.17157i 0.139217i
\(520\) 0 0
\(521\) 4.68629 4.68629i 0.205310 0.205310i −0.596960 0.802271i \(-0.703625\pi\)
0.802271 + 0.596960i \(0.203625\pi\)
\(522\) 0 0
\(523\) −4.82843 −0.211132 −0.105566 0.994412i \(-0.533665\pi\)
−0.105566 + 0.994412i \(0.533665\pi\)
\(524\) 0 0
\(525\) 1.41421i 0.0617213i
\(526\) 0 0
\(527\) −14.8284 15.7279i −0.645936 0.685119i
\(528\) 0 0
\(529\) 12.9411i 0.562658i
\(530\) 0 0
\(531\) −30.8284 −1.33784
\(532\) 0 0
\(533\) −6.65685 + 6.65685i −0.288340 + 0.288340i
\(534\) 0 0
\(535\) 12.4853i 0.539786i
\(536\) 0 0
\(537\) −11.6569 + 11.6569i −0.503030 + 0.503030i
\(538\) 0 0
\(539\) −6.65685 6.65685i −0.286731 0.286731i
\(540\) 0 0
\(541\) −11.3137 11.3137i −0.486414 0.486414i 0.420758 0.907173i \(-0.361764\pi\)
−0.907173 + 0.420758i \(0.861764\pi\)
\(542\) 0 0
\(543\) −23.3137 −1.00049
\(544\) 0 0
\(545\) −11.8284 −0.506674
\(546\) 0 0
\(547\) −11.4645 11.4645i −0.490185 0.490185i 0.418179 0.908364i \(-0.362668\pi\)
−0.908364 + 0.418179i \(0.862668\pi\)
\(548\) 0 0
\(549\) −16.3431 16.3431i −0.697508 0.697508i
\(550\) 0 0
\(551\) 16.7782 16.7782i 0.714774 0.714774i
\(552\) 0 0
\(553\) 6.82843i 0.290374i
\(554\) 0 0
\(555\) 3.82843 3.82843i 0.162508 0.162508i
\(556\) 0 0
\(557\) 7.82843 0.331701 0.165851 0.986151i \(-0.446963\pi\)
0.165851 + 0.986151i \(0.446963\pi\)
\(558\) 0 0
\(559\) 10.2426i 0.433218i
\(560\) 0 0
\(561\) −14.0711 0.414214i −0.594081 0.0174881i
\(562\) 0 0
\(563\) 32.1421i 1.35463i 0.735693 + 0.677315i \(0.236856\pi\)
−0.735693 + 0.677315i \(0.763144\pi\)
\(564\) 0 0
\(565\) 3.48528 0.146627
\(566\) 0 0
\(567\) 3.92893 3.92893i 0.165000 0.165000i
\(568\) 0 0
\(569\) 25.9706i 1.08874i 0.838844 + 0.544371i \(0.183232\pi\)
−0.838844 + 0.544371i \(0.816768\pi\)
\(570\) 0 0
\(571\) −23.0416 + 23.0416i −0.964262 + 0.964262i −0.999383 0.0351208i \(-0.988818\pi\)
0.0351208 + 0.999383i \(0.488818\pi\)
\(572\) 0 0
\(573\) 0.414214 + 0.414214i 0.0173040 + 0.0173040i
\(574\) 0 0
\(575\) −2.24264 2.24264i −0.0935246 0.0935246i
\(576\) 0 0
\(577\) 18.3431 0.763635 0.381818 0.924238i \(-0.375298\pi\)
0.381818 + 0.924238i \(0.375298\pi\)
\(578\) 0 0
\(579\) −9.65685 −0.401325
\(580\) 0 0
\(581\) −4.10051 4.10051i −0.170118 0.170118i
\(582\) 0 0
\(583\) 3.48528 + 3.48528i 0.144346 + 0.144346i
\(584\) 0 0
\(585\) −2.00000 + 2.00000i −0.0826898 + 0.0826898i
\(586\) 0 0
\(587\) 3.17157i 0.130905i 0.997856 + 0.0654524i \(0.0208491\pi\)
−0.997856 + 0.0654524i \(0.979151\pi\)
\(588\) 0 0
\(589\) −8.94975 + 8.94975i −0.368768 + 0.368768i
\(590\) 0 0
\(591\) 61.6985 2.53794
\(592\) 0 0
\(593\) 14.2843i 0.586585i −0.956023 0.293292i \(-0.905249\pi\)
0.956023 0.293292i \(-0.0947509\pi\)
\(594\) 0 0
\(595\) −2.41421 0.0710678i −0.0989731 0.00291350i
\(596\) 0 0
\(597\) 27.4853i 1.12490i
\(598\) 0 0
\(599\) −42.7696 −1.74752 −0.873758 0.486360i \(-0.838324\pi\)
−0.873758 + 0.486360i \(0.838324\pi\)
\(600\) 0 0
\(601\) 13.1716 13.1716i 0.537280 0.537280i −0.385449 0.922729i \(-0.625954\pi\)
0.922729 + 0.385449i \(0.125954\pi\)
\(602\) 0 0
\(603\) 24.9706i 1.01688i
\(604\) 0 0
\(605\) −6.36396 + 6.36396i −0.258732 + 0.258732i
\(606\) 0 0
\(607\) 4.07107 + 4.07107i 0.165240 + 0.165240i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(608\) 0 0
\(609\) 9.82843 + 9.82843i 0.398268 + 0.398268i
\(610\) 0 0
\(611\) −3.24264 −0.131183
\(612\) 0 0
\(613\) −23.2843 −0.940443 −0.470221 0.882548i \(-0.655826\pi\)
−0.470221 + 0.882548i \(0.655826\pi\)
\(614\) 0 0
\(615\) 16.0711 + 16.0711i 0.648048 + 0.648048i
\(616\) 0 0
\(617\) 0.564971 + 0.564971i 0.0227449 + 0.0227449i 0.718388 0.695643i \(-0.244880\pi\)
−0.695643 + 0.718388i \(0.744880\pi\)
\(618\) 0 0
\(619\) 10.2426 10.2426i 0.411686 0.411686i −0.470639 0.882326i \(-0.655977\pi\)
0.882326 + 0.470639i \(0.155977\pi\)
\(620\) 0 0
\(621\) 1.31371i 0.0527173i
\(622\) 0 0
\(623\) 6.07107 6.07107i 0.243232 0.243232i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 8.24264i 0.329179i
\(628\) 0 0
\(629\) −6.34315 6.72792i −0.252918 0.268260i
\(630\) 0 0
\(631\) 49.6569i 1.97681i −0.151847 0.988404i \(-0.548522\pi\)
0.151847 0.988404i \(-0.451478\pi\)
\(632\) 0 0
\(633\) 11.6569 0.463318
\(634\) 0 0
\(635\) −5.46447 + 5.46447i −0.216851 + 0.216851i
\(636\) 0 0
\(637\) 6.65685i 0.263754i
\(638\) 0 0
\(639\) −23.4558 + 23.4558i −0.927899 + 0.927899i
\(640\) 0 0
\(641\) −11.0711 11.0711i −0.437281 0.437281i 0.453815 0.891096i \(-0.350063\pi\)
−0.891096 + 0.453815i \(0.850063\pi\)
\(642\) 0 0
\(643\) 18.3848 + 18.3848i 0.725025 + 0.725025i 0.969624 0.244599i \(-0.0786565\pi\)
−0.244599 + 0.969624i \(0.578656\pi\)
\(644\) 0 0
\(645\) −24.7279 −0.973661
\(646\) 0 0
\(647\) −48.2132 −1.89546 −0.947728 0.319078i \(-0.896627\pi\)
−0.947728 + 0.319078i \(0.896627\pi\)
\(648\) 0 0
\(649\) −10.8995 10.8995i −0.427843 0.427843i
\(650\) 0 0
\(651\) −5.24264 5.24264i −0.205475 0.205475i
\(652\) 0 0
\(653\) 6.51472 6.51472i 0.254941 0.254941i −0.568052 0.822993i \(-0.692303\pi\)
0.822993 + 0.568052i \(0.192303\pi\)
\(654\) 0 0
\(655\) 19.8995i 0.777538i
\(656\) 0 0
\(657\) −15.6569 + 15.6569i −0.610832 + 0.610832i
\(658\) 0 0
\(659\) 10.7574 0.419047 0.209524 0.977804i \(-0.432809\pi\)
0.209524 + 0.977804i \(0.432809\pi\)
\(660\) 0 0
\(661\) 11.3137i 0.440052i −0.975494 0.220026i \(-0.929386\pi\)
0.975494 0.220026i \(-0.0706143\pi\)
\(662\) 0 0
\(663\) 6.82843 + 7.24264i 0.265194 + 0.281281i
\(664\) 0 0
\(665\) 1.41421i 0.0548408i
\(666\) 0 0
\(667\) 31.1716 1.20697
\(668\) 0 0
\(669\) −43.3345 + 43.3345i −1.67541 + 1.67541i
\(670\) 0 0
\(671\) 11.5563i 0.446128i
\(672\) 0 0
\(673\) −8.46447 + 8.46447i −0.326281 + 0.326281i −0.851170 0.524889i \(-0.824107\pi\)
0.524889 + 0.851170i \(0.324107\pi\)
\(674\) 0 0
\(675\) −0.292893 0.292893i −0.0112735 0.0112735i
\(676\) 0 0
\(677\) −31.8284 31.8284i −1.22327 1.22327i −0.966464 0.256802i \(-0.917331\pi\)
−0.256802 0.966464i \(-0.582669\pi\)
\(678\) 0 0
\(679\) 8.38478 0.321778
\(680\) 0 0
\(681\) −49.6274 −1.90173
\(682\) 0 0
\(683\) −8.19239 8.19239i −0.313473 0.313473i 0.532780 0.846253i \(-0.321147\pi\)
−0.846253 + 0.532780i \(0.821147\pi\)
\(684\) 0 0
\(685\) −11.8284 11.8284i −0.451941 0.451941i
\(686\) 0 0
\(687\) −27.7279 + 27.7279i −1.05789 + 1.05789i
\(688\) 0 0
\(689\) 3.48528i 0.132779i
\(690\) 0 0
\(691\) 23.8284 23.8284i 0.906476 0.906476i −0.0895098 0.995986i \(-0.528530\pi\)
0.995986 + 0.0895098i \(0.0285301\pi\)
\(692\) 0 0
\(693\) −2.34315 −0.0890087
\(694\) 0 0
\(695\) 0.928932i 0.0352364i
\(696\) 0 0
\(697\) 28.2426 26.6274i 1.06977 1.00859i
\(698\) 0 0
\(699\) 28.5563i 1.08010i
\(700\) 0 0
\(701\) 8.97056 0.338813 0.169407 0.985546i \(-0.445815\pi\)
0.169407 + 0.985546i \(0.445815\pi\)
\(702\) 0 0
\(703\) −3.82843 + 3.82843i −0.144392 + 0.144392i
\(704\) 0 0
\(705\) 7.82843i 0.294836i
\(706\) 0 0
\(707\) −1.79899 + 1.79899i −0.0676580 + 0.0676580i
\(708\) 0 0
\(709\) −16.5061 16.5061i −0.619899 0.619899i 0.325606 0.945506i \(-0.394432\pi\)
−0.945506 + 0.325606i \(0.894432\pi\)
\(710\) 0 0
\(711\) −23.3137 23.3137i −0.874332 0.874332i
\(712\) 0 0
\(713\) −16.6274 −0.622702
\(714\) 0 0
\(715\) −1.41421 −0.0528886
\(716\) 0 0
\(717\) 46.7990 + 46.7990i 1.74774 + 1.74774i
\(718\) 0 0
\(719\) 36.6777 + 36.6777i 1.36785 + 1.36785i 0.863504 + 0.504343i \(0.168265\pi\)
0.504343 + 0.863504i \(0.331735\pi\)
\(720\) 0 0
\(721\) 0.970563 0.970563i 0.0361456 0.0361456i
\(722\) 0 0
\(723\) 67.6985i 2.51773i
\(724\) 0 0
\(725\) 6.94975 6.94975i 0.258107 0.258107i
\(726\) 0 0
\(727\) 22.2132 0.823842 0.411921 0.911220i \(-0.364858\pi\)
0.411921 + 0.911220i \(0.364858\pi\)
\(728\) 0 0
\(729\) 23.8284i 0.882534i
\(730\) 0 0
\(731\) −1.24264 + 42.2132i −0.0459607 + 1.56131i
\(732\) 0 0
\(733\) 10.8284i 0.399957i −0.979800 0.199979i \(-0.935913\pi\)
0.979800 0.199979i \(-0.0640872\pi\)
\(734\) 0 0
\(735\) 16.0711 0.592790
\(736\) 0 0
\(737\) 8.82843 8.82843i 0.325199 0.325199i
\(738\) 0 0
\(739\) 5.87006i 0.215934i −0.994155 0.107967i \(-0.965566\pi\)
0.994155 0.107967i \(-0.0344340\pi\)
\(740\) 0 0
\(741\) 4.12132 4.12132i 0.151400 0.151400i
\(742\) 0 0
\(743\) −4.55635 4.55635i −0.167156 0.167156i 0.618572 0.785728i \(-0.287712\pi\)
−0.785728 + 0.618572i \(0.787712\pi\)
\(744\) 0 0
\(745\) −1.24264 1.24264i −0.0455268 0.0455268i
\(746\) 0 0
\(747\) 28.0000 1.02447
\(748\) 0 0
\(749\) 7.31371 0.267237
\(750\) 0 0
\(751\) 2.15076 + 2.15076i 0.0784823 + 0.0784823i 0.745258 0.666776i \(-0.232326\pi\)
−0.666776 + 0.745258i \(0.732326\pi\)
\(752\) 0 0
\(753\) −3.65685 3.65685i −0.133263 0.133263i
\(754\) 0 0
\(755\) 3.41421 3.41421i 0.124256 0.124256i
\(756\) 0 0
\(757\) 39.8284i 1.44759i 0.690016 + 0.723794i \(0.257604\pi\)
−0.690016 + 0.723794i \(0.742396\pi\)
\(758\) 0 0
\(759\) −7.65685 + 7.65685i −0.277926 + 0.277926i
\(760\) 0 0
\(761\) 43.1127 1.56283 0.781417 0.624009i \(-0.214497\pi\)
0.781417 + 0.624009i \(0.214497\pi\)
\(762\) 0 0
\(763\) 6.92893i 0.250844i
\(764\) 0 0
\(765\) 8.48528 8.00000i 0.306786 0.289241i
\(766\) 0 0
\(767\) 10.8995i 0.393558i
\(768\) 0 0
\(769\) 23.1421 0.834527 0.417263 0.908786i \(-0.362989\pi\)
0.417263 + 0.908786i \(0.362989\pi\)
\(770\) 0 0
\(771\) −38.5563 + 38.5563i −1.38857 + 1.38857i
\(772\) 0 0
\(773\) 23.5147i 0.845766i −0.906184 0.422883i \(-0.861018\pi\)
0.906184 0.422883i \(-0.138982\pi\)
\(774\) 0 0
\(775\) −3.70711 + 3.70711i −0.133163 + 0.133163i
\(776\) 0 0
\(777\) −2.24264 2.24264i −0.0804543 0.0804543i
\(778\) 0 0
\(779\) −16.0711 16.0711i −0.575806 0.575806i
\(780\) 0 0
\(781\) −16.5858 −0.593486
\(782\) 0 0
\(783\) 4.07107 0.145488
\(784\) 0 0
\(785\) 2.00000 + 2.00000i 0.0713831 + 0.0713831i
\(786\) 0 0
\(787\) 0.393398 + 0.393398i 0.0140231 + 0.0140231i 0.714084 0.700060i \(-0.246844\pi\)
−0.700060 + 0.714084i \(0.746844\pi\)
\(788\) 0 0
\(789\) 50.7487 50.7487i 1.80670 1.80670i
\(790\) 0 0
\(791\) 2.04163i 0.0725920i
\(792\) 0 0
\(793\) −5.77817 + 5.77817i −0.205189 + 0.205189i
\(794\) 0 0
\(795\) −8.41421 −0.298421
\(796\) 0 0
\(797\) 26.6274i 0.943192i 0.881815 + 0.471596i \(0.156322\pi\)
−0.881815 + 0.471596i \(0.843678\pi\)
\(798\) 0 0
\(799\) 13.3640 + 0.393398i 0.472783 + 0.0139174i
\(800\) 0 0
\(801\) 41.4558i 1.46477i
\(802\) 0 0
\(803\) −11.0711 −0.390689
\(804\) 0 0
\(805\) −1.31371 + 1.31371i −0.0463021 + 0.0463021i
\(806\) 0 0
\(807\) 8.41421i 0.296194i
\(808\) 0 0
\(809\) 25.8284 25.8284i 0.908079 0.908079i −0.0880380 0.996117i \(-0.528060\pi\)
0.996117 + 0.0880380i \(0.0280597\pi\)
\(810\) 0 0
\(811\) −36.0711 36.0711i −1.26663 1.26663i −0.947820 0.318807i \(-0.896718\pi\)
−0.318807 0.947820i \(-0.603282\pi\)
\(812\) 0 0
\(813\) −10.8284 10.8284i −0.379770 0.379770i
\(814\) 0 0
\(815\) −0.485281 −0.0169987
\(816\) 0 0
\(817\) 24.7279 0.865120
\(818\) 0 0
\(819\) 1.17157 + 1.17157i 0.0409381 + 0.0409381i
\(820\) 0 0
\(821\) −3.92031 3.92031i −0.136820 0.136820i 0.635380 0.772200i \(-0.280844\pi\)
−0.772200 + 0.635380i \(0.780844\pi\)
\(822\) 0 0
\(823\) −8.58579 + 8.58579i −0.299282 + 0.299282i −0.840732 0.541451i \(-0.817875\pi\)
0.541451 + 0.840732i \(0.317875\pi\)
\(824\) 0 0
\(825\) 3.41421i 0.118868i
\(826\) 0 0
\(827\) −10.1421 + 10.1421i −0.352677 + 0.352677i −0.861105 0.508428i \(-0.830227\pi\)
0.508428 + 0.861105i \(0.330227\pi\)
\(828\) 0 0
\(829\) −11.3137 −0.392941 −0.196471 0.980510i \(-0.562948\pi\)
−0.196471 + 0.980510i \(0.562948\pi\)
\(830\) 0 0
\(831\) 20.1421i 0.698723i
\(832\) 0 0
\(833\) 0.807612 27.4350i 0.0279821 0.950567i
\(834\) 0 0
\(835\) 15.1716i 0.525034i
\(836\) 0 0
\(837\) −2.17157 −0.0750605
\(838\) 0 0
\(839\) 8.87868 8.87868i 0.306526 0.306526i −0.537034 0.843560i \(-0.680455\pi\)
0.843560 + 0.537034i \(0.180455\pi\)
\(840\) 0 0
\(841\) 67.5980i 2.33096i
\(842\) 0 0
\(843\) −2.53553 + 2.53553i −0.0873284 + 0.0873284i
\(844\) 0 0
\(845\) −8.48528 8.48528i −0.291903 0.291903i
\(846\) 0 0
\(847\) 3.72792 + 3.72792i 0.128093 + 0.128093i
\(848\) 0 0
\(849\) 23.1421 0.794236
\(850\) 0 0
\(851\) −7.11270 −0.243820
\(852\) 0 0
\(853\) −0.514719 0.514719i −0.0176236 0.0176236i 0.698240 0.715864i \(-0.253967\pi\)
−0.715864 + 0.698240i \(0.753967\pi\)
\(854\) 0 0
\(855\) −4.82843 4.82843i −0.165129 0.165129i
\(856\) 0 0
\(857\) −15.4350 + 15.4350i −0.527251 + 0.527251i −0.919752 0.392501i \(-0.871610\pi\)
0.392501 + 0.919752i \(0.371610\pi\)
\(858\) 0 0
\(859\) 47.8701i 1.63331i 0.577129 + 0.816653i \(0.304173\pi\)
−0.577129 + 0.816653i \(0.695827\pi\)
\(860\) 0 0
\(861\) 9.41421 9.41421i 0.320836 0.320836i
\(862\) 0 0
\(863\) 1.45584 0.0495575 0.0247788 0.999693i \(-0.492112\pi\)
0.0247788 + 0.999693i \(0.492112\pi\)
\(864\) 0 0
\(865\) 1.31371i 0.0446674i
\(866\) 0 0
\(867\) −27.2635 30.6777i −0.925916 1.04187i
\(868\) 0 0
\(869\) 16.4853i 0.559225i
\(870\) 0 0
\(871\) −8.82843 −0.299140
\(872\) 0 0
\(873\) −28.6274 + 28.6274i −0.968891 + 0.968891i
\(874\) 0 0
\(875\) 0.585786i 0.0198032i
\(876\) 0 0
\(877\) −34.2132 + 34.2132i −1.15530 + 1.15530i −0.169823 + 0.985475i \(0.554320\pi\)
−0.985475 + 0.169823i \(0.945680\pi\)
\(878\) 0 0
\(879\) −9.36396 9.36396i −0.315839 0.315839i
\(880\) 0 0
\(881\) 28.0416 + 28.0416i 0.944747 + 0.944747i 0.998551 0.0538049i \(-0.0171349\pi\)
−0.0538049 + 0.998551i \(0.517135\pi\)
\(882\) 0 0
\(883\) 55.4975 1.86764 0.933819 0.357745i \(-0.116454\pi\)
0.933819 + 0.357745i \(0.116454\pi\)
\(884\) 0 0
\(885\) 26.3137 0.884526
\(886\) 0 0
\(887\) −36.8995 36.8995i −1.23896 1.23896i −0.960425 0.278539i \(-0.910150\pi\)
−0.278539 0.960425i \(-0.589850\pi\)
\(888\) 0 0
\(889\) 3.20101 + 3.20101i 0.107358 + 0.107358i
\(890\) 0 0
\(891\) −9.48528 + 9.48528i −0.317769 + 0.317769i
\(892\) 0 0
\(893\) 7.82843i 0.261968i
\(894\) 0 0
\(895\) 4.82843 4.82843i 0.161397 0.161397i
\(896\) 0 0
\(897\) 7.65685 0.255655
\(898\) 0 0
\(899\) 51.5269i 1.71852i
\(900\) 0 0
\(901\) −0.422836 + 14.3640i −0.0140867 + 0.478533i
\(902\) 0 0
\(903\) 14.4853i 0.482040i
\(904\) 0 0
\(905\) 9.65685 0.321005
\(906\) 0 0
\(907\) −2.97918 + 2.97918i −0.0989222 + 0.0989222i −0.754836 0.655914i \(-0.772284\pi\)
0.655914 + 0.754836i \(0.272284\pi\)
\(908\) 0 0
\(909\) 12.2843i 0.407444i
\(910\) 0 0
\(911\) 3.31371 3.31371i 0.109788 0.109788i −0.650079 0.759867i \(-0.725264\pi\)
0.759867 + 0.650079i \(0.225264\pi\)
\(912\) 0 0
\(913\) 9.89949 + 9.89949i 0.327625 + 0.327625i
\(914\) 0 0
\(915\) 13.9497 + 13.9497i 0.461164 + 0.461164i
\(916\) 0 0
\(917\) −11.6569 −0.384943
\(918\) 0 0
\(919\) 43.0122 1.41884 0.709421 0.704785i \(-0.248957\pi\)
0.709421 + 0.704785i \(0.248957\pi\)
\(920\) 0 0
\(921\) 16.8995 + 16.8995i 0.556857 + 0.556857i
\(922\) 0 0
\(923\) 8.29289 + 8.29289i 0.272964 + 0.272964i
\(924\) 0 0
\(925\) −1.58579 + 1.58579i −0.0521403 + 0.0521403i
\(926\) 0 0
\(927\) 6.62742i 0.217673i
\(928\) 0 0
\(929\) 13.4853 13.4853i 0.442438 0.442438i −0.450393 0.892831i \(-0.648716\pi\)
0.892831 + 0.450393i \(0.148716\pi\)
\(930\) 0 0
\(931\) −16.0711 −0.526708
\(932\) 0 0
\(933\) 8.82843i 0.289030i
\(934\) 0 0
\(935\) 5.82843 + 0.171573i 0.190610 + 0.00561103i
\(936\) 0 0
\(937\) 45.8406i 1.49755i 0.662826 + 0.748774i \(0.269357\pi\)
−0.662826 + 0.748774i \(0.730643\pi\)
\(938\) 0 0
\(939\) −22.1421 −0.722581
\(940\) 0 0
\(941\) −38.4056 + 38.4056i −1.25199 + 1.25199i −0.297158 + 0.954828i \(0.596039\pi\)
−0.954828 + 0.297158i \(0.903961\pi\)
\(942\) 0 0
\(943\) 29.8579i 0.972306i
\(944\) 0 0
\(945\) −0.171573 + 0.171573i −0.00558127 + 0.00558127i
\(946\) 0 0
\(947\) 14.7782 + 14.7782i 0.480226 + 0.480226i 0.905204 0.424978i \(-0.139718\pi\)
−0.424978 + 0.905204i \(0.639718\pi\)
\(948\) 0 0
\(949\) 5.53553 + 5.53553i 0.179691 + 0.179691i
\(950\) 0 0
\(951\) 83.5980 2.71085
\(952\) 0 0
\(953\) −20.5858 −0.666839 −0.333420 0.942779i \(-0.608203\pi\)
−0.333420 + 0.942779i \(0.608203\pi\)
\(954\) 0 0
\(955\) −0.171573 0.171573i −0.00555197 0.00555197i
\(956\) 0 0
\(957\) −23.7279 23.7279i −0.767015 0.767015i
\(958\) 0 0
\(959\) −6.92893 + 6.92893i −0.223747 + 0.223747i
\(960\) 0 0
\(961\) 3.51472i 0.113378i
\(962\) 0 0
\(963\) −24.9706 + 24.9706i −0.804665 + 0.804665i
\(964\) 0 0
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) 33.5980i 1.08044i 0.841524 + 0.540219i \(0.181659\pi\)
−0.841524 + 0.540219i \(0.818341\pi\)
\(968\) 0 0
\(969\) −17.4853 + 16.4853i −0.561708 + 0.529584i
\(970\) 0 0
\(971\) 22.0122i 0.706405i 0.935547 + 0.353202i \(0.114907\pi\)
−0.935547 + 0.353202i \(0.885093\pi\)
\(972\) 0 0
\(973\) 0.544156 0.0174448
\(974\) 0 0
\(975\) 1.70711 1.70711i 0.0546712 0.0546712i
\(976\) 0 0
\(977\) 34.2426i 1.09552i −0.836636 0.547760i \(-0.815481\pi\)
0.836636 0.547760i \(-0.184519\pi\)
\(978\) 0 0
\(979\) −14.6569 + 14.6569i −0.468435 + 0.468435i
\(980\) 0 0
\(981\) −23.6569 23.6569i −0.755305 0.755305i
\(982\) 0 0
\(983\) 8.07107 + 8.07107i 0.257427 + 0.257427i 0.824007 0.566580i \(-0.191734\pi\)
−0.566580 + 0.824007i \(0.691734\pi\)
\(984\) 0 0
\(985\) −25.5563 −0.814293
\(986\) 0 0
\(987\) 4.58579 0.145967
\(988\) 0 0
\(989\) 22.9706 + 22.9706i 0.730421 + 0.730421i
\(990\) 0 0
\(991\) −22.0919 22.0919i −0.701772 0.701772i 0.263019 0.964791i \(-0.415282\pi\)
−0.964791 + 0.263019i \(0.915282\pi\)
\(992\) 0 0
\(993\) 14.6066 14.6066i 0.463526 0.463526i
\(994\) 0 0
\(995\) 11.3848i 0.360922i
\(996\) 0 0
\(997\) 33.2843 33.2843i 1.05412 1.05412i 0.0556745 0.998449i \(-0.482269\pi\)
0.998449 0.0556745i \(-0.0177309\pi\)
\(998\) 0 0
\(999\) −0.928932 −0.0293901
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bt.a.81.1 4
4.3 odd 2 170.2.h.a.81.2 yes 4
12.11 even 2 1530.2.q.c.1441.1 4
17.4 even 4 inner 1360.2.bt.a.1041.1 4
20.3 even 4 850.2.g.e.149.1 4
20.7 even 4 850.2.g.h.149.2 4
20.19 odd 2 850.2.h.g.251.1 4
68.15 odd 8 2890.2.a.t.1.1 2
68.19 odd 8 2890.2.a.v.1.2 2
68.43 odd 8 2890.2.b.j.2311.4 4
68.55 odd 4 170.2.h.a.21.2 4
68.59 odd 8 2890.2.b.j.2311.1 4
204.191 even 4 1530.2.q.c.361.1 4
340.123 even 4 850.2.g.h.599.2 4
340.259 odd 4 850.2.h.g.701.1 4
340.327 even 4 850.2.g.e.599.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.h.a.21.2 4 68.55 odd 4
170.2.h.a.81.2 yes 4 4.3 odd 2
850.2.g.e.149.1 4 20.3 even 4
850.2.g.e.599.1 4 340.327 even 4
850.2.g.h.149.2 4 20.7 even 4
850.2.g.h.599.2 4 340.123 even 4
850.2.h.g.251.1 4 20.19 odd 2
850.2.h.g.701.1 4 340.259 odd 4
1360.2.bt.a.81.1 4 1.1 even 1 trivial
1360.2.bt.a.1041.1 4 17.4 even 4 inner
1530.2.q.c.361.1 4 204.191 even 4
1530.2.q.c.1441.1 4 12.11 even 2
2890.2.a.t.1.1 2 68.15 odd 8
2890.2.a.v.1.2 2 68.19 odd 8
2890.2.b.j.2311.1 4 68.59 odd 8
2890.2.b.j.2311.4 4 68.43 odd 8