Properties

Label 850.2.h.g.251.1
Level $850$
Weight $2$
Character 850.251
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(251,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.h (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,-4,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 850.251
Dual form 850.2.h.g.701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.70711 - 1.70711i) q^{3} -1.00000 q^{4} +(1.70711 - 1.70711i) q^{6} +(0.414214 - 0.414214i) q^{7} -1.00000i q^{8} +2.82843i q^{9} +(1.00000 - 1.00000i) q^{11} +(1.70711 + 1.70711i) q^{12} -1.00000 q^{13} +(0.414214 + 0.414214i) q^{14} +1.00000 q^{16} +(4.12132 + 0.121320i) q^{17} -2.82843 q^{18} -2.41421i q^{19} -1.41421 q^{21} +(1.00000 + 1.00000i) q^{22} +(-2.24264 + 2.24264i) q^{23} +(-1.70711 + 1.70711i) q^{24} -1.00000i q^{26} +(-0.292893 + 0.292893i) q^{27} +(-0.414214 + 0.414214i) q^{28} +(-6.94975 - 6.94975i) q^{29} +(-3.70711 - 3.70711i) q^{31} +1.00000i q^{32} -3.41421 q^{33} +(-0.121320 + 4.12132i) q^{34} -2.82843i q^{36} +(-1.58579 - 1.58579i) q^{37} +2.41421 q^{38} +(1.70711 + 1.70711i) q^{39} +(-6.65685 + 6.65685i) q^{41} -1.41421i q^{42} -10.2426i q^{43} +(-1.00000 + 1.00000i) q^{44} +(-2.24264 - 2.24264i) q^{46} -3.24264 q^{47} +(-1.70711 - 1.70711i) q^{48} +6.65685i q^{49} +(-6.82843 - 7.24264i) q^{51} +1.00000 q^{52} +3.48528i q^{53} +(-0.292893 - 0.292893i) q^{54} +(-0.414214 - 0.414214i) q^{56} +(-4.12132 + 4.12132i) q^{57} +(6.94975 - 6.94975i) q^{58} -10.8995i q^{59} +(-5.77817 + 5.77817i) q^{61} +(3.70711 - 3.70711i) q^{62} +(1.17157 + 1.17157i) q^{63} -1.00000 q^{64} -3.41421i q^{66} -8.82843 q^{67} +(-4.12132 - 0.121320i) q^{68} +7.65685 q^{69} +(-8.29289 - 8.29289i) q^{71} +2.82843 q^{72} +(-5.53553 - 5.53553i) q^{73} +(1.58579 - 1.58579i) q^{74} +2.41421i q^{76} -0.828427i q^{77} +(-1.70711 + 1.70711i) q^{78} +(8.24264 - 8.24264i) q^{79} +9.48528 q^{81} +(-6.65685 - 6.65685i) q^{82} -9.89949i q^{83} +1.41421 q^{84} +10.2426 q^{86} +23.7279i q^{87} +(-1.00000 - 1.00000i) q^{88} +14.6569 q^{89} +(-0.414214 + 0.414214i) q^{91} +(2.24264 - 2.24264i) q^{92} +12.6569i q^{93} -3.24264i q^{94} +(1.70711 - 1.70711i) q^{96} +(-10.1213 - 10.1213i) q^{97} -6.65685 q^{98} +(2.82843 + 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{4} + 4 q^{6} - 4 q^{7} + 4 q^{11} + 4 q^{12} - 4 q^{13} - 4 q^{14} + 4 q^{16} + 8 q^{17} + 4 q^{22} + 8 q^{23} - 4 q^{24} - 4 q^{27} + 4 q^{28} - 8 q^{29} - 12 q^{31} - 8 q^{33} + 8 q^{34}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.70711 1.70711i −0.985599 0.985599i 0.0142992 0.999898i \(-0.495448\pi\)
−0.999898 + 0.0142992i \(0.995448\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.70711 1.70711i 0.696923 0.696923i
\(7\) 0.414214 0.414214i 0.156558 0.156558i −0.624482 0.781040i \(-0.714690\pi\)
0.781040 + 0.624482i \(0.214690\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.82843i 0.942809i
\(10\) 0 0
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 1.70711 + 1.70711i 0.492799 + 0.492799i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0.414214 + 0.414214i 0.110703 + 0.110703i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.12132 + 0.121320i 0.999567 + 0.0294245i
\(18\) −2.82843 −0.666667
\(19\) 2.41421i 0.553859i −0.960890 0.276929i \(-0.910683\pi\)
0.960890 0.276929i \(-0.0893168\pi\)
\(20\) 0 0
\(21\) −1.41421 −0.308607
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) −2.24264 + 2.24264i −0.467623 + 0.467623i −0.901144 0.433521i \(-0.857271\pi\)
0.433521 + 0.901144i \(0.357271\pi\)
\(24\) −1.70711 + 1.70711i −0.348462 + 0.348462i
\(25\) 0 0
\(26\) 1.00000i 0.196116i
\(27\) −0.292893 + 0.292893i −0.0563673 + 0.0563673i
\(28\) −0.414214 + 0.414214i −0.0782790 + 0.0782790i
\(29\) −6.94975 6.94975i −1.29054 1.29054i −0.934455 0.356080i \(-0.884113\pi\)
−0.356080 0.934455i \(-0.615887\pi\)
\(30\) 0 0
\(31\) −3.70711 3.70711i −0.665816 0.665816i 0.290929 0.956745i \(-0.406036\pi\)
−0.956745 + 0.290929i \(0.906036\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −3.41421 −0.594338
\(34\) −0.121320 + 4.12132i −0.0208063 + 0.706801i
\(35\) 0 0
\(36\) 2.82843i 0.471405i
\(37\) −1.58579 1.58579i −0.260702 0.260702i 0.564637 0.825339i \(-0.309016\pi\)
−0.825339 + 0.564637i \(0.809016\pi\)
\(38\) 2.41421 0.391637
\(39\) 1.70711 + 1.70711i 0.273356 + 0.273356i
\(40\) 0 0
\(41\) −6.65685 + 6.65685i −1.03963 + 1.03963i −0.0404442 + 0.999182i \(0.512877\pi\)
−0.999182 + 0.0404442i \(0.987123\pi\)
\(42\) 1.41421i 0.218218i
\(43\) 10.2426i 1.56199i −0.624538 0.780994i \(-0.714713\pi\)
0.624538 0.780994i \(-0.285287\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 0 0
\(46\) −2.24264 2.24264i −0.330659 0.330659i
\(47\) −3.24264 −0.472988 −0.236494 0.971633i \(-0.575998\pi\)
−0.236494 + 0.971633i \(0.575998\pi\)
\(48\) −1.70711 1.70711i −0.246400 0.246400i
\(49\) 6.65685i 0.950979i
\(50\) 0 0
\(51\) −6.82843 7.24264i −0.956171 1.01417i
\(52\) 1.00000 0.138675
\(53\) 3.48528i 0.478740i 0.970928 + 0.239370i \(0.0769409\pi\)
−0.970928 + 0.239370i \(0.923059\pi\)
\(54\) −0.292893 0.292893i −0.0398577 0.0398577i
\(55\) 0 0
\(56\) −0.414214 0.414214i −0.0553516 0.0553516i
\(57\) −4.12132 + 4.12132i −0.545882 + 0.545882i
\(58\) 6.94975 6.94975i 0.912547 0.912547i
\(59\) 10.8995i 1.41899i −0.704709 0.709497i \(-0.748922\pi\)
0.704709 0.709497i \(-0.251078\pi\)
\(60\) 0 0
\(61\) −5.77817 + 5.77817i −0.739819 + 0.739819i −0.972543 0.232723i \(-0.925236\pi\)
0.232723 + 0.972543i \(0.425236\pi\)
\(62\) 3.70711 3.70711i 0.470803 0.470803i
\(63\) 1.17157 + 1.17157i 0.147604 + 0.147604i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.41421i 0.420261i
\(67\) −8.82843 −1.07856 −0.539282 0.842125i \(-0.681304\pi\)
−0.539282 + 0.842125i \(0.681304\pi\)
\(68\) −4.12132 0.121320i −0.499784 0.0147123i
\(69\) 7.65685 0.921777
\(70\) 0 0
\(71\) −8.29289 8.29289i −0.984185 0.984185i 0.0156915 0.999877i \(-0.495005\pi\)
−0.999877 + 0.0156915i \(0.995005\pi\)
\(72\) 2.82843 0.333333
\(73\) −5.53553 5.53553i −0.647885 0.647885i 0.304596 0.952482i \(-0.401478\pi\)
−0.952482 + 0.304596i \(0.901478\pi\)
\(74\) 1.58579 1.58579i 0.184344 0.184344i
\(75\) 0 0
\(76\) 2.41421i 0.276929i
\(77\) 0.828427i 0.0944080i
\(78\) −1.70711 + 1.70711i −0.193292 + 0.193292i
\(79\) 8.24264 8.24264i 0.927370 0.927370i −0.0701658 0.997535i \(-0.522353\pi\)
0.997535 + 0.0701658i \(0.0223528\pi\)
\(80\) 0 0
\(81\) 9.48528 1.05392
\(82\) −6.65685 6.65685i −0.735127 0.735127i
\(83\) 9.89949i 1.08661i −0.839535 0.543305i \(-0.817173\pi\)
0.839535 0.543305i \(-0.182827\pi\)
\(84\) 1.41421 0.154303
\(85\) 0 0
\(86\) 10.2426 1.10449
\(87\) 23.7279i 2.54390i
\(88\) −1.00000 1.00000i −0.106600 0.106600i
\(89\) 14.6569 1.55362 0.776812 0.629733i \(-0.216836\pi\)
0.776812 + 0.629733i \(0.216836\pi\)
\(90\) 0 0
\(91\) −0.414214 + 0.414214i −0.0434214 + 0.0434214i
\(92\) 2.24264 2.24264i 0.233811 0.233811i
\(93\) 12.6569i 1.31245i
\(94\) 3.24264i 0.334453i
\(95\) 0 0
\(96\) 1.70711 1.70711i 0.174231 0.174231i
\(97\) −10.1213 10.1213i −1.02766 1.02766i −0.999606 0.0280581i \(-0.991068\pi\)
−0.0280581 0.999606i \(-0.508932\pi\)
\(98\) −6.65685 −0.672444
\(99\) 2.82843 + 2.82843i 0.284268 + 0.284268i
\(100\) 0 0
\(101\) −4.34315 −0.432159 −0.216080 0.976376i \(-0.569327\pi\)
−0.216080 + 0.976376i \(0.569327\pi\)
\(102\) 7.24264 6.82843i 0.717128 0.676115i
\(103\) 2.34315 0.230877 0.115439 0.993315i \(-0.463173\pi\)
0.115439 + 0.993315i \(0.463173\pi\)
\(104\) 1.00000i 0.0980581i
\(105\) 0 0
\(106\) −3.48528 −0.338520
\(107\) 8.82843 + 8.82843i 0.853476 + 0.853476i 0.990560 0.137083i \(-0.0437728\pi\)
−0.137083 + 0.990560i \(0.543773\pi\)
\(108\) 0.292893 0.292893i 0.0281837 0.0281837i
\(109\) −8.36396 + 8.36396i −0.801122 + 0.801122i −0.983271 0.182149i \(-0.941695\pi\)
0.182149 + 0.983271i \(0.441695\pi\)
\(110\) 0 0
\(111\) 5.41421i 0.513894i
\(112\) 0.414214 0.414214i 0.0391395 0.0391395i
\(113\) −2.46447 + 2.46447i −0.231837 + 0.231837i −0.813459 0.581622i \(-0.802418\pi\)
0.581622 + 0.813459i \(0.302418\pi\)
\(114\) −4.12132 4.12132i −0.385997 0.385997i
\(115\) 0 0
\(116\) 6.94975 + 6.94975i 0.645268 + 0.645268i
\(117\) 2.82843i 0.261488i
\(118\) 10.8995 1.00338
\(119\) 1.75736 1.65685i 0.161097 0.151884i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) −5.77817 5.77817i −0.523131 0.523131i
\(123\) 22.7279 2.04931
\(124\) 3.70711 + 3.70711i 0.332908 + 0.332908i
\(125\) 0 0
\(126\) −1.17157 + 1.17157i −0.104372 + 0.104372i
\(127\) 7.72792i 0.685742i 0.939382 + 0.342871i \(0.111399\pi\)
−0.939382 + 0.342871i \(0.888601\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −17.4853 + 17.4853i −1.53949 + 1.53949i
\(130\) 0 0
\(131\) 14.0711 + 14.0711i 1.22939 + 1.22939i 0.964193 + 0.265202i \(0.0854387\pi\)
0.265202 + 0.964193i \(0.414561\pi\)
\(132\) 3.41421 0.297169
\(133\) −1.00000 1.00000i −0.0867110 0.0867110i
\(134\) 8.82843i 0.762660i
\(135\) 0 0
\(136\) 0.121320 4.12132i 0.0104031 0.353400i
\(137\) 16.7279 1.42916 0.714581 0.699552i \(-0.246617\pi\)
0.714581 + 0.699552i \(0.246617\pi\)
\(138\) 7.65685i 0.651795i
\(139\) −0.656854 0.656854i −0.0557137 0.0557137i 0.678701 0.734415i \(-0.262543\pi\)
−0.734415 + 0.678701i \(0.762543\pi\)
\(140\) 0 0
\(141\) 5.53553 + 5.53553i 0.466176 + 0.466176i
\(142\) 8.29289 8.29289i 0.695924 0.695924i
\(143\) −1.00000 + 1.00000i −0.0836242 + 0.0836242i
\(144\) 2.82843i 0.235702i
\(145\) 0 0
\(146\) 5.53553 5.53553i 0.458124 0.458124i
\(147\) 11.3640 11.3640i 0.937284 0.937284i
\(148\) 1.58579 + 1.58579i 0.130351 + 0.130351i
\(149\) −1.75736 −0.143968 −0.0719842 0.997406i \(-0.522933\pi\)
−0.0719842 + 0.997406i \(0.522933\pi\)
\(150\) 0 0
\(151\) 4.82843i 0.392932i 0.980511 + 0.196466i \(0.0629465\pi\)
−0.980511 + 0.196466i \(0.937053\pi\)
\(152\) −2.41421 −0.195819
\(153\) −0.343146 + 11.6569i −0.0277417 + 0.942401i
\(154\) 0.828427 0.0667566
\(155\) 0 0
\(156\) −1.70711 1.70711i −0.136678 0.136678i
\(157\) −2.82843 −0.225733 −0.112867 0.993610i \(-0.536003\pi\)
−0.112867 + 0.993610i \(0.536003\pi\)
\(158\) 8.24264 + 8.24264i 0.655749 + 0.655749i
\(159\) 5.94975 5.94975i 0.471846 0.471846i
\(160\) 0 0
\(161\) 1.85786i 0.146420i
\(162\) 9.48528i 0.745234i
\(163\) −0.343146 + 0.343146i −0.0268772 + 0.0268772i −0.720418 0.693540i \(-0.756050\pi\)
0.693540 + 0.720418i \(0.256050\pi\)
\(164\) 6.65685 6.65685i 0.519813 0.519813i
\(165\) 0 0
\(166\) 9.89949 0.768350
\(167\) −10.7279 10.7279i −0.830152 0.830152i 0.157386 0.987537i \(-0.449693\pi\)
−0.987537 + 0.157386i \(0.949693\pi\)
\(168\) 1.41421i 0.109109i
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 6.82843 0.522183
\(172\) 10.2426i 0.780994i
\(173\) −0.928932 0.928932i −0.0706254 0.0706254i 0.670912 0.741537i \(-0.265903\pi\)
−0.741537 + 0.670912i \(0.765903\pi\)
\(174\) −23.7279 −1.79881
\(175\) 0 0
\(176\) 1.00000 1.00000i 0.0753778 0.0753778i
\(177\) −18.6066 + 18.6066i −1.39856 + 1.39856i
\(178\) 14.6569i 1.09858i
\(179\) 6.82843i 0.510381i 0.966891 + 0.255190i \(0.0821381\pi\)
−0.966891 + 0.255190i \(0.917862\pi\)
\(180\) 0 0
\(181\) 6.82843 6.82843i 0.507553 0.507553i −0.406222 0.913775i \(-0.633154\pi\)
0.913775 + 0.406222i \(0.133154\pi\)
\(182\) −0.414214 0.414214i −0.0307036 0.0307036i
\(183\) 19.7279 1.45833
\(184\) 2.24264 + 2.24264i 0.165330 + 0.165330i
\(185\) 0 0
\(186\) −12.6569 −0.928046
\(187\) 4.24264 4.00000i 0.310253 0.292509i
\(188\) 3.24264 0.236494
\(189\) 0.242641i 0.0176495i
\(190\) 0 0
\(191\) 0.242641 0.0175569 0.00877843 0.999961i \(-0.497206\pi\)
0.00877843 + 0.999961i \(0.497206\pi\)
\(192\) 1.70711 + 1.70711i 0.123200 + 0.123200i
\(193\) −2.82843 + 2.82843i −0.203595 + 0.203595i −0.801538 0.597944i \(-0.795985\pi\)
0.597944 + 0.801538i \(0.295985\pi\)
\(194\) 10.1213 10.1213i 0.726668 0.726668i
\(195\) 0 0
\(196\) 6.65685i 0.475490i
\(197\) 18.0711 18.0711i 1.28751 1.28751i 0.351216 0.936295i \(-0.385768\pi\)
0.936295 0.351216i \(-0.114232\pi\)
\(198\) −2.82843 + 2.82843i −0.201008 + 0.201008i
\(199\) −8.05025 8.05025i −0.570667 0.570667i 0.361648 0.932315i \(-0.382214\pi\)
−0.932315 + 0.361648i \(0.882214\pi\)
\(200\) 0 0
\(201\) 15.0711 + 15.0711i 1.06303 + 1.06303i
\(202\) 4.34315i 0.305583i
\(203\) −5.75736 −0.404087
\(204\) 6.82843 + 7.24264i 0.478086 + 0.507086i
\(205\) 0 0
\(206\) 2.34315i 0.163255i
\(207\) −6.34315 6.34315i −0.440879 0.440879i
\(208\) −1.00000 −0.0693375
\(209\) −2.41421 2.41421i −0.166995 0.166995i
\(210\) 0 0
\(211\) 3.41421 3.41421i 0.235044 0.235044i −0.579750 0.814794i \(-0.696850\pi\)
0.814794 + 0.579750i \(0.196850\pi\)
\(212\) 3.48528i 0.239370i
\(213\) 28.3137i 1.94002i
\(214\) −8.82843 + 8.82843i −0.603499 + 0.603499i
\(215\) 0 0
\(216\) 0.292893 + 0.292893i 0.0199289 + 0.0199289i
\(217\) −3.07107 −0.208478
\(218\) −8.36396 8.36396i −0.566479 0.566479i
\(219\) 18.8995i 1.27711i
\(220\) 0 0
\(221\) −4.12132 0.121320i −0.277230 0.00816089i
\(222\) −5.41421 −0.363378
\(223\) 25.3848i 1.69989i −0.526871 0.849945i \(-0.676635\pi\)
0.526871 0.849945i \(-0.323365\pi\)
\(224\) 0.414214 + 0.414214i 0.0276758 + 0.0276758i
\(225\) 0 0
\(226\) −2.46447 2.46447i −0.163934 0.163934i
\(227\) 14.5355 14.5355i 0.964757 0.964757i −0.0346425 0.999400i \(-0.511029\pi\)
0.999400 + 0.0346425i \(0.0110293\pi\)
\(228\) 4.12132 4.12132i 0.272941 0.272941i
\(229\) 16.2426i 1.07334i −0.843791 0.536672i \(-0.819681\pi\)
0.843791 0.536672i \(-0.180319\pi\)
\(230\) 0 0
\(231\) −1.41421 + 1.41421i −0.0930484 + 0.0930484i
\(232\) −6.94975 + 6.94975i −0.456273 + 0.456273i
\(233\) 8.36396 + 8.36396i 0.547941 + 0.547941i 0.925845 0.377904i \(-0.123355\pi\)
−0.377904 + 0.925845i \(0.623355\pi\)
\(234\) 2.82843 0.184900
\(235\) 0 0
\(236\) 10.8995i 0.709497i
\(237\) −28.1421 −1.82803
\(238\) 1.65685 + 1.75736i 0.107398 + 0.113913i
\(239\) 27.4142 1.77328 0.886639 0.462462i \(-0.153034\pi\)
0.886639 + 0.462462i \(0.153034\pi\)
\(240\) 0 0
\(241\) −19.8284 19.8284i −1.27726 1.27726i −0.942194 0.335067i \(-0.891241\pi\)
−0.335067 0.942194i \(-0.608759\pi\)
\(242\) −9.00000 −0.578542
\(243\) −15.3137 15.3137i −0.982375 0.982375i
\(244\) 5.77817 5.77817i 0.369910 0.369910i
\(245\) 0 0
\(246\) 22.7279i 1.44908i
\(247\) 2.41421i 0.153613i
\(248\) −3.70711 + 3.70711i −0.235402 + 0.235402i
\(249\) −16.8995 + 16.8995i −1.07096 + 1.07096i
\(250\) 0 0
\(251\) −2.14214 −0.135210 −0.0676052 0.997712i \(-0.521536\pi\)
−0.0676052 + 0.997712i \(0.521536\pi\)
\(252\) −1.17157 1.17157i −0.0738022 0.0738022i
\(253\) 4.48528i 0.281987i
\(254\) −7.72792 −0.484893
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.5858i 1.40886i 0.709772 + 0.704431i \(0.248798\pi\)
−0.709772 + 0.704431i \(0.751202\pi\)
\(258\) −17.4853 17.4853i −1.08859 1.08859i
\(259\) −1.31371 −0.0816299
\(260\) 0 0
\(261\) 19.6569 19.6569i 1.21673 1.21673i
\(262\) −14.0711 + 14.0711i −0.869313 + 0.869313i
\(263\) 29.7279i 1.83310i 0.399918 + 0.916551i \(0.369039\pi\)
−0.399918 + 0.916551i \(0.630961\pi\)
\(264\) 3.41421i 0.210130i
\(265\) 0 0
\(266\) 1.00000 1.00000i 0.0613139 0.0613139i
\(267\) −25.0208 25.0208i −1.53125 1.53125i
\(268\) 8.82843 0.539282
\(269\) −2.46447 2.46447i −0.150261 0.150261i 0.627974 0.778235i \(-0.283885\pi\)
−0.778235 + 0.627974i \(0.783885\pi\)
\(270\) 0 0
\(271\) −6.34315 −0.385319 −0.192659 0.981266i \(-0.561711\pi\)
−0.192659 + 0.981266i \(0.561711\pi\)
\(272\) 4.12132 + 0.121320i 0.249892 + 0.00735613i
\(273\) 1.41421 0.0855921
\(274\) 16.7279i 1.01057i
\(275\) 0 0
\(276\) −7.65685 −0.460888
\(277\) −5.89949 5.89949i −0.354466 0.354466i 0.507302 0.861768i \(-0.330643\pi\)
−0.861768 + 0.507302i \(0.830643\pi\)
\(278\) 0.656854 0.656854i 0.0393955 0.0393955i
\(279\) 10.4853 10.4853i 0.627737 0.627737i
\(280\) 0 0
\(281\) 1.48528i 0.0886045i −0.999018 0.0443022i \(-0.985894\pi\)
0.999018 0.0443022i \(-0.0141065\pi\)
\(282\) −5.53553 + 5.53553i −0.329636 + 0.329636i
\(283\) −6.77817 + 6.77817i −0.402921 + 0.402921i −0.879261 0.476340i \(-0.841963\pi\)
0.476340 + 0.879261i \(0.341963\pi\)
\(284\) 8.29289 + 8.29289i 0.492093 + 0.492093i
\(285\) 0 0
\(286\) −1.00000 1.00000i −0.0591312 0.0591312i
\(287\) 5.51472i 0.325524i
\(288\) −2.82843 −0.166667
\(289\) 16.9706 + 1.00000i 0.998268 + 0.0588235i
\(290\) 0 0
\(291\) 34.5563i 2.02573i
\(292\) 5.53553 + 5.53553i 0.323943 + 0.323943i
\(293\) −5.48528 −0.320454 −0.160227 0.987080i \(-0.551223\pi\)
−0.160227 + 0.987080i \(0.551223\pi\)
\(294\) 11.3640 + 11.3640i 0.662760 + 0.662760i
\(295\) 0 0
\(296\) −1.58579 + 1.58579i −0.0921720 + 0.0921720i
\(297\) 0.585786i 0.0339908i
\(298\) 1.75736i 0.101801i
\(299\) 2.24264 2.24264i 0.129695 0.129695i
\(300\) 0 0
\(301\) −4.24264 4.24264i −0.244542 0.244542i
\(302\) −4.82843 −0.277845
\(303\) 7.41421 + 7.41421i 0.425935 + 0.425935i
\(304\) 2.41421i 0.138465i
\(305\) 0 0
\(306\) −11.6569 0.343146i −0.666378 0.0196163i
\(307\) −9.89949 −0.564994 −0.282497 0.959268i \(-0.591163\pi\)
−0.282497 + 0.959268i \(0.591163\pi\)
\(308\) 0.828427i 0.0472040i
\(309\) −4.00000 4.00000i −0.227552 0.227552i
\(310\) 0 0
\(311\) −2.58579 2.58579i −0.146626 0.146626i 0.629983 0.776609i \(-0.283062\pi\)
−0.776609 + 0.629983i \(0.783062\pi\)
\(312\) 1.70711 1.70711i 0.0966459 0.0966459i
\(313\) −6.48528 + 6.48528i −0.366570 + 0.366570i −0.866225 0.499655i \(-0.833460\pi\)
0.499655 + 0.866225i \(0.333460\pi\)
\(314\) 2.82843i 0.159617i
\(315\) 0 0
\(316\) −8.24264 + 8.24264i −0.463685 + 0.463685i
\(317\) 24.4853 24.4853i 1.37523 1.37523i 0.522735 0.852495i \(-0.324912\pi\)
0.852495 0.522735i \(-0.175088\pi\)
\(318\) 5.94975 + 5.94975i 0.333645 + 0.333645i
\(319\) −13.8995 −0.778222
\(320\) 0 0
\(321\) 30.1421i 1.68237i
\(322\) −1.85786 −0.103535
\(323\) 0.292893 9.94975i 0.0162970 0.553619i
\(324\) −9.48528 −0.526960
\(325\) 0 0
\(326\) −0.343146 0.343146i −0.0190051 0.0190051i
\(327\) 28.5563 1.57917
\(328\) 6.65685 + 6.65685i 0.367563 + 0.367563i
\(329\) −1.34315 + 1.34315i −0.0740500 + 0.0740500i
\(330\) 0 0
\(331\) 8.55635i 0.470299i −0.971959 0.235150i \(-0.924442\pi\)
0.971959 0.235150i \(-0.0755581\pi\)
\(332\) 9.89949i 0.543305i
\(333\) 4.48528 4.48528i 0.245792 0.245792i
\(334\) 10.7279 10.7279i 0.587006 0.587006i
\(335\) 0 0
\(336\) −1.41421 −0.0771517
\(337\) 21.4350 + 21.4350i 1.16764 + 1.16764i 0.982761 + 0.184879i \(0.0591894\pi\)
0.184879 + 0.982761i \(0.440811\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 8.41421 0.456997
\(340\) 0 0
\(341\) −7.41421 −0.401502
\(342\) 6.82843i 0.369239i
\(343\) 5.65685 + 5.65685i 0.305441 + 0.305441i
\(344\) −10.2426 −0.552246
\(345\) 0 0
\(346\) 0.928932 0.928932i 0.0499397 0.0499397i
\(347\) 10.4350 10.4350i 0.560182 0.560182i −0.369177 0.929359i \(-0.620360\pi\)
0.929359 + 0.369177i \(0.120360\pi\)
\(348\) 23.7279i 1.27195i
\(349\) 8.97056i 0.480183i 0.970750 + 0.240092i \(0.0771775\pi\)
−0.970750 + 0.240092i \(0.922823\pi\)
\(350\) 0 0
\(351\) 0.292893 0.292893i 0.0156335 0.0156335i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) −5.31371 −0.282820 −0.141410 0.989951i \(-0.545164\pi\)
−0.141410 + 0.989951i \(0.545164\pi\)
\(354\) −18.6066 18.6066i −0.988930 0.988930i
\(355\) 0 0
\(356\) −14.6569 −0.776812
\(357\) −5.82843 0.171573i −0.308473 0.00908060i
\(358\) −6.82843 −0.360894
\(359\) 12.3848i 0.653643i −0.945086 0.326822i \(-0.894022\pi\)
0.945086 0.326822i \(-0.105978\pi\)
\(360\) 0 0
\(361\) 13.1716 0.693241
\(362\) 6.82843 + 6.82843i 0.358894 + 0.358894i
\(363\) 15.3640 15.3640i 0.806399 0.806399i
\(364\) 0.414214 0.414214i 0.0217107 0.0217107i
\(365\) 0 0
\(366\) 19.7279i 1.03120i
\(367\) −5.55635 + 5.55635i −0.290039 + 0.290039i −0.837096 0.547057i \(-0.815748\pi\)
0.547057 + 0.837096i \(0.315748\pi\)
\(368\) −2.24264 + 2.24264i −0.116906 + 0.116906i
\(369\) −18.8284 18.8284i −0.980169 0.980169i
\(370\) 0 0
\(371\) 1.44365 + 1.44365i 0.0749506 + 0.0749506i
\(372\) 12.6569i 0.656227i
\(373\) −24.2843 −1.25739 −0.628696 0.777651i \(-0.716411\pi\)
−0.628696 + 0.777651i \(0.716411\pi\)
\(374\) 4.00000 + 4.24264i 0.206835 + 0.219382i
\(375\) 0 0
\(376\) 3.24264i 0.167226i
\(377\) 6.94975 + 6.94975i 0.357930 + 0.357930i
\(378\) −0.242641 −0.0124801
\(379\) −4.00000 4.00000i −0.205466 0.205466i 0.596871 0.802337i \(-0.296410\pi\)
−0.802337 + 0.596871i \(0.796410\pi\)
\(380\) 0 0
\(381\) 13.1924 13.1924i 0.675867 0.675867i
\(382\) 0.242641i 0.0124146i
\(383\) 22.2132i 1.13504i −0.823359 0.567521i \(-0.807903\pi\)
0.823359 0.567521i \(-0.192097\pi\)
\(384\) −1.70711 + 1.70711i −0.0871154 + 0.0871154i
\(385\) 0 0
\(386\) −2.82843 2.82843i −0.143963 0.143963i
\(387\) 28.9706 1.47266
\(388\) 10.1213 + 10.1213i 0.513832 + 0.513832i
\(389\) 10.6274i 0.538831i −0.963024 0.269416i \(-0.913169\pi\)
0.963024 0.269416i \(-0.0868306\pi\)
\(390\) 0 0
\(391\) −9.51472 + 8.97056i −0.481180 + 0.453661i
\(392\) 6.65685 0.336222
\(393\) 48.0416i 2.42338i
\(394\) 18.0711 + 18.0711i 0.910407 + 0.910407i
\(395\) 0 0
\(396\) −2.82843 2.82843i −0.142134 0.142134i
\(397\) 16.4853 16.4853i 0.827373 0.827373i −0.159780 0.987153i \(-0.551079\pi\)
0.987153 + 0.159780i \(0.0510785\pi\)
\(398\) 8.05025 8.05025i 0.403523 0.403523i
\(399\) 3.41421i 0.170924i
\(400\) 0 0
\(401\) 14.8284 14.8284i 0.740496 0.740496i −0.232177 0.972674i \(-0.574585\pi\)
0.972674 + 0.232177i \(0.0745849\pi\)
\(402\) −15.0711 + 15.0711i −0.751677 + 0.751677i
\(403\) 3.70711 + 3.70711i 0.184664 + 0.184664i
\(404\) 4.34315 0.216080
\(405\) 0 0
\(406\) 5.75736i 0.285733i
\(407\) −3.17157 −0.157209
\(408\) −7.24264 + 6.82843i −0.358564 + 0.338058i
\(409\) 11.4853 0.567911 0.283955 0.958838i \(-0.408353\pi\)
0.283955 + 0.958838i \(0.408353\pi\)
\(410\) 0 0
\(411\) −28.5563 28.5563i −1.40858 1.40858i
\(412\) −2.34315 −0.115439
\(413\) −4.51472 4.51472i −0.222155 0.222155i
\(414\) 6.34315 6.34315i 0.311749 0.311749i
\(415\) 0 0
\(416\) 1.00000i 0.0490290i
\(417\) 2.24264i 0.109823i
\(418\) 2.41421 2.41421i 0.118083 0.118083i
\(419\) 9.75736 9.75736i 0.476678 0.476678i −0.427389 0.904068i \(-0.640567\pi\)
0.904068 + 0.427389i \(0.140567\pi\)
\(420\) 0 0
\(421\) 22.9289 1.11749 0.558744 0.829340i \(-0.311283\pi\)
0.558744 + 0.829340i \(0.311283\pi\)
\(422\) 3.41421 + 3.41421i 0.166201 + 0.166201i
\(423\) 9.17157i 0.445937i
\(424\) 3.48528 0.169260
\(425\) 0 0
\(426\) −28.3137 −1.37180
\(427\) 4.78680i 0.231649i
\(428\) −8.82843 8.82843i −0.426738 0.426738i
\(429\) 3.41421 0.164840
\(430\) 0 0
\(431\) 16.0000 16.0000i 0.770693 0.770693i −0.207535 0.978228i \(-0.566544\pi\)
0.978228 + 0.207535i \(0.0665440\pi\)
\(432\) −0.292893 + 0.292893i −0.0140918 + 0.0140918i
\(433\) 0.928932i 0.0446416i 0.999751 + 0.0223208i \(0.00710553\pi\)
−0.999751 + 0.0223208i \(0.992894\pi\)
\(434\) 3.07107i 0.147416i
\(435\) 0 0
\(436\) 8.36396 8.36396i 0.400561 0.400561i
\(437\) 5.41421 + 5.41421i 0.258997 + 0.258997i
\(438\) −18.8995 −0.903053
\(439\) −22.6274 22.6274i −1.07995 1.07995i −0.996513 0.0834344i \(-0.973411\pi\)
−0.0834344 0.996513i \(-0.526589\pi\)
\(440\) 0 0
\(441\) −18.8284 −0.896592
\(442\) 0.121320 4.12132i 0.00577062 0.196031i
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 5.41421i 0.256947i
\(445\) 0 0
\(446\) 25.3848 1.20200
\(447\) 3.00000 + 3.00000i 0.141895 + 0.141895i
\(448\) −0.414214 + 0.414214i −0.0195698 + 0.0195698i
\(449\) −29.3848 + 29.3848i −1.38675 + 1.38675i −0.554709 + 0.832045i \(0.687170\pi\)
−0.832045 + 0.554709i \(0.812830\pi\)
\(450\) 0 0
\(451\) 13.3137i 0.626918i
\(452\) 2.46447 2.46447i 0.115919 0.115919i
\(453\) 8.24264 8.24264i 0.387273 0.387273i
\(454\) 14.5355 + 14.5355i 0.682186 + 0.682186i
\(455\) 0 0
\(456\) 4.12132 + 4.12132i 0.192999 + 0.192999i
\(457\) 27.5563i 1.28903i 0.764591 + 0.644516i \(0.222941\pi\)
−0.764591 + 0.644516i \(0.777059\pi\)
\(458\) 16.2426 0.758969
\(459\) −1.24264 + 1.17157i −0.0580015 + 0.0546843i
\(460\) 0 0
\(461\) 6.97056i 0.324651i −0.986737 0.162326i \(-0.948100\pi\)
0.986737 0.162326i \(-0.0518995\pi\)
\(462\) −1.41421 1.41421i −0.0657952 0.0657952i
\(463\) 1.10051 0.0511448 0.0255724 0.999673i \(-0.491859\pi\)
0.0255724 + 0.999673i \(0.491859\pi\)
\(464\) −6.94975 6.94975i −0.322634 0.322634i
\(465\) 0 0
\(466\) −8.36396 + 8.36396i −0.387453 + 0.387453i
\(467\) 25.2132i 1.16673i −0.812211 0.583364i \(-0.801736\pi\)
0.812211 0.583364i \(-0.198264\pi\)
\(468\) 2.82843i 0.130744i
\(469\) −3.65685 + 3.65685i −0.168858 + 0.168858i
\(470\) 0 0
\(471\) 4.82843 + 4.82843i 0.222482 + 0.222482i
\(472\) −10.8995 −0.501690
\(473\) −10.2426 10.2426i −0.470957 0.470957i
\(474\) 28.1421i 1.29261i
\(475\) 0 0
\(476\) −1.75736 + 1.65685i −0.0805484 + 0.0759418i
\(477\) −9.85786 −0.451361
\(478\) 27.4142i 1.25390i
\(479\) 19.0208 + 19.0208i 0.869083 + 0.869083i 0.992371 0.123288i \(-0.0393438\pi\)
−0.123288 + 0.992371i \(0.539344\pi\)
\(480\) 0 0
\(481\) 1.58579 + 1.58579i 0.0723056 + 0.0723056i
\(482\) 19.8284 19.8284i 0.903160 0.903160i
\(483\) 3.17157 3.17157i 0.144312 0.144312i
\(484\) 9.00000i 0.409091i
\(485\) 0 0
\(486\) 15.3137 15.3137i 0.694644 0.694644i
\(487\) −14.4142 + 14.4142i −0.653170 + 0.653170i −0.953755 0.300585i \(-0.902818\pi\)
0.300585 + 0.953755i \(0.402818\pi\)
\(488\) 5.77817 + 5.77817i 0.261566 + 0.261566i
\(489\) 1.17157 0.0529804
\(490\) 0 0
\(491\) 8.27208i 0.373314i −0.982425 0.186657i \(-0.940235\pi\)
0.982425 0.186657i \(-0.0597652\pi\)
\(492\) −22.7279 −1.02465
\(493\) −27.7990 29.4853i −1.25200 1.32795i
\(494\) −2.41421 −0.108621
\(495\) 0 0
\(496\) −3.70711 3.70711i −0.166454 0.166454i
\(497\) −6.87006 −0.308164
\(498\) −16.8995 16.8995i −0.757284 0.757284i
\(499\) −19.2426 + 19.2426i −0.861419 + 0.861419i −0.991503 0.130084i \(-0.958475\pi\)
0.130084 + 0.991503i \(0.458475\pi\)
\(500\) 0 0
\(501\) 36.6274i 1.63639i
\(502\) 2.14214i 0.0956082i
\(503\) −26.1421 + 26.1421i −1.16562 + 1.16562i −0.182395 + 0.983225i \(0.558385\pi\)
−0.983225 + 0.182395i \(0.941615\pi\)
\(504\) 1.17157 1.17157i 0.0521860 0.0521860i
\(505\) 0 0
\(506\) −4.48528 −0.199395
\(507\) 20.4853 + 20.4853i 0.909783 + 0.909783i
\(508\) 7.72792i 0.342871i
\(509\) 32.0000 1.41838 0.709188 0.705020i \(-0.249062\pi\)
0.709188 + 0.705020i \(0.249062\pi\)
\(510\) 0 0
\(511\) −4.58579 −0.202863
\(512\) 1.00000i 0.0441942i
\(513\) 0.707107 + 0.707107i 0.0312195 + 0.0312195i
\(514\) −22.5858 −0.996216
\(515\) 0 0
\(516\) 17.4853 17.4853i 0.769747 0.769747i
\(517\) −3.24264 + 3.24264i −0.142611 + 0.142611i
\(518\) 1.31371i 0.0577210i
\(519\) 3.17157i 0.139217i
\(520\) 0 0
\(521\) 4.68629 4.68629i 0.205310 0.205310i −0.596960 0.802271i \(-0.703625\pi\)
0.802271 + 0.596960i \(0.203625\pi\)
\(522\) 19.6569 + 19.6569i 0.860357 + 0.860357i
\(523\) −4.82843 −0.211132 −0.105566 0.994412i \(-0.533665\pi\)
−0.105566 + 0.994412i \(0.533665\pi\)
\(524\) −14.0711 14.0711i −0.614697 0.614697i
\(525\) 0 0
\(526\) −29.7279 −1.29620
\(527\) −14.8284 15.7279i −0.645936 0.685119i
\(528\) −3.41421 −0.148585
\(529\) 12.9411i 0.562658i
\(530\) 0 0
\(531\) 30.8284 1.33784
\(532\) 1.00000 + 1.00000i 0.0433555 + 0.0433555i
\(533\) 6.65685 6.65685i 0.288340 0.288340i
\(534\) 25.0208 25.0208i 1.08276 1.08276i
\(535\) 0 0
\(536\) 8.82843i 0.381330i
\(537\) 11.6569 11.6569i 0.503030 0.503030i
\(538\) 2.46447 2.46447i 0.106251 0.106251i
\(539\) 6.65685 + 6.65685i 0.286731 + 0.286731i
\(540\) 0 0
\(541\) −11.3137 11.3137i −0.486414 0.486414i 0.420758 0.907173i \(-0.361764\pi\)
−0.907173 + 0.420758i \(0.861764\pi\)
\(542\) 6.34315i 0.272461i
\(543\) −23.3137 −1.00049
\(544\) −0.121320 + 4.12132i −0.00520157 + 0.176700i
\(545\) 0 0
\(546\) 1.41421i 0.0605228i
\(547\) −11.4645 11.4645i −0.490185 0.490185i 0.418179 0.908364i \(-0.362668\pi\)
−0.908364 + 0.418179i \(0.862668\pi\)
\(548\) −16.7279 −0.714581
\(549\) −16.3431 16.3431i −0.697508 0.697508i
\(550\) 0 0
\(551\) −16.7782 + 16.7782i −0.714774 + 0.714774i
\(552\) 7.65685i 0.325897i
\(553\) 6.82843i 0.290374i
\(554\) 5.89949 5.89949i 0.250646 0.250646i
\(555\) 0 0
\(556\) 0.656854 + 0.656854i 0.0278568 + 0.0278568i
\(557\) −7.82843 −0.331701 −0.165851 0.986151i \(-0.553037\pi\)
−0.165851 + 0.986151i \(0.553037\pi\)
\(558\) 10.4853 + 10.4853i 0.443877 + 0.443877i
\(559\) 10.2426i 0.433218i
\(560\) 0 0
\(561\) −14.0711 0.414214i −0.594081 0.0174881i
\(562\) 1.48528 0.0626528
\(563\) 32.1421i 1.35463i 0.735693 + 0.677315i \(0.236856\pi\)
−0.735693 + 0.677315i \(0.763144\pi\)
\(564\) −5.53553 5.53553i −0.233088 0.233088i
\(565\) 0 0
\(566\) −6.77817 6.77817i −0.284908 0.284908i
\(567\) 3.92893 3.92893i 0.165000 0.165000i
\(568\) −8.29289 + 8.29289i −0.347962 + 0.347962i
\(569\) 25.9706i 1.08874i 0.838844 + 0.544371i \(0.183232\pi\)
−0.838844 + 0.544371i \(0.816768\pi\)
\(570\) 0 0
\(571\) 23.0416 23.0416i 0.964262 0.964262i −0.0351208 0.999383i \(-0.511182\pi\)
0.999383 + 0.0351208i \(0.0111816\pi\)
\(572\) 1.00000 1.00000i 0.0418121 0.0418121i
\(573\) −0.414214 0.414214i −0.0173040 0.0173040i
\(574\) −5.51472 −0.230180
\(575\) 0 0
\(576\) 2.82843i 0.117851i
\(577\) −18.3431 −0.763635 −0.381818 0.924238i \(-0.624702\pi\)
−0.381818 + 0.924238i \(0.624702\pi\)
\(578\) −1.00000 + 16.9706i −0.0415945 + 0.705882i
\(579\) 9.65685 0.401325
\(580\) 0 0
\(581\) −4.10051 4.10051i −0.170118 0.170118i
\(582\) −34.5563 −1.43241
\(583\) 3.48528 + 3.48528i 0.144346 + 0.144346i
\(584\) −5.53553 + 5.53553i −0.229062 + 0.229062i
\(585\) 0 0
\(586\) 5.48528i 0.226595i
\(587\) 3.17157i 0.130905i 0.997856 + 0.0654524i \(0.0208491\pi\)
−0.997856 + 0.0654524i \(0.979151\pi\)
\(588\) −11.3640 + 11.3640i −0.468642 + 0.468642i
\(589\) −8.94975 + 8.94975i −0.368768 + 0.368768i
\(590\) 0 0
\(591\) −61.6985 −2.53794
\(592\) −1.58579 1.58579i −0.0651754 0.0651754i
\(593\) 14.2843i 0.586585i 0.956023 + 0.293292i \(0.0947509\pi\)
−0.956023 + 0.293292i \(0.905249\pi\)
\(594\) −0.585786 −0.0240351
\(595\) 0 0
\(596\) 1.75736 0.0719842
\(597\) 27.4853i 1.12490i
\(598\) 2.24264 + 2.24264i 0.0917084 + 0.0917084i
\(599\) 42.7696 1.74752 0.873758 0.486360i \(-0.161676\pi\)
0.873758 + 0.486360i \(0.161676\pi\)
\(600\) 0 0
\(601\) 13.1716 13.1716i 0.537280 0.537280i −0.385449 0.922729i \(-0.625954\pi\)
0.922729 + 0.385449i \(0.125954\pi\)
\(602\) 4.24264 4.24264i 0.172917 0.172917i
\(603\) 24.9706i 1.01688i
\(604\) 4.82843i 0.196466i
\(605\) 0 0
\(606\) −7.41421 + 7.41421i −0.301182 + 0.301182i
\(607\) 4.07107 + 4.07107i 0.165240 + 0.165240i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(608\) 2.41421 0.0979093
\(609\) 9.82843 + 9.82843i 0.398268 + 0.398268i
\(610\) 0 0
\(611\) 3.24264 0.131183
\(612\) 0.343146 11.6569i 0.0138708 0.471200i
\(613\) 23.2843 0.940443 0.470221 0.882548i \(-0.344174\pi\)
0.470221 + 0.882548i \(0.344174\pi\)
\(614\) 9.89949i 0.399511i
\(615\) 0 0
\(616\) −0.828427 −0.0333783
\(617\) −0.564971 0.564971i −0.0227449 0.0227449i 0.695643 0.718388i \(-0.255120\pi\)
−0.718388 + 0.695643i \(0.755120\pi\)
\(618\) 4.00000 4.00000i 0.160904 0.160904i
\(619\) −10.2426 + 10.2426i −0.411686 + 0.411686i −0.882326 0.470639i \(-0.844023\pi\)
0.470639 + 0.882326i \(0.344023\pi\)
\(620\) 0 0
\(621\) 1.31371i 0.0527173i
\(622\) 2.58579 2.58579i 0.103681 0.103681i
\(623\) 6.07107 6.07107i 0.243232 0.243232i
\(624\) 1.70711 + 1.70711i 0.0683390 + 0.0683390i
\(625\) 0 0
\(626\) −6.48528 6.48528i −0.259204 0.259204i
\(627\) 8.24264i 0.329179i
\(628\) 2.82843 0.112867
\(629\) −6.34315 6.72792i −0.252918 0.268260i
\(630\) 0 0
\(631\) 49.6569i 1.97681i 0.151847 + 0.988404i \(0.451478\pi\)
−0.151847 + 0.988404i \(0.548522\pi\)
\(632\) −8.24264 8.24264i −0.327875 0.327875i
\(633\) −11.6569 −0.463318
\(634\) 24.4853 + 24.4853i 0.972435 + 0.972435i
\(635\) 0 0
\(636\) −5.94975 + 5.94975i −0.235923 + 0.235923i
\(637\) 6.65685i 0.263754i
\(638\) 13.8995i 0.550286i
\(639\) 23.4558 23.4558i 0.927899 0.927899i
\(640\) 0 0
\(641\) −11.0711 11.0711i −0.437281 0.437281i 0.453815 0.891096i \(-0.350063\pi\)
−0.891096 + 0.453815i \(0.850063\pi\)
\(642\) 30.1421 1.18962
\(643\) 18.3848 + 18.3848i 0.725025 + 0.725025i 0.969624 0.244599i \(-0.0786565\pi\)
−0.244599 + 0.969624i \(0.578656\pi\)
\(644\) 1.85786i 0.0732101i
\(645\) 0 0
\(646\) 9.94975 + 0.292893i 0.391468 + 0.0115237i
\(647\) −48.2132 −1.89546 −0.947728 0.319078i \(-0.896627\pi\)
−0.947728 + 0.319078i \(0.896627\pi\)
\(648\) 9.48528i 0.372617i
\(649\) −10.8995 10.8995i −0.427843 0.427843i
\(650\) 0 0
\(651\) 5.24264 + 5.24264i 0.205475 + 0.205475i
\(652\) 0.343146 0.343146i 0.0134386 0.0134386i
\(653\) −6.51472 + 6.51472i −0.254941 + 0.254941i −0.822993 0.568052i \(-0.807697\pi\)
0.568052 + 0.822993i \(0.307697\pi\)
\(654\) 28.5563i 1.11664i
\(655\) 0 0
\(656\) −6.65685 + 6.65685i −0.259906 + 0.259906i
\(657\) 15.6569 15.6569i 0.610832 0.610832i
\(658\) −1.34315 1.34315i −0.0523613 0.0523613i
\(659\) −10.7574 −0.419047 −0.209524 0.977804i \(-0.567191\pi\)
−0.209524 + 0.977804i \(0.567191\pi\)
\(660\) 0 0
\(661\) 11.3137i 0.440052i −0.975494 0.220026i \(-0.929386\pi\)
0.975494 0.220026i \(-0.0706143\pi\)
\(662\) 8.55635 0.332552
\(663\) 6.82843 + 7.24264i 0.265194 + 0.281281i
\(664\) −9.89949 −0.384175
\(665\) 0 0
\(666\) 4.48528 + 4.48528i 0.173801 + 0.173801i
\(667\) 31.1716 1.20697
\(668\) 10.7279 + 10.7279i 0.415076 + 0.415076i
\(669\) −43.3345 + 43.3345i −1.67541 + 1.67541i
\(670\) 0 0
\(671\) 11.5563i 0.446128i
\(672\) 1.41421i 0.0545545i
\(673\) 8.46447 8.46447i 0.326281 0.326281i −0.524889 0.851170i \(-0.675893\pi\)
0.851170 + 0.524889i \(0.175893\pi\)
\(674\) −21.4350 + 21.4350i −0.825646 + 0.825646i
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 31.8284 + 31.8284i 1.22327 + 1.22327i 0.966464 + 0.256802i \(0.0826687\pi\)
0.256802 + 0.966464i \(0.417331\pi\)
\(678\) 8.41421i 0.323146i
\(679\) −8.38478 −0.321778
\(680\) 0 0
\(681\) −49.6274 −1.90173
\(682\) 7.41421i 0.283905i
\(683\) −8.19239 8.19239i −0.313473 0.313473i 0.532780 0.846253i \(-0.321147\pi\)
−0.846253 + 0.532780i \(0.821147\pi\)
\(684\) −6.82843 −0.261091
\(685\) 0 0
\(686\) −5.65685 + 5.65685i −0.215980 + 0.215980i
\(687\) −27.7279 + 27.7279i −1.05789 + 1.05789i
\(688\) 10.2426i 0.390497i
\(689\) 3.48528i 0.132779i
\(690\) 0 0
\(691\) −23.8284 + 23.8284i −0.906476 + 0.906476i −0.995986 0.0895098i \(-0.971470\pi\)
0.0895098 + 0.995986i \(0.471470\pi\)
\(692\) 0.928932 + 0.928932i 0.0353127 + 0.0353127i
\(693\) 2.34315 0.0890087
\(694\) 10.4350 + 10.4350i 0.396108 + 0.396108i
\(695\) 0 0
\(696\) 23.7279 0.899405
\(697\) −28.2426 + 26.6274i −1.06977 + 1.00859i
\(698\) −8.97056 −0.339541
\(699\) 28.5563i 1.08010i
\(700\) 0 0
\(701\) 8.97056 0.338813 0.169407 0.985546i \(-0.445815\pi\)
0.169407 + 0.985546i \(0.445815\pi\)
\(702\) 0.292893 + 0.292893i 0.0110545 + 0.0110545i
\(703\) −3.82843 + 3.82843i −0.144392 + 0.144392i
\(704\) −1.00000 + 1.00000i −0.0376889 + 0.0376889i
\(705\) 0 0
\(706\) 5.31371i 0.199984i
\(707\) −1.79899 + 1.79899i −0.0676580 + 0.0676580i
\(708\) 18.6066 18.6066i 0.699279 0.699279i
\(709\) −16.5061 16.5061i −0.619899 0.619899i 0.325606 0.945506i \(-0.394432\pi\)
−0.945506 + 0.325606i \(0.894432\pi\)
\(710\) 0 0
\(711\) 23.3137 + 23.3137i 0.874332 + 0.874332i
\(712\) 14.6569i 0.549289i
\(713\) 16.6274 0.622702
\(714\) 0.171573 5.82843i 0.00642095 0.218123i
\(715\) 0 0
\(716\) 6.82843i 0.255190i
\(717\) −46.7990 46.7990i −1.74774 1.74774i
\(718\) 12.3848 0.462196
\(719\) −36.6777 36.6777i −1.36785 1.36785i −0.863504 0.504343i \(-0.831735\pi\)
−0.504343 0.863504i \(-0.668265\pi\)
\(720\) 0 0
\(721\) 0.970563 0.970563i 0.0361456 0.0361456i
\(722\) 13.1716i 0.490195i
\(723\) 67.6985i 2.51773i
\(724\) −6.82843 + 6.82843i −0.253776 + 0.253776i
\(725\) 0 0
\(726\) 15.3640 + 15.3640i 0.570210 + 0.570210i
\(727\) 22.2132 0.823842 0.411921 0.911220i \(-0.364858\pi\)
0.411921 + 0.911220i \(0.364858\pi\)
\(728\) 0.414214 + 0.414214i 0.0153518 + 0.0153518i
\(729\) 23.8284i 0.882534i
\(730\) 0 0
\(731\) 1.24264 42.2132i 0.0459607 1.56131i
\(732\) −19.7279 −0.729165
\(733\) 10.8284i 0.399957i 0.979800 + 0.199979i \(0.0640872\pi\)
−0.979800 + 0.199979i \(0.935913\pi\)
\(734\) −5.55635 5.55635i −0.205089 0.205089i
\(735\) 0 0
\(736\) −2.24264 2.24264i −0.0826648 0.0826648i
\(737\) −8.82843 + 8.82843i −0.325199 + 0.325199i
\(738\) 18.8284 18.8284i 0.693084 0.693084i
\(739\) 5.87006i 0.215934i 0.994155 + 0.107967i \(0.0344340\pi\)
−0.994155 + 0.107967i \(0.965566\pi\)
\(740\) 0 0
\(741\) 4.12132 4.12132i 0.151400 0.151400i
\(742\) −1.44365 + 1.44365i −0.0529981 + 0.0529981i
\(743\) −4.55635 4.55635i −0.167156 0.167156i 0.618572 0.785728i \(-0.287712\pi\)
−0.785728 + 0.618572i \(0.787712\pi\)
\(744\) 12.6569 0.464023
\(745\) 0 0
\(746\) 24.2843i 0.889110i
\(747\) 28.0000 1.02447
\(748\) −4.24264 + 4.00000i −0.155126 + 0.146254i
\(749\) 7.31371 0.267237
\(750\) 0 0
\(751\) −2.15076 2.15076i −0.0784823 0.0784823i 0.666776 0.745258i \(-0.267674\pi\)
−0.745258 + 0.666776i \(0.767674\pi\)
\(752\) −3.24264 −0.118247
\(753\) 3.65685 + 3.65685i 0.133263 + 0.133263i
\(754\) −6.94975 + 6.94975i −0.253095 + 0.253095i
\(755\) 0 0
\(756\) 0.242641i 0.00882476i
\(757\) 39.8284i 1.44759i −0.690016 0.723794i \(-0.742396\pi\)
0.690016 0.723794i \(-0.257604\pi\)
\(758\) 4.00000 4.00000i 0.145287 0.145287i
\(759\) 7.65685 7.65685i 0.277926 0.277926i
\(760\) 0 0
\(761\) 43.1127 1.56283 0.781417 0.624009i \(-0.214497\pi\)
0.781417 + 0.624009i \(0.214497\pi\)
\(762\) 13.1924 + 13.1924i 0.477910 + 0.477910i
\(763\) 6.92893i 0.250844i
\(764\) −0.242641 −0.00877843
\(765\) 0 0
\(766\) 22.2132 0.802596
\(767\) 10.8995i 0.393558i
\(768\) −1.70711 1.70711i −0.0615999 0.0615999i
\(769\) 23.1421 0.834527 0.417263 0.908786i \(-0.362989\pi\)
0.417263 + 0.908786i \(0.362989\pi\)
\(770\) 0 0
\(771\) 38.5563 38.5563i 1.38857 1.38857i
\(772\) 2.82843 2.82843i 0.101797 0.101797i
\(773\) 23.5147i 0.845766i 0.906184 + 0.422883i \(0.138982\pi\)
−0.906184 + 0.422883i \(0.861018\pi\)
\(774\) 28.9706i 1.04133i
\(775\) 0 0
\(776\) −10.1213 + 10.1213i −0.363334 + 0.363334i
\(777\) 2.24264 + 2.24264i 0.0804543 + 0.0804543i
\(778\) 10.6274 0.381011
\(779\) 16.0711 + 16.0711i 0.575806 + 0.575806i
\(780\) 0 0
\(781\) −16.5858 −0.593486
\(782\) −8.97056 9.51472i −0.320787 0.340246i
\(783\) 4.07107 0.145488
\(784\) 6.65685i 0.237745i
\(785\) 0 0
\(786\) 48.0416 1.71359
\(787\) 0.393398 + 0.393398i 0.0140231 + 0.0140231i 0.714084 0.700060i \(-0.246844\pi\)
−0.700060 + 0.714084i \(0.746844\pi\)
\(788\) −18.0711 + 18.0711i −0.643755 + 0.643755i
\(789\) 50.7487 50.7487i 1.80670 1.80670i
\(790\) 0 0
\(791\) 2.04163i 0.0725920i
\(792\) 2.82843 2.82843i 0.100504 0.100504i
\(793\) 5.77817 5.77817i 0.205189 0.205189i
\(794\) 16.4853 + 16.4853i 0.585041 + 0.585041i
\(795\) 0 0
\(796\) 8.05025 + 8.05025i 0.285334 + 0.285334i
\(797\) 26.6274i 0.943192i −0.881815 0.471596i \(-0.843678\pi\)
0.881815 0.471596i \(-0.156322\pi\)
\(798\) −3.41421 −0.120862
\(799\) −13.3640 0.393398i −0.472783 0.0139174i
\(800\) 0 0
\(801\) 41.4558i 1.46477i
\(802\) 14.8284 + 14.8284i 0.523610 + 0.523610i
\(803\) −11.0711 −0.390689
\(804\) −15.0711 15.0711i −0.531516 0.531516i
\(805\) 0 0
\(806\) −3.70711 + 3.70711i −0.130577 + 0.130577i
\(807\) 8.41421i 0.296194i
\(808\) 4.34315i 0.152791i
\(809\) 25.8284 25.8284i 0.908079 0.908079i −0.0880380 0.996117i \(-0.528060\pi\)
0.996117 + 0.0880380i \(0.0280597\pi\)
\(810\) 0 0
\(811\) 36.0711 + 36.0711i 1.26663 + 1.26663i 0.947820 + 0.318807i \(0.103282\pi\)
0.318807 + 0.947820i \(0.396718\pi\)
\(812\) 5.75736 0.202044
\(813\) 10.8284 + 10.8284i 0.379770 + 0.379770i
\(814\) 3.17157i 0.111164i
\(815\) 0 0
\(816\) −6.82843 7.24264i −0.239043 0.253543i
\(817\) −24.7279 −0.865120
\(818\) 11.4853i 0.401573i
\(819\) −1.17157 1.17157i −0.0409381 0.0409381i
\(820\) 0 0
\(821\) −3.92031 3.92031i −0.136820 0.136820i 0.635380 0.772200i \(-0.280844\pi\)
−0.772200 + 0.635380i \(0.780844\pi\)
\(822\) 28.5563 28.5563i 0.996017 0.996017i
\(823\) −8.58579 + 8.58579i −0.299282 + 0.299282i −0.840732 0.541451i \(-0.817875\pi\)
0.541451 + 0.840732i \(0.317875\pi\)
\(824\) 2.34315i 0.0816274i
\(825\) 0 0
\(826\) 4.51472 4.51472i 0.157087 0.157087i
\(827\) −10.1421 + 10.1421i −0.352677 + 0.352677i −0.861105 0.508428i \(-0.830227\pi\)
0.508428 + 0.861105i \(0.330227\pi\)
\(828\) 6.34315 + 6.34315i 0.220440 + 0.220440i
\(829\) −11.3137 −0.392941 −0.196471 0.980510i \(-0.562948\pi\)
−0.196471 + 0.980510i \(0.562948\pi\)
\(830\) 0 0
\(831\) 20.1421i 0.698723i
\(832\) 1.00000 0.0346688
\(833\) −0.807612 + 27.4350i −0.0279821 + 0.950567i
\(834\) −2.24264 −0.0776563
\(835\) 0 0
\(836\) 2.41421 + 2.41421i 0.0834973 + 0.0834973i
\(837\) 2.17157 0.0750605
\(838\) 9.75736 + 9.75736i 0.337062 + 0.337062i
\(839\) −8.87868 + 8.87868i −0.306526 + 0.306526i −0.843560 0.537034i \(-0.819545\pi\)
0.537034 + 0.843560i \(0.319545\pi\)
\(840\) 0 0
\(841\) 67.5980i 2.33096i
\(842\) 22.9289i 0.790183i
\(843\) −2.53553 + 2.53553i −0.0873284 + 0.0873284i
\(844\) −3.41421 + 3.41421i −0.117522 + 0.117522i
\(845\) 0 0
\(846\) 9.17157 0.315325
\(847\) 3.72792 + 3.72792i 0.128093 + 0.128093i
\(848\) 3.48528i 0.119685i
\(849\) 23.1421 0.794236
\(850\) 0 0
\(851\) 7.11270 0.243820
\(852\) 28.3137i 0.970012i
\(853\) 0.514719 + 0.514719i 0.0176236 + 0.0176236i 0.715864 0.698240i \(-0.246033\pi\)
−0.698240 + 0.715864i \(0.746033\pi\)
\(854\) −4.78680 −0.163801
\(855\) 0 0
\(856\) 8.82843 8.82843i 0.301749 0.301749i
\(857\) 15.4350 15.4350i 0.527251 0.527251i −0.392501 0.919752i \(-0.628390\pi\)
0.919752 + 0.392501i \(0.128390\pi\)
\(858\) 3.41421i 0.116559i
\(859\) 47.8701i 1.63331i −0.577129 0.816653i \(-0.695827\pi\)
0.577129 0.816653i \(-0.304173\pi\)
\(860\) 0 0
\(861\) 9.41421 9.41421i 0.320836 0.320836i
\(862\) 16.0000 + 16.0000i 0.544962 + 0.544962i
\(863\) 1.45584 0.0495575 0.0247788 0.999693i \(-0.492112\pi\)
0.0247788 + 0.999693i \(0.492112\pi\)
\(864\) −0.292893 0.292893i −0.00996443 0.00996443i
\(865\) 0 0
\(866\) −0.928932 −0.0315664
\(867\) −27.2635 30.6777i −0.925916 1.04187i
\(868\) 3.07107 0.104239
\(869\) 16.4853i 0.559225i
\(870\) 0 0
\(871\) 8.82843 0.299140
\(872\) 8.36396 + 8.36396i 0.283239 + 0.283239i
\(873\) 28.6274 28.6274i 0.968891 0.968891i
\(874\) −5.41421 + 5.41421i −0.183139 + 0.183139i
\(875\) 0 0
\(876\) 18.8995i 0.638555i
\(877\) 34.2132 34.2132i 1.15530 1.15530i 0.169823 0.985475i \(-0.445680\pi\)
0.985475 0.169823i \(-0.0543197\pi\)
\(878\) 22.6274 22.6274i 0.763638 0.763638i
\(879\) 9.36396 + 9.36396i 0.315839 + 0.315839i
\(880\) 0 0
\(881\) 28.0416 + 28.0416i 0.944747 + 0.944747i 0.998551 0.0538049i \(-0.0171349\pi\)
−0.0538049 + 0.998551i \(0.517135\pi\)
\(882\) 18.8284i 0.633986i
\(883\) 55.4975 1.86764 0.933819 0.357745i \(-0.116454\pi\)
0.933819 + 0.357745i \(0.116454\pi\)
\(884\) 4.12132 + 0.121320i 0.138615 + 0.00408044i
\(885\) 0 0
\(886\) 20.0000i 0.671913i
\(887\) −36.8995 36.8995i −1.23896 1.23896i −0.960425 0.278539i \(-0.910150\pi\)
−0.278539 0.960425i \(-0.589850\pi\)
\(888\) 5.41421 0.181689
\(889\) 3.20101 + 3.20101i 0.107358 + 0.107358i
\(890\) 0 0
\(891\) 9.48528 9.48528i 0.317769 0.317769i
\(892\) 25.3848i 0.849945i
\(893\) 7.82843i 0.261968i
\(894\) −3.00000 + 3.00000i −0.100335 + 0.100335i
\(895\) 0 0
\(896\) −0.414214 0.414214i −0.0138379 0.0138379i
\(897\) −7.65685 −0.255655
\(898\) −29.3848 29.3848i −0.980583 0.980583i
\(899\) 51.5269i 1.71852i
\(900\) 0 0
\(901\) −0.422836 + 14.3640i −0.0140867 + 0.478533i
\(902\) −13.3137 −0.443298
\(903\) 14.4853i 0.482040i
\(904\) 2.46447 + 2.46447i 0.0819669 + 0.0819669i
\(905\) 0 0
\(906\) 8.24264 + 8.24264i 0.273843 + 0.273843i
\(907\) −2.97918 + 2.97918i −0.0989222 + 0.0989222i −0.754836 0.655914i \(-0.772284\pi\)
0.655914 + 0.754836i \(0.272284\pi\)
\(908\) −14.5355 + 14.5355i −0.482379 + 0.482379i
\(909\) 12.2843i 0.407444i
\(910\) 0 0
\(911\) −3.31371 + 3.31371i −0.109788 + 0.109788i −0.759867 0.650079i \(-0.774736\pi\)
0.650079 + 0.759867i \(0.274736\pi\)
\(912\) −4.12132 + 4.12132i −0.136471 + 0.136471i
\(913\) −9.89949 9.89949i −0.327625 0.327625i
\(914\) −27.5563 −0.911483
\(915\) 0 0
\(916\) 16.2426i 0.536672i
\(917\) 11.6569 0.384943
\(918\) −1.17157 1.24264i −0.0386677 0.0410133i
\(919\) −43.0122 −1.41884 −0.709421 0.704785i \(-0.751043\pi\)
−0.709421 + 0.704785i \(0.751043\pi\)
\(920\) 0 0
\(921\) 16.8995 + 16.8995i 0.556857 + 0.556857i
\(922\) 6.97056 0.229563
\(923\) 8.29289 + 8.29289i 0.272964 + 0.272964i
\(924\) 1.41421 1.41421i 0.0465242 0.0465242i
\(925\) 0 0
\(926\) 1.10051i 0.0361648i
\(927\) 6.62742i 0.217673i
\(928\) 6.94975 6.94975i 0.228137 0.228137i
\(929\) 13.4853 13.4853i 0.442438 0.442438i −0.450393 0.892831i \(-0.648716\pi\)
0.892831 + 0.450393i \(0.148716\pi\)
\(930\) 0 0
\(931\) 16.0711 0.526708
\(932\) −8.36396 8.36396i −0.273971 0.273971i
\(933\) 8.82843i 0.289030i
\(934\) 25.2132 0.825001
\(935\) 0 0
\(936\) −2.82843 −0.0924500
\(937\) 45.8406i 1.49755i −0.662826 0.748774i \(-0.730643\pi\)
0.662826 0.748774i \(-0.269357\pi\)
\(938\) −3.65685 3.65685i −0.119401 0.119401i
\(939\) 22.1421 0.722581
\(940\) 0 0
\(941\) −38.4056 + 38.4056i −1.25199 + 1.25199i −0.297158 + 0.954828i \(0.596039\pi\)
−0.954828 + 0.297158i \(0.903961\pi\)
\(942\) −4.82843 + 4.82843i −0.157319 + 0.157319i
\(943\) 29.8579i 0.972306i
\(944\) 10.8995i 0.354748i
\(945\) 0 0
\(946\) 10.2426 10.2426i 0.333017 0.333017i
\(947\) 14.7782 + 14.7782i 0.480226 + 0.480226i 0.905204 0.424978i \(-0.139718\pi\)
−0.424978 + 0.905204i \(0.639718\pi\)
\(948\) 28.1421 0.914014
\(949\) 5.53553 + 5.53553i 0.179691 + 0.179691i
\(950\) 0 0
\(951\) −83.5980 −2.71085
\(952\) −1.65685 1.75736i −0.0536990 0.0569563i
\(953\) 20.5858 0.666839 0.333420 0.942779i \(-0.391797\pi\)
0.333420 + 0.942779i \(0.391797\pi\)
\(954\) 9.85786i 0.319160i
\(955\) 0 0
\(956\) −27.4142 −0.886639
\(957\) 23.7279 + 23.7279i 0.767015 + 0.767015i
\(958\) −19.0208 + 19.0208i −0.614535 + 0.614535i
\(959\) 6.92893 6.92893i 0.223747 0.223747i
\(960\) 0 0
\(961\) 3.51472i 0.113378i
\(962\) −1.58579 + 1.58579i −0.0511278 + 0.0511278i
\(963\) −24.9706 + 24.9706i −0.804665 + 0.804665i
\(964\) 19.8284 + 19.8284i 0.638631 + 0.638631i
\(965\) 0 0
\(966\) 3.17157 + 3.17157i 0.102044 + 0.102044i
\(967\) 33.5980i 1.08044i 0.841524 + 0.540219i \(0.181659\pi\)
−0.841524 + 0.540219i \(0.818341\pi\)
\(968\) 9.00000 0.289271
\(969\) −17.4853 + 16.4853i −0.561708 + 0.529584i
\(970\) 0 0
\(971\) 22.0122i 0.706405i −0.935547 0.353202i \(-0.885093\pi\)
0.935547 0.353202i \(-0.114907\pi\)
\(972\) 15.3137 + 15.3137i 0.491187 + 0.491187i
\(973\) −0.544156 −0.0174448
\(974\) −14.4142 14.4142i −0.461861 0.461861i
\(975\) 0 0
\(976\) −5.77817 + 5.77817i −0.184955 + 0.184955i
\(977\) 34.2426i 1.09552i 0.836636 + 0.547760i \(0.184519\pi\)
−0.836636 + 0.547760i \(0.815481\pi\)
\(978\) 1.17157i 0.0374628i
\(979\) 14.6569 14.6569i 0.468435 0.468435i
\(980\) 0 0
\(981\) −23.6569 23.6569i −0.755305 0.755305i
\(982\) 8.27208 0.263973
\(983\) 8.07107 + 8.07107i 0.257427 + 0.257427i 0.824007 0.566580i \(-0.191734\pi\)
−0.566580 + 0.824007i \(0.691734\pi\)
\(984\) 22.7279i 0.724540i
\(985\) 0 0
\(986\) 29.4853 27.7990i 0.939003 0.885300i
\(987\) 4.58579 0.145967
\(988\) 2.41421i 0.0768064i
\(989\) 22.9706 + 22.9706i 0.730421 + 0.730421i
\(990\) 0 0
\(991\) 22.0919 + 22.0919i 0.701772 + 0.701772i 0.964791 0.263019i \(-0.0847182\pi\)
−0.263019 + 0.964791i \(0.584718\pi\)
\(992\) 3.70711 3.70711i 0.117701 0.117701i
\(993\) −14.6066 + 14.6066i −0.463526 + 0.463526i
\(994\) 6.87006i 0.217905i
\(995\) 0 0
\(996\) 16.8995 16.8995i 0.535481 0.535481i
\(997\) −33.2843 + 33.2843i −1.05412 + 1.05412i −0.0556745 + 0.998449i \(0.517731\pi\)
−0.998449 + 0.0556745i \(0.982269\pi\)
\(998\) −19.2426 19.2426i −0.609115 0.609115i
\(999\) 0.928932 0.0293901
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.h.g.251.1 4
5.2 odd 4 850.2.g.e.149.1 4
5.3 odd 4 850.2.g.h.149.2 4
5.4 even 2 170.2.h.a.81.2 yes 4
15.14 odd 2 1530.2.q.c.1441.1 4
17.4 even 4 inner 850.2.h.g.701.1 4
20.19 odd 2 1360.2.bt.a.81.1 4
85.4 even 4 170.2.h.a.21.2 4
85.9 even 8 2890.2.b.j.2311.4 4
85.19 even 8 2890.2.a.v.1.2 2
85.38 odd 4 850.2.g.e.599.1 4
85.49 even 8 2890.2.a.t.1.1 2
85.59 even 8 2890.2.b.j.2311.1 4
85.72 odd 4 850.2.g.h.599.2 4
255.89 odd 4 1530.2.q.c.361.1 4
340.259 odd 4 1360.2.bt.a.1041.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.h.a.21.2 4 85.4 even 4
170.2.h.a.81.2 yes 4 5.4 even 2
850.2.g.e.149.1 4 5.2 odd 4
850.2.g.e.599.1 4 85.38 odd 4
850.2.g.h.149.2 4 5.3 odd 4
850.2.g.h.599.2 4 85.72 odd 4
850.2.h.g.251.1 4 1.1 even 1 trivial
850.2.h.g.701.1 4 17.4 even 4 inner
1360.2.bt.a.81.1 4 20.19 odd 2
1360.2.bt.a.1041.1 4 340.259 odd 4
1530.2.q.c.361.1 4 255.89 odd 4
1530.2.q.c.1441.1 4 15.14 odd 2
2890.2.a.t.1.1 2 85.49 even 8
2890.2.a.v.1.2 2 85.19 even 8
2890.2.b.j.2311.1 4 85.59 even 8
2890.2.b.j.2311.4 4 85.9 even 8