Properties

Label 1360.2.bn.b.783.15
Level $1360$
Weight $2$
Character 1360.783
Analytic conductor $10.860$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(783,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bn (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 783.15
Character \(\chi\) \(=\) 1360.783
Dual form 1360.2.bn.b.1327.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.124060 + 0.124060i) q^{3} +(-2.20593 + 0.365900i) q^{5} +(2.34724 + 2.34724i) q^{7} +2.96922i q^{9} +0.861269i q^{11} +(-2.29360 - 2.29360i) q^{13} +(0.228274 - 0.319062i) q^{15} +(0.707107 - 0.707107i) q^{17} -6.14132 q^{19} -0.582399 q^{21} +(-1.85561 + 1.85561i) q^{23} +(4.73223 - 1.61430i) q^{25} +(-0.740543 - 0.740543i) q^{27} +8.21277i q^{29} -10.4521i q^{31} +(-0.106849 - 0.106849i) q^{33} +(-6.03670 - 4.31899i) q^{35} +(-4.41927 + 4.41927i) q^{37} +0.569090 q^{39} +3.37171 q^{41} +(2.47916 - 2.47916i) q^{43} +(-1.08644 - 6.54988i) q^{45} +(-6.85123 - 6.85123i) q^{47} +4.01907i q^{49} +0.175448i q^{51} +(0.971203 + 0.971203i) q^{53} +(-0.315139 - 1.89990i) q^{55} +(0.761894 - 0.761894i) q^{57} -9.58067 q^{59} -9.95746 q^{61} +(-6.96947 + 6.96947i) q^{63} +(5.89875 + 4.22029i) q^{65} +(-0.0130951 - 0.0130951i) q^{67} -0.460416i q^{69} +1.10180i q^{71} +(2.97943 + 2.97943i) q^{73} +(-0.386812 + 0.787353i) q^{75} +(-2.02160 + 2.02160i) q^{77} -11.3693 q^{79} -8.72391 q^{81} +(-7.32475 + 7.32475i) q^{83} +(-1.30110 + 1.81856i) q^{85} +(-1.01888 - 1.01888i) q^{87} +10.7325i q^{89} -10.7673i q^{91} +(1.29670 + 1.29670i) q^{93} +(13.5473 - 2.24711i) q^{95} +(-12.8567 + 12.8567i) q^{97} -2.55729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{13} + 64 q^{21} + 24 q^{25} - 56 q^{33} - 32 q^{41} - 24 q^{45} + 64 q^{53} + 64 q^{57} - 16 q^{61} + 40 q^{65} + 56 q^{73} - 40 q^{77} - 176 q^{81} - 104 q^{93} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.124060 + 0.124060i −0.0716262 + 0.0716262i −0.742012 0.670386i \(-0.766128\pi\)
0.670386 + 0.742012i \(0.266128\pi\)
\(4\) 0 0
\(5\) −2.20593 + 0.365900i −0.986521 + 0.163636i
\(6\) 0 0
\(7\) 2.34724 + 2.34724i 0.887173 + 0.887173i 0.994251 0.107077i \(-0.0341493\pi\)
−0.107077 + 0.994251i \(0.534149\pi\)
\(8\) 0 0
\(9\) 2.96922i 0.989739i
\(10\) 0 0
\(11\) 0.861269i 0.259682i 0.991535 + 0.129841i \(0.0414467\pi\)
−0.991535 + 0.129841i \(0.958553\pi\)
\(12\) 0 0
\(13\) −2.29360 2.29360i −0.636131 0.636131i 0.313468 0.949599i \(-0.398509\pi\)
−0.949599 + 0.313468i \(0.898509\pi\)
\(14\) 0 0
\(15\) 0.228274 0.319062i 0.0589402 0.0823814i
\(16\) 0 0
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) 0 0
\(19\) −6.14132 −1.40892 −0.704458 0.709746i \(-0.748810\pi\)
−0.704458 + 0.709746i \(0.748810\pi\)
\(20\) 0 0
\(21\) −0.582399 −0.127090
\(22\) 0 0
\(23\) −1.85561 + 1.85561i −0.386922 + 0.386922i −0.873588 0.486666i \(-0.838213\pi\)
0.486666 + 0.873588i \(0.338213\pi\)
\(24\) 0 0
\(25\) 4.73223 1.61430i 0.946447 0.322860i
\(26\) 0 0
\(27\) −0.740543 0.740543i −0.142518 0.142518i
\(28\) 0 0
\(29\) 8.21277i 1.52507i 0.646945 + 0.762536i \(0.276046\pi\)
−0.646945 + 0.762536i \(0.723954\pi\)
\(30\) 0 0
\(31\) 10.4521i 1.87726i −0.344927 0.938630i \(-0.612096\pi\)
0.344927 0.938630i \(-0.387904\pi\)
\(32\) 0 0
\(33\) −0.106849 0.106849i −0.0186001 0.0186001i
\(34\) 0 0
\(35\) −6.03670 4.31899i −1.02039 0.730042i
\(36\) 0 0
\(37\) −4.41927 + 4.41927i −0.726523 + 0.726523i −0.969925 0.243402i \(-0.921737\pi\)
0.243402 + 0.969925i \(0.421737\pi\)
\(38\) 0 0
\(39\) 0.569090 0.0911274
\(40\) 0 0
\(41\) 3.37171 0.526572 0.263286 0.964718i \(-0.415194\pi\)
0.263286 + 0.964718i \(0.415194\pi\)
\(42\) 0 0
\(43\) 2.47916 2.47916i 0.378068 0.378068i −0.492337 0.870405i \(-0.663857\pi\)
0.870405 + 0.492337i \(0.163857\pi\)
\(44\) 0 0
\(45\) −1.08644 6.54988i −0.161957 0.976399i
\(46\) 0 0
\(47\) −6.85123 6.85123i −0.999355 0.999355i 0.000644998 1.00000i \(-0.499795\pi\)
−1.00000 0.000644998i \(0.999795\pi\)
\(48\) 0 0
\(49\) 4.01907i 0.574153i
\(50\) 0 0
\(51\) 0.175448i 0.0245676i
\(52\) 0 0
\(53\) 0.971203 + 0.971203i 0.133405 + 0.133405i 0.770656 0.637251i \(-0.219929\pi\)
−0.637251 + 0.770656i \(0.719929\pi\)
\(54\) 0 0
\(55\) −0.315139 1.89990i −0.0424933 0.256182i
\(56\) 0 0
\(57\) 0.761894 0.761894i 0.100915 0.100915i
\(58\) 0 0
\(59\) −9.58067 −1.24730 −0.623649 0.781705i \(-0.714350\pi\)
−0.623649 + 0.781705i \(0.714350\pi\)
\(60\) 0 0
\(61\) −9.95746 −1.27492 −0.637461 0.770483i \(-0.720015\pi\)
−0.637461 + 0.770483i \(0.720015\pi\)
\(62\) 0 0
\(63\) −6.96947 + 6.96947i −0.878070 + 0.878070i
\(64\) 0 0
\(65\) 5.89875 + 4.22029i 0.731650 + 0.523463i
\(66\) 0 0
\(67\) −0.0130951 0.0130951i −0.00159982 0.00159982i 0.706306 0.707906i \(-0.250360\pi\)
−0.707906 + 0.706306i \(0.750360\pi\)
\(68\) 0 0
\(69\) 0.460416i 0.0554276i
\(70\) 0 0
\(71\) 1.10180i 0.130760i 0.997860 + 0.0653800i \(0.0208260\pi\)
−0.997860 + 0.0653800i \(0.979174\pi\)
\(72\) 0 0
\(73\) 2.97943 + 2.97943i 0.348716 + 0.348716i 0.859631 0.510915i \(-0.170693\pi\)
−0.510915 + 0.859631i \(0.670693\pi\)
\(74\) 0 0
\(75\) −0.386812 + 0.787353i −0.0446652 + 0.0909157i
\(76\) 0 0
\(77\) −2.02160 + 2.02160i −0.230383 + 0.230383i
\(78\) 0 0
\(79\) −11.3693 −1.27915 −0.639574 0.768730i \(-0.720889\pi\)
−0.639574 + 0.768730i \(0.720889\pi\)
\(80\) 0 0
\(81\) −8.72391 −0.969323
\(82\) 0 0
\(83\) −7.32475 + 7.32475i −0.803996 + 0.803996i −0.983718 0.179722i \(-0.942480\pi\)
0.179722 + 0.983718i \(0.442480\pi\)
\(84\) 0 0
\(85\) −1.30110 + 1.81856i −0.141124 + 0.197250i
\(86\) 0 0
\(87\) −1.01888 1.01888i −0.109235 0.109235i
\(88\) 0 0
\(89\) 10.7325i 1.13764i 0.822460 + 0.568822i \(0.192601\pi\)
−0.822460 + 0.568822i \(0.807399\pi\)
\(90\) 0 0
\(91\) 10.7673i 1.12872i
\(92\) 0 0
\(93\) 1.29670 + 1.29670i 0.134461 + 0.134461i
\(94\) 0 0
\(95\) 13.5473 2.24711i 1.38992 0.230549i
\(96\) 0 0
\(97\) −12.8567 + 12.8567i −1.30541 + 1.30541i −0.380711 + 0.924694i \(0.624321\pi\)
−0.924694 + 0.380711i \(0.875679\pi\)
\(98\) 0 0
\(99\) −2.55729 −0.257018
\(100\) 0 0
\(101\) −0.779429 −0.0775561 −0.0387781 0.999248i \(-0.512347\pi\)
−0.0387781 + 0.999248i \(0.512347\pi\)
\(102\) 0 0
\(103\) −8.82893 + 8.82893i −0.869940 + 0.869940i −0.992465 0.122525i \(-0.960901\pi\)
0.122525 + 0.992465i \(0.460901\pi\)
\(104\) 0 0
\(105\) 1.28473 0.213100i 0.125377 0.0207964i
\(106\) 0 0
\(107\) 7.93728 + 7.93728i 0.767326 + 0.767326i 0.977635 0.210309i \(-0.0674470\pi\)
−0.210309 + 0.977635i \(0.567447\pi\)
\(108\) 0 0
\(109\) 19.6876i 1.88573i −0.333168 0.942867i \(-0.608118\pi\)
0.333168 0.942867i \(-0.391882\pi\)
\(110\) 0 0
\(111\) 1.09651i 0.104076i
\(112\) 0 0
\(113\) 9.46623 + 9.46623i 0.890508 + 0.890508i 0.994571 0.104062i \(-0.0331841\pi\)
−0.104062 + 0.994571i \(0.533184\pi\)
\(114\) 0 0
\(115\) 3.41438 4.77232i 0.318393 0.445021i
\(116\) 0 0
\(117\) 6.81021 6.81021i 0.629604 0.629604i
\(118\) 0 0
\(119\) 3.31950 0.304298
\(120\) 0 0
\(121\) 10.2582 0.932565
\(122\) 0 0
\(123\) −0.418295 + 0.418295i −0.0377164 + 0.0377164i
\(124\) 0 0
\(125\) −9.84829 + 5.29255i −0.880858 + 0.473380i
\(126\) 0 0
\(127\) 0.141559 + 0.141559i 0.0125614 + 0.0125614i 0.713360 0.700798i \(-0.247173\pi\)
−0.700798 + 0.713360i \(0.747173\pi\)
\(128\) 0 0
\(129\) 0.615130i 0.0541592i
\(130\) 0 0
\(131\) 4.36215i 0.381123i −0.981675 0.190561i \(-0.938969\pi\)
0.981675 0.190561i \(-0.0610309\pi\)
\(132\) 0 0
\(133\) −14.4151 14.4151i −1.24995 1.24995i
\(134\) 0 0
\(135\) 1.90455 + 1.36262i 0.163917 + 0.117276i
\(136\) 0 0
\(137\) 6.66158 6.66158i 0.569137 0.569137i −0.362750 0.931887i \(-0.618162\pi\)
0.931887 + 0.362750i \(0.118162\pi\)
\(138\) 0 0
\(139\) −0.901816 −0.0764911 −0.0382455 0.999268i \(-0.512177\pi\)
−0.0382455 + 0.999268i \(0.512177\pi\)
\(140\) 0 0
\(141\) 1.69993 0.143160
\(142\) 0 0
\(143\) 1.97541 1.97541i 0.165192 0.165192i
\(144\) 0 0
\(145\) −3.00505 18.1168i −0.249556 1.50452i
\(146\) 0 0
\(147\) −0.498607 0.498607i −0.0411244 0.0411244i
\(148\) 0 0
\(149\) 3.62048i 0.296601i 0.988942 + 0.148301i \(0.0473803\pi\)
−0.988942 + 0.148301i \(0.952620\pi\)
\(150\) 0 0
\(151\) 4.03587i 0.328435i −0.986424 0.164217i \(-0.947490\pi\)
0.986424 0.164217i \(-0.0525098\pi\)
\(152\) 0 0
\(153\) 2.09955 + 2.09955i 0.169739 + 0.169739i
\(154\) 0 0
\(155\) 3.82444 + 23.0567i 0.307186 + 1.85196i
\(156\) 0 0
\(157\) −5.01729 + 5.01729i −0.400423 + 0.400423i −0.878382 0.477959i \(-0.841377\pi\)
0.477959 + 0.878382i \(0.341377\pi\)
\(158\) 0 0
\(159\) −0.240975 −0.0191106
\(160\) 0 0
\(161\) −8.71115 −0.686534
\(162\) 0 0
\(163\) 12.9748 12.9748i 1.01626 1.01626i 0.0163962 0.999866i \(-0.494781\pi\)
0.999866 0.0163962i \(-0.00521930\pi\)
\(164\) 0 0
\(165\) 0.274798 + 0.196606i 0.0213930 + 0.0153057i
\(166\) 0 0
\(167\) −5.28568 5.28568i −0.409018 0.409018i 0.472378 0.881396i \(-0.343396\pi\)
−0.881396 + 0.472378i \(0.843396\pi\)
\(168\) 0 0
\(169\) 2.47876i 0.190674i
\(170\) 0 0
\(171\) 18.2349i 1.39446i
\(172\) 0 0
\(173\) 10.3718 + 10.3718i 0.788552 + 0.788552i 0.981257 0.192705i \(-0.0617261\pi\)
−0.192705 + 0.981257i \(0.561726\pi\)
\(174\) 0 0
\(175\) 14.8968 + 7.31854i 1.12609 + 0.553230i
\(176\) 0 0
\(177\) 1.18858 1.18858i 0.0893392 0.0893392i
\(178\) 0 0
\(179\) 22.0590 1.64877 0.824384 0.566031i \(-0.191522\pi\)
0.824384 + 0.566031i \(0.191522\pi\)
\(180\) 0 0
\(181\) 0.929075 0.0690576 0.0345288 0.999404i \(-0.489007\pi\)
0.0345288 + 0.999404i \(0.489007\pi\)
\(182\) 0 0
\(183\) 1.23533 1.23533i 0.0913179 0.0913179i
\(184\) 0 0
\(185\) 8.13158 11.3656i 0.597845 0.835616i
\(186\) 0 0
\(187\) 0.609009 + 0.609009i 0.0445351 + 0.0445351i
\(188\) 0 0
\(189\) 3.47646i 0.252876i
\(190\) 0 0
\(191\) 14.8229i 1.07255i 0.844045 + 0.536273i \(0.180168\pi\)
−0.844045 + 0.536273i \(0.819832\pi\)
\(192\) 0 0
\(193\) 16.4594 + 16.4594i 1.18477 + 1.18477i 0.978493 + 0.206279i \(0.0661355\pi\)
0.206279 + 0.978493i \(0.433864\pi\)
\(194\) 0 0
\(195\) −1.25537 + 0.208230i −0.0898991 + 0.0149117i
\(196\) 0 0
\(197\) 12.5288 12.5288i 0.892639 0.892639i −0.102132 0.994771i \(-0.532566\pi\)
0.994771 + 0.102132i \(0.0325663\pi\)
\(198\) 0 0
\(199\) −3.57439 −0.253382 −0.126691 0.991942i \(-0.540436\pi\)
−0.126691 + 0.991942i \(0.540436\pi\)
\(200\) 0 0
\(201\) 0.00324916 0.000229178
\(202\) 0 0
\(203\) −19.2773 + 19.2773i −1.35300 + 1.35300i
\(204\) 0 0
\(205\) −7.43774 + 1.23371i −0.519474 + 0.0861659i
\(206\) 0 0
\(207\) −5.50972 5.50972i −0.382952 0.382952i
\(208\) 0 0
\(209\) 5.28932i 0.365870i
\(210\) 0 0
\(211\) 20.8745i 1.43706i −0.695495 0.718531i \(-0.744815\pi\)
0.695495 0.718531i \(-0.255185\pi\)
\(212\) 0 0
\(213\) −0.136690 0.136690i −0.00936585 0.00936585i
\(214\) 0 0
\(215\) −4.56172 + 6.37597i −0.311107 + 0.434837i
\(216\) 0 0
\(217\) 24.5337 24.5337i 1.66545 1.66545i
\(218\) 0 0
\(219\) −0.739258 −0.0499544
\(220\) 0 0
\(221\) −3.24365 −0.218191
\(222\) 0 0
\(223\) 8.07794 8.07794i 0.540939 0.540939i −0.382865 0.923804i \(-0.625063\pi\)
0.923804 + 0.382865i \(0.125063\pi\)
\(224\) 0 0
\(225\) 4.79321 + 14.0510i 0.319547 + 0.936736i
\(226\) 0 0
\(227\) 8.17072 + 8.17072i 0.542310 + 0.542310i 0.924206 0.381895i \(-0.124729\pi\)
−0.381895 + 0.924206i \(0.624729\pi\)
\(228\) 0 0
\(229\) 13.7075i 0.905816i 0.891557 + 0.452908i \(0.149613\pi\)
−0.891557 + 0.452908i \(0.850387\pi\)
\(230\) 0 0
\(231\) 0.501602i 0.0330030i
\(232\) 0 0
\(233\) 9.45185 + 9.45185i 0.619212 + 0.619212i 0.945329 0.326118i \(-0.105741\pi\)
−0.326118 + 0.945329i \(0.605741\pi\)
\(234\) 0 0
\(235\) 17.6202 + 12.6065i 1.14941 + 0.822354i
\(236\) 0 0
\(237\) 1.41048 1.41048i 0.0916206 0.0916206i
\(238\) 0 0
\(239\) −20.2840 −1.31207 −0.656033 0.754733i \(-0.727767\pi\)
−0.656033 + 0.754733i \(0.727767\pi\)
\(240\) 0 0
\(241\) −19.6520 −1.26590 −0.632948 0.774195i \(-0.718155\pi\)
−0.632948 + 0.774195i \(0.718155\pi\)
\(242\) 0 0
\(243\) 3.30392 3.30392i 0.211947 0.211947i
\(244\) 0 0
\(245\) −1.47058 8.86578i −0.0939519 0.566414i
\(246\) 0 0
\(247\) 14.0858 + 14.0858i 0.896255 + 0.896255i
\(248\) 0 0
\(249\) 1.81742i 0.115174i
\(250\) 0 0
\(251\) 4.07827i 0.257418i 0.991682 + 0.128709i \(0.0410834\pi\)
−0.991682 + 0.128709i \(0.958917\pi\)
\(252\) 0 0
\(253\) −1.59818 1.59818i −0.100477 0.100477i
\(254\) 0 0
\(255\) −0.0641964 0.387025i −0.00402013 0.0242364i
\(256\) 0 0
\(257\) −5.32513 + 5.32513i −0.332173 + 0.332173i −0.853411 0.521238i \(-0.825470\pi\)
0.521238 + 0.853411i \(0.325470\pi\)
\(258\) 0 0
\(259\) −20.7462 −1.28910
\(260\) 0 0
\(261\) −24.3855 −1.50942
\(262\) 0 0
\(263\) −19.4859 + 19.4859i −1.20155 + 1.20155i −0.227860 + 0.973694i \(0.573173\pi\)
−0.973694 + 0.227860i \(0.926827\pi\)
\(264\) 0 0
\(265\) −2.49777 1.78704i −0.153437 0.109777i
\(266\) 0 0
\(267\) −1.33148 1.33148i −0.0814852 0.0814852i
\(268\) 0 0
\(269\) 1.80469i 0.110034i −0.998485 0.0550169i \(-0.982479\pi\)
0.998485 0.0550169i \(-0.0175213\pi\)
\(270\) 0 0
\(271\) 10.4001i 0.631763i −0.948799 0.315882i \(-0.897700\pi\)
0.948799 0.315882i \(-0.102300\pi\)
\(272\) 0 0
\(273\) 1.33579 + 1.33579i 0.0808458 + 0.0808458i
\(274\) 0 0
\(275\) 1.39035 + 4.07572i 0.0838410 + 0.245775i
\(276\) 0 0
\(277\) −6.18882 + 6.18882i −0.371850 + 0.371850i −0.868151 0.496301i \(-0.834691\pi\)
0.496301 + 0.868151i \(0.334691\pi\)
\(278\) 0 0
\(279\) 31.0347 1.85800
\(280\) 0 0
\(281\) −16.3773 −0.976986 −0.488493 0.872568i \(-0.662453\pi\)
−0.488493 + 0.872568i \(0.662453\pi\)
\(282\) 0 0
\(283\) 12.6739 12.6739i 0.753384 0.753384i −0.221726 0.975109i \(-0.571169\pi\)
0.975109 + 0.221726i \(0.0711689\pi\)
\(284\) 0 0
\(285\) −1.40191 + 1.95946i −0.0830417 + 0.116068i
\(286\) 0 0
\(287\) 7.91420 + 7.91420i 0.467161 + 0.467161i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 3.19002i 0.187003i
\(292\) 0 0
\(293\) −4.35741 4.35741i −0.254562 0.254562i 0.568276 0.822838i \(-0.307611\pi\)
−0.822838 + 0.568276i \(0.807611\pi\)
\(294\) 0 0
\(295\) 21.1343 3.50557i 1.23048 0.204102i
\(296\) 0 0
\(297\) 0.637806 0.637806i 0.0370093 0.0370093i
\(298\) 0 0
\(299\) 8.51209 0.492267
\(300\) 0 0
\(301\) 11.6384 0.670824
\(302\) 0 0
\(303\) 0.0966962 0.0966962i 0.00555505 0.00555505i
\(304\) 0 0
\(305\) 21.9654 3.64344i 1.25774 0.208623i
\(306\) 0 0
\(307\) 16.8496 + 16.8496i 0.961655 + 0.961655i 0.999292 0.0376363i \(-0.0119828\pi\)
−0.0376363 + 0.999292i \(0.511983\pi\)
\(308\) 0 0
\(309\) 2.19064i 0.124621i
\(310\) 0 0
\(311\) 16.0477i 0.909984i −0.890496 0.454992i \(-0.849642\pi\)
0.890496 0.454992i \(-0.150358\pi\)
\(312\) 0 0
\(313\) −10.4793 10.4793i −0.592323 0.592323i 0.345935 0.938258i \(-0.387562\pi\)
−0.938258 + 0.345935i \(0.887562\pi\)
\(314\) 0 0
\(315\) 12.8240 17.9243i 0.722551 1.00992i
\(316\) 0 0
\(317\) 8.21886 8.21886i 0.461617 0.461617i −0.437568 0.899185i \(-0.644160\pi\)
0.899185 + 0.437568i \(0.144160\pi\)
\(318\) 0 0
\(319\) −7.07340 −0.396034
\(320\) 0 0
\(321\) −1.96940 −0.109921
\(322\) 0 0
\(323\) −4.34257 + 4.34257i −0.241627 + 0.241627i
\(324\) 0 0
\(325\) −14.5564 7.15131i −0.807446 0.396683i
\(326\) 0 0
\(327\) 2.44246 + 2.44246i 0.135068 + 0.135068i
\(328\) 0 0
\(329\) 32.1630i 1.77320i
\(330\) 0 0
\(331\) 5.63461i 0.309706i 0.987938 + 0.154853i \(0.0494904\pi\)
−0.987938 + 0.154853i \(0.950510\pi\)
\(332\) 0 0
\(333\) −13.1218 13.1218i −0.719069 0.719069i
\(334\) 0 0
\(335\) 0.0336783 + 0.0240953i 0.00184004 + 0.00131647i
\(336\) 0 0
\(337\) −7.75583 + 7.75583i −0.422487 + 0.422487i −0.886059 0.463572i \(-0.846567\pi\)
0.463572 + 0.886059i \(0.346567\pi\)
\(338\) 0 0
\(339\) −2.34877 −0.127568
\(340\) 0 0
\(341\) 9.00210 0.487491
\(342\) 0 0
\(343\) 6.99696 6.99696i 0.377800 0.377800i
\(344\) 0 0
\(345\) 0.168466 + 1.01564i 0.00906993 + 0.0546805i
\(346\) 0 0
\(347\) 24.7937 + 24.7937i 1.33100 + 1.33100i 0.904478 + 0.426520i \(0.140261\pi\)
0.426520 + 0.904478i \(0.359739\pi\)
\(348\) 0 0
\(349\) 17.7399i 0.949596i 0.880095 + 0.474798i \(0.157479\pi\)
−0.880095 + 0.474798i \(0.842521\pi\)
\(350\) 0 0
\(351\) 3.39702i 0.181320i
\(352\) 0 0
\(353\) 8.84892 + 8.84892i 0.470981 + 0.470981i 0.902232 0.431251i \(-0.141928\pi\)
−0.431251 + 0.902232i \(0.641928\pi\)
\(354\) 0 0
\(355\) −0.403151 2.43050i −0.0213970 0.128998i
\(356\) 0 0
\(357\) −0.411818 + 0.411818i −0.0217957 + 0.0217957i
\(358\) 0 0
\(359\) −15.5965 −0.823150 −0.411575 0.911376i \(-0.635021\pi\)
−0.411575 + 0.911376i \(0.635021\pi\)
\(360\) 0 0
\(361\) 18.7158 0.985042
\(362\) 0 0
\(363\) −1.27264 + 1.27264i −0.0667961 + 0.0667961i
\(364\) 0 0
\(365\) −7.66259 5.48224i −0.401078 0.286953i
\(366\) 0 0
\(367\) 16.9694 + 16.9694i 0.885797 + 0.885797i 0.994116 0.108320i \(-0.0345470\pi\)
−0.108320 + 0.994116i \(0.534547\pi\)
\(368\) 0 0
\(369\) 10.0113i 0.521169i
\(370\) 0 0
\(371\) 4.55929i 0.236707i
\(372\) 0 0
\(373\) 11.3830 + 11.3830i 0.589389 + 0.589389i 0.937466 0.348077i \(-0.113165\pi\)
−0.348077 + 0.937466i \(0.613165\pi\)
\(374\) 0 0
\(375\) 0.565186 1.87838i 0.0291861 0.0969990i
\(376\) 0 0
\(377\) 18.8368 18.8368i 0.970146 0.970146i
\(378\) 0 0
\(379\) −12.3736 −0.635590 −0.317795 0.948160i \(-0.602942\pi\)
−0.317795 + 0.948160i \(0.602942\pi\)
\(380\) 0 0
\(381\) −0.0351238 −0.00179944
\(382\) 0 0
\(383\) 20.8220 20.8220i 1.06396 1.06396i 0.0661456 0.997810i \(-0.478930\pi\)
0.997810 0.0661456i \(-0.0210702\pi\)
\(384\) 0 0
\(385\) 3.71981 5.19922i 0.189579 0.264977i
\(386\) 0 0
\(387\) 7.36116 + 7.36116i 0.374189 + 0.374189i
\(388\) 0 0
\(389\) 12.4040i 0.628908i 0.949273 + 0.314454i \(0.101821\pi\)
−0.949273 + 0.314454i \(0.898179\pi\)
\(390\) 0 0
\(391\) 2.62424i 0.132713i
\(392\) 0 0
\(393\) 0.541170 + 0.541170i 0.0272984 + 0.0272984i
\(394\) 0 0
\(395\) 25.0799 4.16004i 1.26191 0.209314i
\(396\) 0 0
\(397\) 7.55670 7.55670i 0.379260 0.379260i −0.491575 0.870835i \(-0.663579\pi\)
0.870835 + 0.491575i \(0.163579\pi\)
\(398\) 0 0
\(399\) 3.57669 0.179059
\(400\) 0 0
\(401\) 18.0186 0.899808 0.449904 0.893077i \(-0.351458\pi\)
0.449904 + 0.893077i \(0.351458\pi\)
\(402\) 0 0
\(403\) −23.9731 + 23.9731i −1.19418 + 1.19418i
\(404\) 0 0
\(405\) 19.2443 3.19208i 0.956258 0.158616i
\(406\) 0 0
\(407\) −3.80618 3.80618i −0.188665 0.188665i
\(408\) 0 0
\(409\) 3.96094i 0.195856i −0.995193 0.0979280i \(-0.968779\pi\)
0.995193 0.0979280i \(-0.0312215\pi\)
\(410\) 0 0
\(411\) 1.65287i 0.0815303i
\(412\) 0 0
\(413\) −22.4881 22.4881i −1.10657 1.10657i
\(414\) 0 0
\(415\) 13.4777 18.8380i 0.661596 0.924721i
\(416\) 0 0
\(417\) 0.111880 0.111880i 0.00547877 0.00547877i
\(418\) 0 0
\(419\) −35.6815 −1.74315 −0.871577 0.490258i \(-0.836903\pi\)
−0.871577 + 0.490258i \(0.836903\pi\)
\(420\) 0 0
\(421\) −15.8366 −0.771829 −0.385915 0.922535i \(-0.626114\pi\)
−0.385915 + 0.922535i \(0.626114\pi\)
\(422\) 0 0
\(423\) 20.3428 20.3428i 0.989101 0.989101i
\(424\) 0 0
\(425\) 2.20471 4.48768i 0.106944 0.217684i
\(426\) 0 0
\(427\) −23.3725 23.3725i −1.13108 1.13108i
\(428\) 0 0
\(429\) 0.490140i 0.0236642i
\(430\) 0 0
\(431\) 6.44310i 0.310353i 0.987887 + 0.155177i \(0.0495947\pi\)
−0.987887 + 0.155177i \(0.950405\pi\)
\(432\) 0 0
\(433\) 17.9965 + 17.9965i 0.864859 + 0.864859i 0.991898 0.127039i \(-0.0405474\pi\)
−0.127039 + 0.991898i \(0.540547\pi\)
\(434\) 0 0
\(435\) 2.62038 + 1.87476i 0.125638 + 0.0898880i
\(436\) 0 0
\(437\) 11.3959 11.3959i 0.545141 0.545141i
\(438\) 0 0
\(439\) 23.0474 1.09999 0.549997 0.835166i \(-0.314629\pi\)
0.549997 + 0.835166i \(0.314629\pi\)
\(440\) 0 0
\(441\) −11.9335 −0.568262
\(442\) 0 0
\(443\) −23.0593 + 23.0593i −1.09558 + 1.09558i −0.100659 + 0.994921i \(0.532095\pi\)
−0.994921 + 0.100659i \(0.967905\pi\)
\(444\) 0 0
\(445\) −3.92703 23.6752i −0.186159 1.12231i
\(446\) 0 0
\(447\) −0.449158 0.449158i −0.0212444 0.0212444i
\(448\) 0 0
\(449\) 0.177217i 0.00836340i 0.999991 + 0.00418170i \(0.00133108\pi\)
−0.999991 + 0.00418170i \(0.998669\pi\)
\(450\) 0 0
\(451\) 2.90394i 0.136741i
\(452\) 0 0
\(453\) 0.500692 + 0.500692i 0.0235245 + 0.0235245i
\(454\) 0 0
\(455\) 3.93975 + 23.7518i 0.184698 + 1.11350i
\(456\) 0 0
\(457\) −10.7406 + 10.7406i −0.502425 + 0.502425i −0.912191 0.409765i \(-0.865611\pi\)
0.409765 + 0.912191i \(0.365611\pi\)
\(458\) 0 0
\(459\) −1.04729 −0.0488831
\(460\) 0 0
\(461\) −7.84510 −0.365383 −0.182691 0.983170i \(-0.558481\pi\)
−0.182691 + 0.983170i \(0.558481\pi\)
\(462\) 0 0
\(463\) −24.3744 + 24.3744i −1.13277 + 1.13277i −0.143061 + 0.989714i \(0.545695\pi\)
−0.989714 + 0.143061i \(0.954305\pi\)
\(464\) 0 0
\(465\) −3.33488 2.38595i −0.154651 0.110646i
\(466\) 0 0
\(467\) 1.88773 + 1.88773i 0.0873536 + 0.0873536i 0.749433 0.662080i \(-0.230326\pi\)
−0.662080 + 0.749433i \(0.730326\pi\)
\(468\) 0 0
\(469\) 0.0614746i 0.00283863i
\(470\) 0 0
\(471\) 1.24489i 0.0573617i
\(472\) 0 0
\(473\) 2.13522 + 2.13522i 0.0981775 + 0.0981775i
\(474\) 0 0
\(475\) −29.0622 + 9.91393i −1.33346 + 0.454882i
\(476\) 0 0
\(477\) −2.88371 + 2.88371i −0.132036 + 0.132036i
\(478\) 0 0
\(479\) 26.9687 1.23223 0.616116 0.787656i \(-0.288705\pi\)
0.616116 + 0.787656i \(0.288705\pi\)
\(480\) 0 0
\(481\) 20.2721 0.924328
\(482\) 0 0
\(483\) 1.08071 1.08071i 0.0491739 0.0491739i
\(484\) 0 0
\(485\) 23.6568 33.0653i 1.07420 1.50142i
\(486\) 0 0
\(487\) 2.44711 + 2.44711i 0.110889 + 0.110889i 0.760374 0.649485i \(-0.225016\pi\)
−0.649485 + 0.760374i \(0.725016\pi\)
\(488\) 0 0
\(489\) 3.21931i 0.145582i
\(490\) 0 0
\(491\) 17.1187i 0.772557i −0.922382 0.386279i \(-0.873760\pi\)
0.922382 0.386279i \(-0.126240\pi\)
\(492\) 0 0
\(493\) 5.80730 + 5.80730i 0.261548 + 0.261548i
\(494\) 0 0
\(495\) 5.64121 0.935715i 0.253553 0.0420573i
\(496\) 0 0
\(497\) −2.58620 + 2.58620i −0.116007 + 0.116007i
\(498\) 0 0
\(499\) 21.9128 0.980954 0.490477 0.871454i \(-0.336823\pi\)
0.490477 + 0.871454i \(0.336823\pi\)
\(500\) 0 0
\(501\) 1.31148 0.0585928
\(502\) 0 0
\(503\) −29.3981 + 29.3981i −1.31079 + 1.31079i −0.389965 + 0.920830i \(0.627513\pi\)
−0.920830 + 0.389965i \(0.872487\pi\)
\(504\) 0 0
\(505\) 1.71936 0.285193i 0.0765107 0.0126909i
\(506\) 0 0
\(507\) 0.307516 + 0.307516i 0.0136573 + 0.0136573i
\(508\) 0 0
\(509\) 43.3734i 1.92249i 0.275696 + 0.961245i \(0.411092\pi\)
−0.275696 + 0.961245i \(0.588908\pi\)
\(510\) 0 0
\(511\) 13.9869i 0.618743i
\(512\) 0 0
\(513\) 4.54791 + 4.54791i 0.200795 + 0.200795i
\(514\) 0 0
\(515\) 16.2455 22.7065i 0.715861 1.00057i
\(516\) 0 0
\(517\) 5.90075 5.90075i 0.259515 0.259515i
\(518\) 0 0
\(519\) −2.57345 −0.112962
\(520\) 0 0
\(521\) −21.8515 −0.957330 −0.478665 0.877998i \(-0.658879\pi\)
−0.478665 + 0.877998i \(0.658879\pi\)
\(522\) 0 0
\(523\) 16.1765 16.1765i 0.707347 0.707347i −0.258629 0.965977i \(-0.583271\pi\)
0.965977 + 0.258629i \(0.0832708\pi\)
\(524\) 0 0
\(525\) −2.75605 + 0.940166i −0.120284 + 0.0410322i
\(526\) 0 0
\(527\) −7.39078 7.39078i −0.321947 0.321947i
\(528\) 0 0
\(529\) 16.1134i 0.700582i
\(530\) 0 0
\(531\) 28.4471i 1.23450i
\(532\) 0 0
\(533\) −7.73336 7.73336i −0.334969 0.334969i
\(534\) 0 0
\(535\) −20.4133 14.6048i −0.882545 0.631421i
\(536\) 0 0
\(537\) −2.73665 + 2.73665i −0.118095 + 0.118095i
\(538\) 0 0
\(539\) −3.46150 −0.149097
\(540\) 0 0
\(541\) 11.4270 0.491284 0.245642 0.969361i \(-0.421001\pi\)
0.245642 + 0.969361i \(0.421001\pi\)
\(542\) 0 0
\(543\) −0.115261 + 0.115261i −0.00494634 + 0.00494634i
\(544\) 0 0
\(545\) 7.20372 + 43.4295i 0.308573 + 1.86032i
\(546\) 0 0
\(547\) 8.87763 + 8.87763i 0.379580 + 0.379580i 0.870951 0.491371i \(-0.163504\pi\)
−0.491371 + 0.870951i \(0.663504\pi\)
\(548\) 0 0
\(549\) 29.5659i 1.26184i
\(550\) 0 0
\(551\) 50.4372i 2.14870i
\(552\) 0 0
\(553\) −26.6865 26.6865i −1.13483 1.13483i
\(554\) 0 0
\(555\) 0.401214 + 2.41883i 0.0170306 + 0.102673i
\(556\) 0 0
\(557\) −25.9115 + 25.9115i −1.09791 + 1.09791i −0.103252 + 0.994655i \(0.532925\pi\)
−0.994655 + 0.103252i \(0.967075\pi\)
\(558\) 0 0
\(559\) −11.3724 −0.481002
\(560\) 0 0
\(561\) −0.151108 −0.00637977
\(562\) 0 0
\(563\) −8.66155 + 8.66155i −0.365041 + 0.365041i −0.865665 0.500624i \(-0.833104\pi\)
0.500624 + 0.865665i \(0.333104\pi\)
\(564\) 0 0
\(565\) −24.3455 17.4181i −1.02422 0.732786i
\(566\) 0 0
\(567\) −20.4771 20.4771i −0.859958 0.859958i
\(568\) 0 0
\(569\) 4.16945i 0.174792i 0.996174 + 0.0873962i \(0.0278546\pi\)
−0.996174 + 0.0873962i \(0.972145\pi\)
\(570\) 0 0
\(571\) 20.4617i 0.856296i −0.903709 0.428148i \(-0.859166\pi\)
0.903709 0.428148i \(-0.140834\pi\)
\(572\) 0 0
\(573\) −1.83893 1.83893i −0.0768224 0.0768224i
\(574\) 0 0
\(575\) −5.78568 + 11.7767i −0.241280 + 0.491123i
\(576\) 0 0
\(577\) −27.8065 + 27.8065i −1.15760 + 1.15760i −0.172611 + 0.984990i \(0.555220\pi\)
−0.984990 + 0.172611i \(0.944780\pi\)
\(578\) 0 0
\(579\) −4.08391 −0.169722
\(580\) 0 0
\(581\) −34.3859 −1.42657
\(582\) 0 0
\(583\) −0.836466 + 0.836466i −0.0346429 + 0.0346429i
\(584\) 0 0
\(585\) −12.5310 + 17.5147i −0.518092 + 0.724143i
\(586\) 0 0
\(587\) −22.2868 22.2868i −0.919876 0.919876i 0.0771444 0.997020i \(-0.475420\pi\)
−0.997020 + 0.0771444i \(0.975420\pi\)
\(588\) 0 0
\(589\) 64.1899i 2.64490i
\(590\) 0 0
\(591\) 3.10865i 0.127873i
\(592\) 0 0
\(593\) −11.1720 11.1720i −0.458779 0.458779i 0.439475 0.898255i \(-0.355164\pi\)
−0.898255 + 0.439475i \(0.855164\pi\)
\(594\) 0 0
\(595\) −7.32257 + 1.21461i −0.300196 + 0.0497940i
\(596\) 0 0
\(597\) 0.443440 0.443440i 0.0181488 0.0181488i
\(598\) 0 0
\(599\) −31.7262 −1.29630 −0.648149 0.761514i \(-0.724457\pi\)
−0.648149 + 0.761514i \(0.724457\pi\)
\(600\) 0 0
\(601\) 42.3634 1.72804 0.864019 0.503459i \(-0.167940\pi\)
0.864019 + 0.503459i \(0.167940\pi\)
\(602\) 0 0
\(603\) 0.0388821 0.0388821i 0.00158340 0.00158340i
\(604\) 0 0
\(605\) −22.6289 + 3.75349i −0.919995 + 0.152601i
\(606\) 0 0
\(607\) −18.1507 18.1507i −0.736716 0.736716i 0.235225 0.971941i \(-0.424417\pi\)
−0.971941 + 0.235225i \(0.924417\pi\)
\(608\) 0 0
\(609\) 4.78310i 0.193821i
\(610\) 0 0
\(611\) 31.4280i 1.27144i
\(612\) 0 0
\(613\) −5.49795 5.49795i −0.222060 0.222060i 0.587305 0.809365i \(-0.300189\pi\)
−0.809365 + 0.587305i \(0.800189\pi\)
\(614\) 0 0
\(615\) 0.769674 1.07578i 0.0310363 0.0433797i
\(616\) 0 0
\(617\) −18.1638 + 18.1638i −0.731247 + 0.731247i −0.970867 0.239620i \(-0.922977\pi\)
0.239620 + 0.970867i \(0.422977\pi\)
\(618\) 0 0
\(619\) 20.3604 0.818354 0.409177 0.912455i \(-0.365816\pi\)
0.409177 + 0.912455i \(0.365816\pi\)
\(620\) 0 0
\(621\) 2.74832 0.110286
\(622\) 0 0
\(623\) −25.1918 + 25.1918i −1.00929 + 1.00929i
\(624\) 0 0
\(625\) 19.7881 15.2785i 0.791523 0.611139i
\(626\) 0 0
\(627\) 0.656195 + 0.656195i 0.0262059 + 0.0262059i
\(628\) 0 0
\(629\) 6.24979i 0.249195i
\(630\) 0 0
\(631\) 14.5599i 0.579621i −0.957084 0.289810i \(-0.906408\pi\)
0.957084 0.289810i \(-0.0935922\pi\)
\(632\) 0 0
\(633\) 2.58970 + 2.58970i 0.102931 + 0.102931i
\(634\) 0 0
\(635\) −0.364066 0.260473i −0.0144475 0.0103366i
\(636\) 0 0
\(637\) 9.21815 9.21815i 0.365237 0.365237i
\(638\) 0 0
\(639\) −3.27150 −0.129418
\(640\) 0 0
\(641\) −10.7681 −0.425315 −0.212657 0.977127i \(-0.568212\pi\)
−0.212657 + 0.977127i \(0.568212\pi\)
\(642\) 0 0
\(643\) −11.3143 + 11.3143i −0.446191 + 0.446191i −0.894086 0.447895i \(-0.852174\pi\)
0.447895 + 0.894086i \(0.352174\pi\)
\(644\) 0 0
\(645\) −0.225076 1.35693i −0.00886237 0.0534292i
\(646\) 0 0
\(647\) 4.74790 + 4.74790i 0.186659 + 0.186659i 0.794250 0.607591i \(-0.207864\pi\)
−0.607591 + 0.794250i \(0.707864\pi\)
\(648\) 0 0
\(649\) 8.25153i 0.323901i
\(650\) 0 0
\(651\) 6.08731i 0.238580i
\(652\) 0 0
\(653\) −4.66836 4.66836i −0.182687 0.182687i 0.609839 0.792526i \(-0.291234\pi\)
−0.792526 + 0.609839i \(0.791234\pi\)
\(654\) 0 0
\(655\) 1.59611 + 9.62259i 0.0623653 + 0.375986i
\(656\) 0 0
\(657\) −8.84658 + 8.84658i −0.345138 + 0.345138i
\(658\) 0 0
\(659\) 1.85609 0.0723031 0.0361516 0.999346i \(-0.488490\pi\)
0.0361516 + 0.999346i \(0.488490\pi\)
\(660\) 0 0
\(661\) −28.6547 −1.11454 −0.557269 0.830332i \(-0.688151\pi\)
−0.557269 + 0.830332i \(0.688151\pi\)
\(662\) 0 0
\(663\) 0.402408 0.402408i 0.0156282 0.0156282i
\(664\) 0 0
\(665\) 37.0733 + 26.5243i 1.43764 + 1.02857i
\(666\) 0 0
\(667\) −15.2397 15.2397i −0.590085 0.590085i
\(668\) 0 0
\(669\) 2.00430i 0.0774908i
\(670\) 0 0
\(671\) 8.57605i 0.331075i
\(672\) 0 0
\(673\) 18.3239 + 18.3239i 0.706335 + 0.706335i 0.965763 0.259427i \(-0.0835339\pi\)
−0.259427 + 0.965763i \(0.583534\pi\)
\(674\) 0 0
\(675\) −4.69988 2.30896i −0.180898 0.0888721i
\(676\) 0 0
\(677\) 6.08201 6.08201i 0.233751 0.233751i −0.580506 0.814256i \(-0.697145\pi\)
0.814256 + 0.580506i \(0.197145\pi\)
\(678\) 0 0
\(679\) −60.3557 −2.31624
\(680\) 0 0
\(681\) −2.02733 −0.0776873
\(682\) 0 0
\(683\) 2.39718 2.39718i 0.0917257 0.0917257i −0.659755 0.751481i \(-0.729340\pi\)
0.751481 + 0.659755i \(0.229340\pi\)
\(684\) 0 0
\(685\) −12.2575 + 17.1324i −0.468334 + 0.654596i
\(686\) 0 0
\(687\) −1.70056 1.70056i −0.0648802 0.0648802i
\(688\) 0 0
\(689\) 4.45511i 0.169726i
\(690\) 0 0
\(691\) 21.2457i 0.808225i 0.914709 + 0.404112i \(0.132420\pi\)
−0.914709 + 0.404112i \(0.867580\pi\)
\(692\) 0 0
\(693\) −6.00258 6.00258i −0.228019 0.228019i
\(694\) 0 0
\(695\) 1.98934 0.329975i 0.0754600 0.0125167i
\(696\) 0 0
\(697\) 2.38416 2.38416i 0.0903064 0.0903064i
\(698\) 0 0
\(699\) −2.34520 −0.0887036
\(700\) 0 0
\(701\) 51.4013 1.94140 0.970701 0.240292i \(-0.0772433\pi\)
0.970701 + 0.240292i \(0.0772433\pi\)
\(702\) 0 0
\(703\) 27.1401 27.1401i 1.02361 1.02361i
\(704\) 0 0
\(705\) −3.74993 + 0.622006i −0.141230 + 0.0234261i
\(706\) 0 0
\(707\) −1.82951 1.82951i −0.0688057 0.0688057i
\(708\) 0 0
\(709\) 24.5102i 0.920500i −0.887789 0.460250i \(-0.847760\pi\)
0.887789 0.460250i \(-0.152240\pi\)
\(710\) 0 0
\(711\) 33.7580i 1.26602i
\(712\) 0 0
\(713\) 19.3951 + 19.3951i 0.726354 + 0.726354i
\(714\) 0 0
\(715\) −3.63481 + 5.08041i −0.135934 + 0.189997i
\(716\) 0 0
\(717\) 2.51644 2.51644i 0.0939783 0.0939783i
\(718\) 0 0
\(719\) −22.9465 −0.855761 −0.427881 0.903835i \(-0.640740\pi\)
−0.427881 + 0.903835i \(0.640740\pi\)
\(720\) 0 0
\(721\) −41.4472 −1.54358
\(722\) 0 0
\(723\) 2.43803 2.43803i 0.0906713 0.0906713i
\(724\) 0 0
\(725\) 13.2579 + 38.8647i 0.492385 + 1.44340i
\(726\) 0 0
\(727\) 27.4185 + 27.4185i 1.01690 + 1.01690i 0.999855 + 0.0170403i \(0.00542435\pi\)
0.0170403 + 0.999855i \(0.494576\pi\)
\(728\) 0 0
\(729\) 25.3520i 0.938961i
\(730\) 0 0
\(731\) 3.50606i 0.129676i
\(732\) 0 0
\(733\) 7.66571 + 7.66571i 0.283139 + 0.283139i 0.834360 0.551220i \(-0.185838\pi\)
−0.551220 + 0.834360i \(0.685838\pi\)
\(734\) 0 0
\(735\) 1.28233 + 0.917450i 0.0472995 + 0.0338407i
\(736\) 0 0
\(737\) 0.0112784 0.0112784i 0.000415444 0.000415444i
\(738\) 0 0
\(739\) −9.32320 −0.342959 −0.171480 0.985188i \(-0.554855\pi\)
−0.171480 + 0.985188i \(0.554855\pi\)
\(740\) 0 0
\(741\) −3.49496 −0.128391
\(742\) 0 0
\(743\) −30.2926 + 30.2926i −1.11133 + 1.11133i −0.118358 + 0.992971i \(0.537763\pi\)
−0.992971 + 0.118358i \(0.962237\pi\)
\(744\) 0 0
\(745\) −1.32474 7.98652i −0.0485345 0.292603i
\(746\) 0 0
\(747\) −21.7488 21.7488i −0.795747 0.795747i
\(748\) 0 0
\(749\) 37.2614i 1.36150i
\(750\) 0 0
\(751\) 27.7955i 1.01427i −0.861866 0.507136i \(-0.830704\pi\)
0.861866 0.507136i \(-0.169296\pi\)
\(752\) 0 0
\(753\) −0.505952 0.505952i −0.0184379 0.0184379i
\(754\) 0 0
\(755\) 1.47673 + 8.90284i 0.0537436 + 0.324008i
\(756\) 0 0
\(757\) 38.1376 38.1376i 1.38613 1.38613i 0.552858 0.833275i \(-0.313537\pi\)
0.833275 0.552858i \(-0.186463\pi\)
\(758\) 0 0
\(759\) 0.396542 0.0143936
\(760\) 0 0
\(761\) 6.63131 0.240385 0.120192 0.992751i \(-0.461649\pi\)
0.120192 + 0.992751i \(0.461649\pi\)
\(762\) 0 0
\(763\) 46.2116 46.2116i 1.67297 1.67297i
\(764\) 0 0
\(765\) −5.39969 3.86324i −0.195226 0.139676i
\(766\) 0 0
\(767\) 21.9743 + 21.9743i 0.793445 + 0.793445i
\(768\) 0 0
\(769\) 37.5901i 1.35553i −0.735277 0.677767i \(-0.762948\pi\)
0.735277 0.677767i \(-0.237052\pi\)
\(770\) 0 0
\(771\) 1.32128i 0.0475846i
\(772\) 0 0
\(773\) 17.6747 + 17.6747i 0.635715 + 0.635715i 0.949496 0.313780i \(-0.101596\pi\)
−0.313780 + 0.949496i \(0.601596\pi\)
\(774\) 0 0
\(775\) −16.8729 49.4620i −0.606092 1.77673i
\(776\) 0 0
\(777\) 2.57378 2.57378i 0.0923337 0.0923337i
\(778\) 0 0
\(779\) −20.7067 −0.741895
\(780\) 0 0
\(781\) −0.948949 −0.0339561
\(782\) 0 0
\(783\) 6.08191 6.08191i 0.217350 0.217350i
\(784\) 0 0
\(785\) 9.23195 12.9036i 0.329503 0.460550i
\(786\) 0 0
\(787\) −36.7877 36.7877i −1.31134 1.31134i −0.920427 0.390914i \(-0.872159\pi\)
−0.390914 0.920427i \(-0.627841\pi\)
\(788\) 0 0
\(789\) 4.83486i 0.172126i
\(790\) 0 0
\(791\) 44.4390i 1.58007i
\(792\) 0 0
\(793\) 22.8385 + 22.8385i 0.811018 + 0.811018i
\(794\) 0 0
\(795\) 0.531574 0.0881730i 0.0188530 0.00312717i
\(796\) 0 0
\(797\) 2.82437 2.82437i 0.100044 0.100044i −0.655313 0.755357i \(-0.727463\pi\)
0.755357 + 0.655313i \(0.227463\pi\)
\(798\) 0 0
\(799\) −9.68910 −0.342776
\(800\) 0 0
\(801\) −31.8672 −1.12597
\(802\) 0 0
\(803\) −2.56609 + 2.56609i −0.0905554 + 0.0905554i
\(804\) 0 0
\(805\) 19.2162 3.18741i 0.677281 0.112341i
\(806\) 0 0
\(807\) 0.223890 + 0.223890i 0.00788130 + 0.00788130i
\(808\) 0 0
\(809\) 45.8788i 1.61301i −0.591226 0.806506i \(-0.701356\pi\)
0.591226 0.806506i \(-0.298644\pi\)
\(810\) 0 0
\(811\) 40.7315i 1.43028i 0.698983 + 0.715139i \(0.253636\pi\)
−0.698983 + 0.715139i \(0.746364\pi\)
\(812\) 0 0
\(813\) 1.29024 + 1.29024i 0.0452508 + 0.0452508i
\(814\) 0 0
\(815\) −23.8739 + 33.3689i −0.836267 + 1.16886i
\(816\) 0 0
\(817\) −15.2253 + 15.2253i −0.532666 + 0.532666i
\(818\) 0 0
\(819\) 31.9704 1.11714
\(820\) 0 0
\(821\) 41.9517 1.46412 0.732062 0.681238i \(-0.238558\pi\)
0.732062 + 0.681238i \(0.238558\pi\)
\(822\) 0 0
\(823\) −3.82305 + 3.82305i −0.133263 + 0.133263i −0.770592 0.637329i \(-0.780039\pi\)
0.637329 + 0.770592i \(0.280039\pi\)
\(824\) 0 0
\(825\) −0.678122 0.333149i −0.0236092 0.0115988i
\(826\) 0 0
\(827\) −7.53964 7.53964i −0.262179 0.262179i 0.563760 0.825939i \(-0.309354\pi\)
−0.825939 + 0.563760i \(0.809354\pi\)
\(828\) 0 0
\(829\) 27.7316i 0.963158i 0.876403 + 0.481579i \(0.159937\pi\)
−0.876403 + 0.481579i \(0.840063\pi\)
\(830\) 0 0
\(831\) 1.53557i 0.0532685i
\(832\) 0 0
\(833\) 2.84191 + 2.84191i 0.0984664 + 0.0984664i
\(834\) 0 0
\(835\) 13.5938 + 9.72579i 0.470435 + 0.336575i
\(836\) 0 0
\(837\) −7.74026 + 7.74026i −0.267542 + 0.267542i
\(838\) 0 0
\(839\) 25.3810 0.876251 0.438125 0.898914i \(-0.355643\pi\)
0.438125 + 0.898914i \(0.355643\pi\)
\(840\) 0 0
\(841\) −38.4495 −1.32585
\(842\) 0 0
\(843\) 2.03177 2.03177i 0.0699778 0.0699778i
\(844\) 0 0
\(845\) 0.906981 + 5.46797i 0.0312011 + 0.188104i
\(846\) 0 0
\(847\) 24.0785 + 24.0785i 0.827347 + 0.827347i
\(848\) 0 0
\(849\) 3.14465i 0.107924i
\(850\) 0 0
\(851\) 16.4009i 0.562216i
\(852\) 0 0
\(853\) 0.494065 + 0.494065i 0.0169165 + 0.0169165i 0.715514 0.698598i \(-0.246192\pi\)
−0.698598 + 0.715514i \(0.746192\pi\)
\(854\) 0 0
\(855\) 6.67216 + 40.2249i 0.228183 + 1.37566i
\(856\) 0 0
\(857\) 0.976594 0.976594i 0.0333598 0.0333598i −0.690230 0.723590i \(-0.742491\pi\)
0.723590 + 0.690230i \(0.242491\pi\)
\(858\) 0 0
\(859\) 6.24864 0.213201 0.106600 0.994302i \(-0.466003\pi\)
0.106600 + 0.994302i \(0.466003\pi\)
\(860\) 0 0
\(861\) −1.96368 −0.0669219
\(862\) 0 0
\(863\) 37.9125 37.9125i 1.29056 1.29056i 0.356115 0.934442i \(-0.384101\pi\)
0.934442 0.356115i \(-0.115899\pi\)
\(864\) 0 0
\(865\) −26.6744 19.0844i −0.906958 0.648887i
\(866\) 0 0
\(867\) 0.124060 + 0.124060i 0.00421331 + 0.00421331i
\(868\) 0 0
\(869\) 9.79203i 0.332172i
\(870\) 0 0
\(871\) 0.0600698i 0.00203539i
\(872\) 0 0
\(873\) −38.1745 38.1745i −1.29201 1.29201i
\(874\) 0 0
\(875\) −35.5392 10.6934i −1.20144 0.361503i
\(876\) 0 0
\(877\) −29.3000 + 29.3000i −0.989391 + 0.989391i −0.999944 0.0105536i \(-0.996641\pi\)
0.0105536 + 0.999944i \(0.496641\pi\)
\(878\) 0 0
\(879\) 1.08116 0.0364667
\(880\) 0 0
\(881\) −0.158576 −0.00534257 −0.00267129 0.999996i \(-0.500850\pi\)
−0.00267129 + 0.999996i \(0.500850\pi\)
\(882\) 0 0
\(883\) −19.1626 + 19.1626i −0.644873 + 0.644873i −0.951749 0.306876i \(-0.900716\pi\)
0.306876 + 0.951749i \(0.400716\pi\)
\(884\) 0 0
\(885\) −2.18702 + 3.05683i −0.0735159 + 0.102754i
\(886\) 0 0
\(887\) −8.49225 8.49225i −0.285142 0.285142i 0.550014 0.835156i \(-0.314622\pi\)
−0.835156 + 0.550014i \(0.814622\pi\)
\(888\) 0 0
\(889\) 0.664547i 0.0222882i
\(890\) 0 0
\(891\) 7.51363i 0.251716i
\(892\) 0 0
\(893\) 42.0756 + 42.0756i 1.40801 + 1.40801i
\(894\) 0 0
\(895\) −48.6606 + 8.07140i −1.62654 + 0.269797i
\(896\) 0 0
\(897\) −1.05601 + 1.05601i −0.0352592 + 0.0352592i
\(898\) 0 0
\(899\) 85.8410 2.86296
\(900\) 0 0
\(901\) 1.37349 0.0457575
\(902\) 0 0
\(903\) −1.44386 + 1.44386i −0.0480486 + 0.0480486i
\(904\) 0 0
\(905\) −2.04947 + 0.339949i −0.0681268 + 0.0113003i
\(906\) 0 0
\(907\) 8.22796 + 8.22796i 0.273205 + 0.273205i 0.830389 0.557184i \(-0.188118\pi\)
−0.557184 + 0.830389i \(0.688118\pi\)
\(908\) 0 0
\(909\) 2.31430i 0.0767603i
\(910\) 0 0
\(911\) 16.3098i 0.540369i 0.962809 + 0.270184i \(0.0870846\pi\)
−0.962809 + 0.270184i \(0.912915\pi\)
\(912\) 0 0
\(913\) −6.30858 6.30858i −0.208783 0.208783i
\(914\) 0 0
\(915\) −2.27303 + 3.17704i −0.0751441 + 0.105030i
\(916\) 0 0
\(917\) 10.2390 10.2390i 0.338122 0.338122i
\(918\) 0 0
\(919\) −42.8906 −1.41483 −0.707416 0.706798i \(-0.750139\pi\)
−0.707416 + 0.706798i \(0.750139\pi\)
\(920\) 0 0
\(921\) −4.18072 −0.137760
\(922\) 0 0
\(923\) 2.52710 2.52710i 0.0831806 0.0831806i
\(924\) 0 0
\(925\) −13.7790 + 28.0470i −0.453050 + 0.922181i
\(926\) 0 0
\(927\) −26.2150 26.2150i −0.861014 0.861014i
\(928\) 0 0
\(929\) 14.2299i 0.466869i 0.972373 + 0.233434i \(0.0749964\pi\)
−0.972373 + 0.233434i \(0.925004\pi\)
\(930\) 0 0
\(931\) 24.6824i 0.808933i
\(932\) 0 0
\(933\) 1.99089 + 1.99089i 0.0651787 + 0.0651787i
\(934\) 0 0
\(935\) −1.56627 1.12059i −0.0512224 0.0366473i
\(936\) 0 0
\(937\) 4.16021 4.16021i 0.135908 0.135908i −0.635880 0.771788i \(-0.719363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(938\) 0 0
\(939\) 2.60012 0.0848518
\(940\) 0 0
\(941\) −22.3237 −0.727732 −0.363866 0.931451i \(-0.618543\pi\)
−0.363866 + 0.931451i \(0.618543\pi\)
\(942\) 0 0
\(943\) −6.25659 + 6.25659i −0.203743 + 0.203743i
\(944\) 0 0
\(945\) 1.27204 + 7.66883i 0.0413794 + 0.249467i
\(946\) 0 0
\(947\) −32.0386 32.0386i −1.04111 1.04111i −0.999118 0.0419968i \(-0.986628\pi\)
−0.0419968 0.999118i \(-0.513372\pi\)
\(948\) 0 0
\(949\) 13.6673i 0.443658i
\(950\) 0 0
\(951\) 2.03927i 0.0661278i
\(952\) 0 0
\(953\) −7.56126 7.56126i −0.244933 0.244933i 0.573954 0.818887i \(-0.305409\pi\)
−0.818887 + 0.573954i \(0.805409\pi\)
\(954\) 0 0
\(955\) −5.42370 32.6982i −0.175507 1.05809i
\(956\) 0 0
\(957\) 0.877528 0.877528i 0.0283664 0.0283664i
\(958\) 0 0
\(959\) 31.2726 1.00985
\(960\) 0 0
\(961\) −78.2472 −2.52410
\(962\) 0 0
\(963\) −23.5675 + 23.5675i −0.759453 + 0.759453i
\(964\) 0 0
\(965\) −42.3307 30.2857i −1.36267 0.974932i
\(966\) 0 0
\(967\) 23.3249 + 23.3249i 0.750078 + 0.750078i 0.974494 0.224415i \(-0.0720472\pi\)
−0.224415 + 0.974494i \(0.572047\pi\)
\(968\) 0 0
\(969\) 1.07748i 0.0346137i
\(970\) 0 0
\(971\) 27.1508i 0.871311i 0.900113 + 0.435656i \(0.143483\pi\)
−0.900113 + 0.435656i \(0.856517\pi\)
\(972\) 0 0
\(973\) −2.11678 2.11678i −0.0678608 0.0678608i
\(974\) 0 0
\(975\) 2.69307 0.918682i 0.0862472 0.0294214i
\(976\) 0 0
\(977\) −2.59037 + 2.59037i −0.0828734 + 0.0828734i −0.747328 0.664455i \(-0.768664\pi\)
0.664455 + 0.747328i \(0.268664\pi\)
\(978\) 0 0
\(979\) −9.24358 −0.295426
\(980\) 0 0
\(981\) 58.4569 1.86639
\(982\) 0 0
\(983\) 43.8170 43.8170i 1.39754 1.39754i 0.590526 0.807019i \(-0.298920\pi\)
0.807019 0.590526i \(-0.201080\pi\)
\(984\) 0 0
\(985\) −23.0533 + 32.2219i −0.734540 + 1.02667i
\(986\) 0 0
\(987\) 3.99015 + 3.99015i 0.127008 + 0.127008i
\(988\) 0 0
\(989\) 9.20072i 0.292566i
\(990\) 0 0
\(991\) 12.5669i 0.399201i 0.979877 + 0.199600i \(0.0639644\pi\)
−0.979877 + 0.199600i \(0.936036\pi\)
\(992\) 0 0
\(993\) −0.699031 0.699031i −0.0221831 0.0221831i
\(994\) 0 0
\(995\) 7.88485 1.30787i 0.249966 0.0414623i
\(996\) 0 0
\(997\) 38.3980 38.3980i 1.21608 1.21608i 0.247082 0.968995i \(-0.420528\pi\)
0.968995 0.247082i \(-0.0794715\pi\)
\(998\) 0 0
\(999\) 6.54532 0.207085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bn.b.783.15 64
4.3 odd 2 inner 1360.2.bn.b.783.18 yes 64
5.2 odd 4 inner 1360.2.bn.b.1327.18 yes 64
20.7 even 4 inner 1360.2.bn.b.1327.15 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1360.2.bn.b.783.15 64 1.1 even 1 trivial
1360.2.bn.b.783.18 yes 64 4.3 odd 2 inner
1360.2.bn.b.1327.15 yes 64 20.7 even 4 inner
1360.2.bn.b.1327.18 yes 64 5.2 odd 4 inner