Properties

Label 1360.2.bn
Level $1360$
Weight $2$
Character orbit 1360.bn
Rep. character $\chi_{1360}(783,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $2$
Sturm bound $432$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bn (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(432\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 456 96 360
Cusp forms 408 96 312
Eisenstein series 48 0 48

Trace form

\( 96 q + 48 q^{21} - 48 q^{33} - 48 q^{41} + 48 q^{53} + 96 q^{57} + 96 q^{65} + 48 q^{73} - 144 q^{81} - 48 q^{93} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1360.2.bn.a 1360.bn 20.e $32$ $10.860$ None 1360.2.bn.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1360.2.bn.b 1360.bn 20.e $64$ $10.860$ None 1360.2.bn.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)