Defining parameters
Level: | \( N \) | \(=\) | \( 1360 = 2^{4} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1360.bn (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 456 | 96 | 360 |
Cusp forms | 408 | 96 | 312 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1360.2.bn.a | $32$ | $10.860$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
1360.2.bn.b | $64$ | $10.860$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)