Properties

Label 1360.2.bn.b.783.13
Level $1360$
Weight $2$
Character 1360.783
Analytic conductor $10.860$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(783,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bn (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 783.13
Character \(\chi\) \(=\) 1360.783
Dual form 1360.2.bn.b.1327.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.552078 + 0.552078i) q^{3} +(-1.19559 - 1.88960i) q^{5} +(-0.0505973 - 0.0505973i) q^{7} +2.39042i q^{9} +1.39538i q^{11} +(-2.69118 - 2.69118i) q^{13} +(1.70326 + 0.383147i) q^{15} +(-0.707107 + 0.707107i) q^{17} +8.01896 q^{19} +0.0558673 q^{21} +(1.11975 - 1.11975i) q^{23} +(-2.14115 + 4.51835i) q^{25} +(-2.97593 - 2.97593i) q^{27} -6.96154i q^{29} -3.14333i q^{31} +(-0.770361 - 0.770361i) q^{33} +(-0.0351150 + 0.156102i) q^{35} +(1.35614 - 1.35614i) q^{37} +2.97148 q^{39} -3.20257 q^{41} +(5.13403 - 5.13403i) q^{43} +(4.51693 - 2.85795i) q^{45} +(-4.19264 - 4.19264i) q^{47} -6.99488i q^{49} -0.780756i q^{51} +(-3.79203 - 3.79203i) q^{53} +(2.63671 - 1.66830i) q^{55} +(-4.42709 + 4.42709i) q^{57} +6.65494 q^{59} -4.87020 q^{61} +(0.120949 - 0.120949i) q^{63} +(-1.86771 + 8.30278i) q^{65} +(-2.17959 - 2.17959i) q^{67} +1.23637i q^{69} -2.81612i q^{71} +(-3.28017 - 3.28017i) q^{73} +(-1.31240 - 3.67656i) q^{75} +(0.0706027 - 0.0706027i) q^{77} +0.169138 q^{79} -3.88537 q^{81} +(12.4474 - 12.4474i) q^{83} +(2.18155 + 0.490739i) q^{85} +(3.84331 + 3.84331i) q^{87} +0.766728i q^{89} +0.272333i q^{91} +(1.73536 + 1.73536i) q^{93} +(-9.58736 - 15.1526i) q^{95} +(2.92067 - 2.92067i) q^{97} -3.33556 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{13} + 64 q^{21} + 24 q^{25} - 56 q^{33} - 32 q^{41} - 24 q^{45} + 64 q^{53} + 64 q^{57} - 16 q^{61} + 40 q^{65} + 56 q^{73} - 40 q^{77} - 176 q^{81} - 104 q^{93} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.552078 + 0.552078i −0.318742 + 0.318742i −0.848284 0.529542i \(-0.822364\pi\)
0.529542 + 0.848284i \(0.322364\pi\)
\(4\) 0 0
\(5\) −1.19559 1.88960i −0.534682 0.845053i
\(6\) 0 0
\(7\) −0.0505973 0.0505973i −0.0191240 0.0191240i 0.697480 0.716604i \(-0.254305\pi\)
−0.716604 + 0.697480i \(0.754305\pi\)
\(8\) 0 0
\(9\) 2.39042i 0.796807i
\(10\) 0 0
\(11\) 1.39538i 0.420724i 0.977624 + 0.210362i \(0.0674643\pi\)
−0.977624 + 0.210362i \(0.932536\pi\)
\(12\) 0 0
\(13\) −2.69118 2.69118i −0.746399 0.746399i 0.227402 0.973801i \(-0.426977\pi\)
−0.973801 + 0.227402i \(0.926977\pi\)
\(14\) 0 0
\(15\) 1.70326 + 0.383147i 0.439780 + 0.0989282i
\(16\) 0 0
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 8.01896 1.83968 0.919838 0.392298i \(-0.128320\pi\)
0.919838 + 0.392298i \(0.128320\pi\)
\(20\) 0 0
\(21\) 0.0558673 0.0121912
\(22\) 0 0
\(23\) 1.11975 1.11975i 0.233483 0.233483i −0.580662 0.814145i \(-0.697206\pi\)
0.814145 + 0.580662i \(0.197206\pi\)
\(24\) 0 0
\(25\) −2.14115 + 4.51835i −0.428229 + 0.903670i
\(26\) 0 0
\(27\) −2.97593 2.97593i −0.572718 0.572718i
\(28\) 0 0
\(29\) 6.96154i 1.29273i −0.763030 0.646363i \(-0.776289\pi\)
0.763030 0.646363i \(-0.223711\pi\)
\(30\) 0 0
\(31\) 3.14333i 0.564559i −0.959332 0.282279i \(-0.908909\pi\)
0.959332 0.282279i \(-0.0910905\pi\)
\(32\) 0 0
\(33\) −0.770361 0.770361i −0.134103 0.134103i
\(34\) 0 0
\(35\) −0.0351150 + 0.156102i −0.00593552 + 0.0263860i
\(36\) 0 0
\(37\) 1.35614 1.35614i 0.222949 0.222949i −0.586790 0.809739i \(-0.699609\pi\)
0.809739 + 0.586790i \(0.199609\pi\)
\(38\) 0 0
\(39\) 2.97148 0.475818
\(40\) 0 0
\(41\) −3.20257 −0.500158 −0.250079 0.968225i \(-0.580457\pi\)
−0.250079 + 0.968225i \(0.580457\pi\)
\(42\) 0 0
\(43\) 5.13403 5.13403i 0.782933 0.782933i −0.197392 0.980325i \(-0.563247\pi\)
0.980325 + 0.197392i \(0.0632471\pi\)
\(44\) 0 0
\(45\) 4.51693 2.85795i 0.673344 0.426039i
\(46\) 0 0
\(47\) −4.19264 4.19264i −0.611560 0.611560i 0.331792 0.943352i \(-0.392347\pi\)
−0.943352 + 0.331792i \(0.892347\pi\)
\(48\) 0 0
\(49\) 6.99488i 0.999269i
\(50\) 0 0
\(51\) 0.780756i 0.109328i
\(52\) 0 0
\(53\) −3.79203 3.79203i −0.520875 0.520875i 0.396961 0.917836i \(-0.370065\pi\)
−0.917836 + 0.396961i \(0.870065\pi\)
\(54\) 0 0
\(55\) 2.63671 1.66830i 0.355534 0.224954i
\(56\) 0 0
\(57\) −4.42709 + 4.42709i −0.586383 + 0.586383i
\(58\) 0 0
\(59\) 6.65494 0.866399 0.433200 0.901298i \(-0.357384\pi\)
0.433200 + 0.901298i \(0.357384\pi\)
\(60\) 0 0
\(61\) −4.87020 −0.623565 −0.311783 0.950153i \(-0.600926\pi\)
−0.311783 + 0.950153i \(0.600926\pi\)
\(62\) 0 0
\(63\) 0.120949 0.120949i 0.0152381 0.0152381i
\(64\) 0 0
\(65\) −1.86771 + 8.30278i −0.231660 + 1.02983i
\(66\) 0 0
\(67\) −2.17959 2.17959i −0.266280 0.266280i 0.561320 0.827599i \(-0.310294\pi\)
−0.827599 + 0.561320i \(0.810294\pi\)
\(68\) 0 0
\(69\) 1.23637i 0.148842i
\(70\) 0 0
\(71\) 2.81612i 0.334212i −0.985939 0.167106i \(-0.946558\pi\)
0.985939 0.167106i \(-0.0534423\pi\)
\(72\) 0 0
\(73\) −3.28017 3.28017i −0.383915 0.383915i 0.488595 0.872511i \(-0.337509\pi\)
−0.872511 + 0.488595i \(0.837509\pi\)
\(74\) 0 0
\(75\) −1.31240 3.67656i −0.151543 0.424533i
\(76\) 0 0
\(77\) 0.0706027 0.0706027i 0.00804593 0.00804593i
\(78\) 0 0
\(79\) 0.169138 0.0190296 0.00951478 0.999955i \(-0.496971\pi\)
0.00951478 + 0.999955i \(0.496971\pi\)
\(80\) 0 0
\(81\) −3.88537 −0.431708
\(82\) 0 0
\(83\) 12.4474 12.4474i 1.36628 1.36628i 0.500604 0.865677i \(-0.333111\pi\)
0.865677 0.500604i \(-0.166889\pi\)
\(84\) 0 0
\(85\) 2.18155 + 0.490739i 0.236623 + 0.0532281i
\(86\) 0 0
\(87\) 3.84331 + 3.84331i 0.412046 + 0.412046i
\(88\) 0 0
\(89\) 0.766728i 0.0812730i 0.999174 + 0.0406365i \(0.0129386\pi\)
−0.999174 + 0.0406365i \(0.987061\pi\)
\(90\) 0 0
\(91\) 0.272333i 0.0285483i
\(92\) 0 0
\(93\) 1.73536 + 1.73536i 0.179949 + 0.179949i
\(94\) 0 0
\(95\) −9.58736 15.1526i −0.983643 1.55462i
\(96\) 0 0
\(97\) 2.92067 2.92067i 0.296549 0.296549i −0.543112 0.839660i \(-0.682754\pi\)
0.839660 + 0.543112i \(0.182754\pi\)
\(98\) 0 0
\(99\) −3.33556 −0.335236
\(100\) 0 0
\(101\) 0.434444 0.0432288 0.0216144 0.999766i \(-0.493119\pi\)
0.0216144 + 0.999766i \(0.493119\pi\)
\(102\) 0 0
\(103\) 3.06745 3.06745i 0.302244 0.302244i −0.539647 0.841891i \(-0.681442\pi\)
0.841891 + 0.539647i \(0.181442\pi\)
\(104\) 0 0
\(105\) −0.0667942 0.105567i −0.00651845 0.0103022i
\(106\) 0 0
\(107\) −4.01104 4.01104i −0.387762 0.387762i 0.486127 0.873888i \(-0.338409\pi\)
−0.873888 + 0.486127i \(0.838409\pi\)
\(108\) 0 0
\(109\) 10.1492i 0.972121i −0.873925 0.486060i \(-0.838434\pi\)
0.873925 0.486060i \(-0.161566\pi\)
\(110\) 0 0
\(111\) 1.49739i 0.142126i
\(112\) 0 0
\(113\) −2.82305 2.82305i −0.265570 0.265570i 0.561742 0.827312i \(-0.310131\pi\)
−0.827312 + 0.561742i \(0.810131\pi\)
\(114\) 0 0
\(115\) −3.45462 0.777115i −0.322145 0.0724664i
\(116\) 0 0
\(117\) 6.43305 6.43305i 0.594736 0.594736i
\(118\) 0 0
\(119\) 0.0715554 0.00655947
\(120\) 0 0
\(121\) 9.05290 0.822991
\(122\) 0 0
\(123\) 1.76807 1.76807i 0.159422 0.159422i
\(124\) 0 0
\(125\) 11.0978 1.35618i 0.992616 0.121300i
\(126\) 0 0
\(127\) 13.2399 + 13.2399i 1.17485 + 1.17485i 0.981040 + 0.193808i \(0.0620838\pi\)
0.193808 + 0.981040i \(0.437916\pi\)
\(128\) 0 0
\(129\) 5.66877i 0.499108i
\(130\) 0 0
\(131\) 17.7183i 1.54806i 0.633151 + 0.774029i \(0.281761\pi\)
−0.633151 + 0.774029i \(0.718239\pi\)
\(132\) 0 0
\(133\) −0.405738 0.405738i −0.0351819 0.0351819i
\(134\) 0 0
\(135\) −2.06533 + 9.18129i −0.177755 + 0.790200i
\(136\) 0 0
\(137\) 1.66803 1.66803i 0.142509 0.142509i −0.632253 0.774762i \(-0.717870\pi\)
0.774762 + 0.632253i \(0.217870\pi\)
\(138\) 0 0
\(139\) 16.5560 1.40426 0.702132 0.712047i \(-0.252232\pi\)
0.702132 + 0.712047i \(0.252232\pi\)
\(140\) 0 0
\(141\) 4.62933 0.389860
\(142\) 0 0
\(143\) 3.75523 3.75523i 0.314028 0.314028i
\(144\) 0 0
\(145\) −13.1545 + 8.32312i −1.09242 + 0.691198i
\(146\) 0 0
\(147\) 3.86172 + 3.86172i 0.318509 + 0.318509i
\(148\) 0 0
\(149\) 15.0097i 1.22964i 0.788666 + 0.614822i \(0.210772\pi\)
−0.788666 + 0.614822i \(0.789228\pi\)
\(150\) 0 0
\(151\) 9.64249i 0.784695i 0.919817 + 0.392347i \(0.128337\pi\)
−0.919817 + 0.392347i \(0.871663\pi\)
\(152\) 0 0
\(153\) −1.69028 1.69028i −0.136651 0.136651i
\(154\) 0 0
\(155\) −5.93963 + 3.75812i −0.477082 + 0.301860i
\(156\) 0 0
\(157\) 10.0027 10.0027i 0.798299 0.798299i −0.184529 0.982827i \(-0.559076\pi\)
0.982827 + 0.184529i \(0.0590758\pi\)
\(158\) 0 0
\(159\) 4.18699 0.332050
\(160\) 0 0
\(161\) −0.113312 −0.00893026
\(162\) 0 0
\(163\) −6.03164 + 6.03164i −0.472435 + 0.472435i −0.902702 0.430267i \(-0.858419\pi\)
0.430267 + 0.902702i \(0.358419\pi\)
\(164\) 0 0
\(165\) −0.534638 + 2.37670i −0.0416215 + 0.185026i
\(166\) 0 0
\(167\) −16.6625 16.6625i −1.28938 1.28938i −0.935161 0.354222i \(-0.884746\pi\)
−0.354222 0.935161i \(-0.615254\pi\)
\(168\) 0 0
\(169\) 1.48491i 0.114224i
\(170\) 0 0
\(171\) 19.1687i 1.46587i
\(172\) 0 0
\(173\) −1.36499 1.36499i −0.103779 0.103779i 0.653311 0.757090i \(-0.273379\pi\)
−0.757090 + 0.653311i \(0.773379\pi\)
\(174\) 0 0
\(175\) 0.336953 0.120280i 0.0254712 0.00909232i
\(176\) 0 0
\(177\) −3.67405 + 3.67405i −0.276158 + 0.276158i
\(178\) 0 0
\(179\) −20.3879 −1.52387 −0.761933 0.647655i \(-0.775750\pi\)
−0.761933 + 0.647655i \(0.775750\pi\)
\(180\) 0 0
\(181\) 16.7847 1.24760 0.623798 0.781586i \(-0.285589\pi\)
0.623798 + 0.781586i \(0.285589\pi\)
\(182\) 0 0
\(183\) 2.68873 2.68873i 0.198757 0.198757i
\(184\) 0 0
\(185\) −4.18395 0.941177i −0.307610 0.0691967i
\(186\) 0 0
\(187\) −0.986686 0.986686i −0.0721536 0.0721536i
\(188\) 0 0
\(189\) 0.301148i 0.0219053i
\(190\) 0 0
\(191\) 16.8497i 1.21920i 0.792708 + 0.609602i \(0.208671\pi\)
−0.792708 + 0.609602i \(0.791329\pi\)
\(192\) 0 0
\(193\) −19.3056 19.3056i −1.38965 1.38965i −0.826044 0.563606i \(-0.809414\pi\)
−0.563606 0.826044i \(-0.690586\pi\)
\(194\) 0 0
\(195\) −3.55266 5.61490i −0.254412 0.402092i
\(196\) 0 0
\(197\) −7.50894 + 7.50894i −0.534990 + 0.534990i −0.922053 0.387063i \(-0.873490\pi\)
0.387063 + 0.922053i \(0.373490\pi\)
\(198\) 0 0
\(199\) 12.2656 0.869485 0.434742 0.900555i \(-0.356839\pi\)
0.434742 + 0.900555i \(0.356839\pi\)
\(200\) 0 0
\(201\) 2.40661 0.169749
\(202\) 0 0
\(203\) −0.352235 + 0.352235i −0.0247221 + 0.0247221i
\(204\) 0 0
\(205\) 3.82895 + 6.05157i 0.267426 + 0.422660i
\(206\) 0 0
\(207\) 2.67667 + 2.67667i 0.186041 + 0.186041i
\(208\) 0 0
\(209\) 11.1895i 0.773997i
\(210\) 0 0
\(211\) 18.2075i 1.25346i −0.779238 0.626728i \(-0.784394\pi\)
0.779238 0.626728i \(-0.215606\pi\)
\(212\) 0 0
\(213\) 1.55472 + 1.55472i 0.106528 + 0.106528i
\(214\) 0 0
\(215\) −15.8394 3.56307i −1.08024 0.242999i
\(216\) 0 0
\(217\) −0.159044 + 0.159044i −0.0107966 + 0.0107966i
\(218\) 0 0
\(219\) 3.62182 0.244740
\(220\) 0 0
\(221\) 3.80590 0.256013
\(222\) 0 0
\(223\) −6.35989 + 6.35989i −0.425890 + 0.425890i −0.887226 0.461336i \(-0.847370\pi\)
0.461336 + 0.887226i \(0.347370\pi\)
\(224\) 0 0
\(225\) −10.8008 5.11824i −0.720050 0.341216i
\(226\) 0 0
\(227\) −7.70344 7.70344i −0.511295 0.511295i 0.403628 0.914923i \(-0.367749\pi\)
−0.914923 + 0.403628i \(0.867749\pi\)
\(228\) 0 0
\(229\) 22.2730i 1.47184i −0.677068 0.735920i \(-0.736750\pi\)
0.677068 0.735920i \(-0.263250\pi\)
\(230\) 0 0
\(231\) 0.0779564i 0.00512915i
\(232\) 0 0
\(233\) 18.5509 + 18.5509i 1.21531 + 1.21531i 0.969256 + 0.246056i \(0.0791348\pi\)
0.246056 + 0.969256i \(0.420865\pi\)
\(234\) 0 0
\(235\) −2.90974 + 12.9351i −0.189810 + 0.843791i
\(236\) 0 0
\(237\) −0.0933776 + 0.0933776i −0.00606552 + 0.00606552i
\(238\) 0 0
\(239\) −11.0578 −0.715267 −0.357634 0.933862i \(-0.616416\pi\)
−0.357634 + 0.933862i \(0.616416\pi\)
\(240\) 0 0
\(241\) −3.57959 −0.230582 −0.115291 0.993332i \(-0.536780\pi\)
−0.115291 + 0.993332i \(0.536780\pi\)
\(242\) 0 0
\(243\) 11.0728 11.0728i 0.710322 0.710322i
\(244\) 0 0
\(245\) −13.2175 + 8.36298i −0.844435 + 0.534291i
\(246\) 0 0
\(247\) −21.5805 21.5805i −1.37313 1.37313i
\(248\) 0 0
\(249\) 13.7439i 0.870983i
\(250\) 0 0
\(251\) 7.38558i 0.466174i 0.972456 + 0.233087i \(0.0748827\pi\)
−0.972456 + 0.233087i \(0.925117\pi\)
\(252\) 0 0
\(253\) 1.56248 + 1.56248i 0.0982321 + 0.0982321i
\(254\) 0 0
\(255\) −1.47531 + 0.933461i −0.0923877 + 0.0584556i
\(256\) 0 0
\(257\) −15.1003 + 15.1003i −0.941928 + 0.941928i −0.998404 0.0564762i \(-0.982013\pi\)
0.0564762 + 0.998404i \(0.482013\pi\)
\(258\) 0 0
\(259\) −0.137234 −0.00852733
\(260\) 0 0
\(261\) 16.6410 1.03005
\(262\) 0 0
\(263\) −10.0135 + 10.0135i −0.617456 + 0.617456i −0.944878 0.327422i \(-0.893820\pi\)
0.327422 + 0.944878i \(0.393820\pi\)
\(264\) 0 0
\(265\) −2.63170 + 11.6991i −0.161664 + 0.718669i
\(266\) 0 0
\(267\) −0.423294 0.423294i −0.0259052 0.0259052i
\(268\) 0 0
\(269\) 19.9282i 1.21504i −0.794303 0.607521i \(-0.792164\pi\)
0.794303 0.607521i \(-0.207836\pi\)
\(270\) 0 0
\(271\) 26.6293i 1.61761i 0.588076 + 0.808806i \(0.299886\pi\)
−0.588076 + 0.808806i \(0.700114\pi\)
\(272\) 0 0
\(273\) −0.150349 0.150349i −0.00909954 0.00909954i
\(274\) 0 0
\(275\) −6.30484 2.98772i −0.380196 0.180166i
\(276\) 0 0
\(277\) −19.2536 + 19.2536i −1.15684 + 1.15684i −0.171686 + 0.985152i \(0.554921\pi\)
−0.985152 + 0.171686i \(0.945079\pi\)
\(278\) 0 0
\(279\) 7.51388 0.449844
\(280\) 0 0
\(281\) −7.64833 −0.456261 −0.228131 0.973631i \(-0.573261\pi\)
−0.228131 + 0.973631i \(0.573261\pi\)
\(282\) 0 0
\(283\) −6.83560 + 6.83560i −0.406334 + 0.406334i −0.880458 0.474124i \(-0.842765\pi\)
0.474124 + 0.880458i \(0.342765\pi\)
\(284\) 0 0
\(285\) 13.6584 + 3.07244i 0.809053 + 0.181996i
\(286\) 0 0
\(287\) 0.162042 + 0.162042i 0.00956502 + 0.00956502i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 3.22487i 0.189045i
\(292\) 0 0
\(293\) −4.39187 4.39187i −0.256576 0.256576i 0.567084 0.823660i \(-0.308071\pi\)
−0.823660 + 0.567084i \(0.808071\pi\)
\(294\) 0 0
\(295\) −7.95656 12.5751i −0.463249 0.732153i
\(296\) 0 0
\(297\) 4.15257 4.15257i 0.240957 0.240957i
\(298\) 0 0
\(299\) −6.02688 −0.348544
\(300\) 0 0
\(301\) −0.519537 −0.0299456
\(302\) 0 0
\(303\) −0.239847 + 0.239847i −0.0137788 + 0.0137788i
\(304\) 0 0
\(305\) 5.82274 + 9.20271i 0.333409 + 0.526946i
\(306\) 0 0
\(307\) 11.5174 + 11.5174i 0.657333 + 0.657333i 0.954748 0.297415i \(-0.0961246\pi\)
−0.297415 + 0.954748i \(0.596125\pi\)
\(308\) 0 0
\(309\) 3.38694i 0.192676i
\(310\) 0 0
\(311\) 14.5438i 0.824701i 0.911025 + 0.412350i \(0.135292\pi\)
−0.911025 + 0.412350i \(0.864708\pi\)
\(312\) 0 0
\(313\) 10.9569 + 10.9569i 0.619318 + 0.619318i 0.945357 0.326038i \(-0.105714\pi\)
−0.326038 + 0.945357i \(0.605714\pi\)
\(314\) 0 0
\(315\) −0.373149 0.0839396i −0.0210246 0.00472946i
\(316\) 0 0
\(317\) 10.9973 10.9973i 0.617672 0.617672i −0.327261 0.944934i \(-0.606126\pi\)
0.944934 + 0.327261i \(0.106126\pi\)
\(318\) 0 0
\(319\) 9.71403 0.543881
\(320\) 0 0
\(321\) 4.42881 0.247192
\(322\) 0 0
\(323\) −5.67026 + 5.67026i −0.315502 + 0.315502i
\(324\) 0 0
\(325\) 17.9219 6.39749i 0.994129 0.354869i
\(326\) 0 0
\(327\) 5.60317 + 5.60317i 0.309856 + 0.309856i
\(328\) 0 0
\(329\) 0.424273i 0.0233909i
\(330\) 0 0
\(331\) 26.6060i 1.46240i 0.682164 + 0.731199i \(0.261039\pi\)
−0.682164 + 0.731199i \(0.738961\pi\)
\(332\) 0 0
\(333\) 3.24175 + 3.24175i 0.177647 + 0.177647i
\(334\) 0 0
\(335\) −1.51266 + 6.72444i −0.0826454 + 0.367395i
\(336\) 0 0
\(337\) 8.15942 8.15942i 0.444472 0.444472i −0.449040 0.893512i \(-0.648234\pi\)
0.893512 + 0.449040i \(0.148234\pi\)
\(338\) 0 0
\(339\) 3.11708 0.169297
\(340\) 0 0
\(341\) 4.38616 0.237524
\(342\) 0 0
\(343\) −0.708103 + 0.708103i −0.0382340 + 0.0382340i
\(344\) 0 0
\(345\) 2.33625 1.47819i 0.125779 0.0795832i
\(346\) 0 0
\(347\) −20.8221 20.8221i −1.11779 1.11779i −0.992065 0.125725i \(-0.959874\pi\)
−0.125725 0.992065i \(-0.540126\pi\)
\(348\) 0 0
\(349\) 15.2664i 0.817191i −0.912716 0.408595i \(-0.866019\pi\)
0.912716 0.408595i \(-0.133981\pi\)
\(350\) 0 0
\(351\) 16.0175i 0.854953i
\(352\) 0 0
\(353\) −18.5198 18.5198i −0.985710 0.985710i 0.0141896 0.999899i \(-0.495483\pi\)
−0.999899 + 0.0141896i \(0.995483\pi\)
\(354\) 0 0
\(355\) −5.32133 + 3.36692i −0.282427 + 0.178697i
\(356\) 0 0
\(357\) −0.0395042 + 0.0395042i −0.00209078 + 0.00209078i
\(358\) 0 0
\(359\) 1.50488 0.0794248 0.0397124 0.999211i \(-0.487356\pi\)
0.0397124 + 0.999211i \(0.487356\pi\)
\(360\) 0 0
\(361\) 45.3038 2.38441
\(362\) 0 0
\(363\) −4.99791 + 4.99791i −0.262322 + 0.262322i
\(364\) 0 0
\(365\) −2.27647 + 10.1199i −0.119156 + 0.529701i
\(366\) 0 0
\(367\) 5.69692 + 5.69692i 0.297377 + 0.297377i 0.839985 0.542609i \(-0.182563\pi\)
−0.542609 + 0.839985i \(0.682563\pi\)
\(368\) 0 0
\(369\) 7.65550i 0.398529i
\(370\) 0 0
\(371\) 0.383732i 0.0199224i
\(372\) 0 0
\(373\) 24.5492 + 24.5492i 1.27111 + 1.27111i 0.945506 + 0.325605i \(0.105568\pi\)
0.325605 + 0.945506i \(0.394432\pi\)
\(374\) 0 0
\(375\) −5.37813 + 6.87556i −0.277725 + 0.355052i
\(376\) 0 0
\(377\) −18.7348 + 18.7348i −0.964890 + 0.964890i
\(378\) 0 0
\(379\) −17.0123 −0.873861 −0.436930 0.899495i \(-0.643934\pi\)
−0.436930 + 0.899495i \(0.643934\pi\)
\(380\) 0 0
\(381\) −14.6189 −0.748947
\(382\) 0 0
\(383\) 21.8154 21.8154i 1.11471 1.11471i 0.122210 0.992504i \(-0.461002\pi\)
0.992504 0.122210i \(-0.0389981\pi\)
\(384\) 0 0
\(385\) −0.217822 0.0489990i −0.0111012 0.00249722i
\(386\) 0 0
\(387\) 12.2725 + 12.2725i 0.623846 + 0.623846i
\(388\) 0 0
\(389\) 16.9311i 0.858441i −0.903200 0.429220i \(-0.858788\pi\)
0.903200 0.429220i \(-0.141212\pi\)
\(390\) 0 0
\(391\) 1.58356i 0.0800841i
\(392\) 0 0
\(393\) −9.78190 9.78190i −0.493431 0.493431i
\(394\) 0 0
\(395\) −0.202220 0.319603i −0.0101748 0.0160810i
\(396\) 0 0
\(397\) −10.7199 + 10.7199i −0.538018 + 0.538018i −0.922947 0.384928i \(-0.874226\pi\)
0.384928 + 0.922947i \(0.374226\pi\)
\(398\) 0 0
\(399\) 0.447998 0.0224279
\(400\) 0 0
\(401\) −5.54386 −0.276847 −0.138423 0.990373i \(-0.544203\pi\)
−0.138423 + 0.990373i \(0.544203\pi\)
\(402\) 0 0
\(403\) −8.45927 + 8.45927i −0.421386 + 0.421386i
\(404\) 0 0
\(405\) 4.64529 + 7.34178i 0.230826 + 0.364816i
\(406\) 0 0
\(407\) 1.89234 + 1.89234i 0.0937999 + 0.0937999i
\(408\) 0 0
\(409\) 7.11756i 0.351941i 0.984395 + 0.175970i \(0.0563063\pi\)
−0.984395 + 0.175970i \(0.943694\pi\)
\(410\) 0 0
\(411\) 1.84176i 0.0908473i
\(412\) 0 0
\(413\) −0.336722 0.336722i −0.0165690 0.0165690i
\(414\) 0 0
\(415\) −38.4025 8.63862i −1.88511 0.424053i
\(416\) 0 0
\(417\) −9.14021 + 9.14021i −0.447598 + 0.447598i
\(418\) 0 0
\(419\) −20.4856 −1.00079 −0.500393 0.865798i \(-0.666811\pi\)
−0.500393 + 0.865798i \(0.666811\pi\)
\(420\) 0 0
\(421\) 14.2174 0.692912 0.346456 0.938066i \(-0.387385\pi\)
0.346456 + 0.938066i \(0.387385\pi\)
\(422\) 0 0
\(423\) 10.0222 10.0222i 0.487295 0.487295i
\(424\) 0 0
\(425\) −1.68094 4.70898i −0.0815374 0.228419i
\(426\) 0 0
\(427\) 0.246419 + 0.246419i 0.0119251 + 0.0119251i
\(428\) 0 0
\(429\) 4.14636i 0.200188i
\(430\) 0 0
\(431\) 16.4428i 0.792019i −0.918246 0.396010i \(-0.870395\pi\)
0.918246 0.396010i \(-0.129605\pi\)
\(432\) 0 0
\(433\) 5.45348 + 5.45348i 0.262078 + 0.262078i 0.825898 0.563820i \(-0.190669\pi\)
−0.563820 + 0.825898i \(0.690669\pi\)
\(434\) 0 0
\(435\) 2.66730 11.8573i 0.127887 0.568515i
\(436\) 0 0
\(437\) 8.97921 8.97921i 0.429534 0.429534i
\(438\) 0 0
\(439\) 31.3846 1.49791 0.748953 0.662624i \(-0.230557\pi\)
0.748953 + 0.662624i \(0.230557\pi\)
\(440\) 0 0
\(441\) 16.7207 0.796224
\(442\) 0 0
\(443\) −1.22924 + 1.22924i −0.0584028 + 0.0584028i −0.735705 0.677302i \(-0.763149\pi\)
0.677302 + 0.735705i \(0.263149\pi\)
\(444\) 0 0
\(445\) 1.44881 0.916690i 0.0686800 0.0434553i
\(446\) 0 0
\(447\) −8.28654 8.28654i −0.391940 0.391940i
\(448\) 0 0
\(449\) 11.7586i 0.554921i 0.960737 + 0.277461i \(0.0894928\pi\)
−0.960737 + 0.277461i \(0.910507\pi\)
\(450\) 0 0
\(451\) 4.46882i 0.210429i
\(452\) 0 0
\(453\) −5.32341 5.32341i −0.250115 0.250115i
\(454\) 0 0
\(455\) 0.514599 0.325598i 0.0241248 0.0152643i
\(456\) 0 0
\(457\) −6.65086 + 6.65086i −0.311114 + 0.311114i −0.845341 0.534227i \(-0.820603\pi\)
0.534227 + 0.845341i \(0.320603\pi\)
\(458\) 0 0
\(459\) 4.20860 0.196441
\(460\) 0 0
\(461\) 2.20598 0.102743 0.0513713 0.998680i \(-0.483641\pi\)
0.0513713 + 0.998680i \(0.483641\pi\)
\(462\) 0 0
\(463\) −5.83069 + 5.83069i −0.270975 + 0.270975i −0.829493 0.558517i \(-0.811370\pi\)
0.558517 + 0.829493i \(0.311370\pi\)
\(464\) 0 0
\(465\) 1.20436 5.35391i 0.0558508 0.248282i
\(466\) 0 0
\(467\) 3.11066 + 3.11066i 0.143944 + 0.143944i 0.775407 0.631462i \(-0.217545\pi\)
−0.631462 + 0.775407i \(0.717545\pi\)
\(468\) 0 0
\(469\) 0.220563i 0.0101847i
\(470\) 0 0
\(471\) 11.0445i 0.508903i
\(472\) 0 0
\(473\) 7.16395 + 7.16395i 0.329399 + 0.329399i
\(474\) 0 0
\(475\) −17.1698 + 36.2325i −0.787803 + 1.66246i
\(476\) 0 0
\(477\) 9.06453 9.06453i 0.415036 0.415036i
\(478\) 0 0
\(479\) 17.7850 0.812615 0.406308 0.913736i \(-0.366816\pi\)
0.406308 + 0.913736i \(0.366816\pi\)
\(480\) 0 0
\(481\) −7.29926 −0.332817
\(482\) 0 0
\(483\) 0.0625572 0.0625572i 0.00284645 0.00284645i
\(484\) 0 0
\(485\) −9.01079 2.02697i −0.409159 0.0920400i
\(486\) 0 0
\(487\) 10.8029 + 10.8029i 0.489525 + 0.489525i 0.908156 0.418631i \(-0.137490\pi\)
−0.418631 + 0.908156i \(0.637490\pi\)
\(488\) 0 0
\(489\) 6.65988i 0.301170i
\(490\) 0 0
\(491\) 38.4004i 1.73299i −0.499189 0.866493i \(-0.666369\pi\)
0.499189 0.866493i \(-0.333631\pi\)
\(492\) 0 0
\(493\) 4.92255 + 4.92255i 0.221701 + 0.221701i
\(494\) 0 0
\(495\) 3.98794 + 6.30285i 0.179245 + 0.283292i
\(496\) 0 0
\(497\) −0.142488 + 0.142488i −0.00639147 + 0.00639147i
\(498\) 0 0
\(499\) 21.0618 0.942854 0.471427 0.881905i \(-0.343739\pi\)
0.471427 + 0.881905i \(0.343739\pi\)
\(500\) 0 0
\(501\) 18.3980 0.821962
\(502\) 0 0
\(503\) 11.0384 11.0384i 0.492178 0.492178i −0.416814 0.908992i \(-0.636853\pi\)
0.908992 + 0.416814i \(0.136853\pi\)
\(504\) 0 0
\(505\) −0.519415 0.820923i −0.0231137 0.0365306i
\(506\) 0 0
\(507\) −0.819786 0.819786i −0.0364080 0.0364080i
\(508\) 0 0
\(509\) 22.7065i 1.00645i −0.864156 0.503224i \(-0.832147\pi\)
0.864156 0.503224i \(-0.167853\pi\)
\(510\) 0 0
\(511\) 0.331936i 0.0146840i
\(512\) 0 0
\(513\) −23.8639 23.8639i −1.05362 1.05362i
\(514\) 0 0
\(515\) −9.46363 2.12884i −0.417017 0.0938077i
\(516\) 0 0
\(517\) 5.85035 5.85035i 0.257298 0.257298i
\(518\) 0 0
\(519\) 1.50717 0.0661573
\(520\) 0 0
\(521\) 17.1794 0.752645 0.376322 0.926489i \(-0.377189\pi\)
0.376322 + 0.926489i \(0.377189\pi\)
\(522\) 0 0
\(523\) 21.3116 21.3116i 0.931889 0.931889i −0.0659348 0.997824i \(-0.521003\pi\)
0.997824 + 0.0659348i \(0.0210029\pi\)
\(524\) 0 0
\(525\) −0.119620 + 0.252428i −0.00522065 + 0.0110169i
\(526\) 0 0
\(527\) 2.22267 + 2.22267i 0.0968211 + 0.0968211i
\(528\) 0 0
\(529\) 20.4923i 0.890971i
\(530\) 0 0
\(531\) 15.9081i 0.690353i
\(532\) 0 0
\(533\) 8.61871 + 8.61871i 0.373318 + 0.373318i
\(534\) 0 0
\(535\) −2.78370 + 12.3748i −0.120350 + 0.535009i
\(536\) 0 0
\(537\) 11.2557 11.2557i 0.485721 0.485721i
\(538\) 0 0
\(539\) 9.76055 0.420417
\(540\) 0 0
\(541\) −38.5479 −1.65730 −0.828651 0.559765i \(-0.810891\pi\)
−0.828651 + 0.559765i \(0.810891\pi\)
\(542\) 0 0
\(543\) −9.26645 + 9.26645i −0.397661 + 0.397661i
\(544\) 0 0
\(545\) −19.1780 + 12.1343i −0.821494 + 0.519776i
\(546\) 0 0
\(547\) −24.9281 24.9281i −1.06585 1.06585i −0.997673 0.0681753i \(-0.978282\pi\)
−0.0681753 0.997673i \(-0.521718\pi\)
\(548\) 0 0
\(549\) 11.6418i 0.496861i
\(550\) 0 0
\(551\) 55.8243i 2.37820i
\(552\) 0 0
\(553\) −0.00855795 0.00855795i −0.000363921 0.000363921i
\(554\) 0 0
\(555\) 2.82947 1.79026i 0.120104 0.0759925i
\(556\) 0 0
\(557\) 1.65212 1.65212i 0.0700028 0.0700028i −0.671239 0.741241i \(-0.734237\pi\)
0.741241 + 0.671239i \(0.234237\pi\)
\(558\) 0 0
\(559\) −27.6332 −1.16876
\(560\) 0 0
\(561\) 1.08946 0.0459968
\(562\) 0 0
\(563\) 19.3443 19.3443i 0.815266 0.815266i −0.170152 0.985418i \(-0.554426\pi\)
0.985418 + 0.170152i \(0.0544259\pi\)
\(564\) 0 0
\(565\) −1.95922 + 8.70962i −0.0824251 + 0.366416i
\(566\) 0 0
\(567\) 0.196589 + 0.196589i 0.00825597 + 0.00825597i
\(568\) 0 0
\(569\) 34.1227i 1.43050i 0.698871 + 0.715248i \(0.253686\pi\)
−0.698871 + 0.715248i \(0.746314\pi\)
\(570\) 0 0
\(571\) 9.90202i 0.414387i 0.978300 + 0.207193i \(0.0664329\pi\)
−0.978300 + 0.207193i \(0.933567\pi\)
\(572\) 0 0
\(573\) −9.30236 9.30236i −0.388612 0.388612i
\(574\) 0 0
\(575\) 2.66187 + 7.45695i 0.111008 + 0.310976i
\(576\) 0 0
\(577\) 10.8397 10.8397i 0.451263 0.451263i −0.444510 0.895774i \(-0.646622\pi\)
0.895774 + 0.444510i \(0.146622\pi\)
\(578\) 0 0
\(579\) 21.3164 0.885880
\(580\) 0 0
\(581\) −1.25961 −0.0522574
\(582\) 0 0
\(583\) 5.29133 5.29133i 0.219145 0.219145i
\(584\) 0 0
\(585\) −19.8471 4.46460i −0.820578 0.184589i
\(586\) 0 0
\(587\) −9.83793 9.83793i −0.406055 0.406055i 0.474305 0.880360i \(-0.342699\pi\)
−0.880360 + 0.474305i \(0.842699\pi\)
\(588\) 0 0
\(589\) 25.2063i 1.03861i
\(590\) 0 0
\(591\) 8.29104i 0.341048i
\(592\) 0 0
\(593\) −1.70099 1.70099i −0.0698514 0.0698514i 0.671318 0.741169i \(-0.265728\pi\)
−0.741169 + 0.671318i \(0.765728\pi\)
\(594\) 0 0
\(595\) −0.0855507 0.135211i −0.00350723 0.00554310i
\(596\) 0 0
\(597\) −6.77156 + 6.77156i −0.277142 + 0.277142i
\(598\) 0 0
\(599\) −1.09110 −0.0445811 −0.0222905 0.999752i \(-0.507096\pi\)
−0.0222905 + 0.999752i \(0.507096\pi\)
\(600\) 0 0
\(601\) −26.6612 −1.08753 −0.543766 0.839237i \(-0.683002\pi\)
−0.543766 + 0.839237i \(0.683002\pi\)
\(602\) 0 0
\(603\) 5.21014 5.21014i 0.212173 0.212173i
\(604\) 0 0
\(605\) −10.8235 17.1063i −0.440039 0.695471i
\(606\) 0 0
\(607\) −3.06268 3.06268i −0.124310 0.124310i 0.642215 0.766525i \(-0.278016\pi\)
−0.766525 + 0.642215i \(0.778016\pi\)
\(608\) 0 0
\(609\) 0.388923i 0.0157599i
\(610\) 0 0
\(611\) 22.5663i 0.912936i
\(612\) 0 0
\(613\) −4.53968 4.53968i −0.183356 0.183356i 0.609460 0.792816i \(-0.291386\pi\)
−0.792816 + 0.609460i \(0.791386\pi\)
\(614\) 0 0
\(615\) −5.45482 1.22706i −0.219960 0.0494798i
\(616\) 0 0
\(617\) −3.79642 + 3.79642i −0.152838 + 0.152838i −0.779384 0.626546i \(-0.784468\pi\)
0.626546 + 0.779384i \(0.284468\pi\)
\(618\) 0 0
\(619\) 24.4713 0.983584 0.491792 0.870713i \(-0.336342\pi\)
0.491792 + 0.870713i \(0.336342\pi\)
\(620\) 0 0
\(621\) −6.66458 −0.267440
\(622\) 0 0
\(623\) 0.0387944 0.0387944i 0.00155426 0.00155426i
\(624\) 0 0
\(625\) −15.8310 19.3489i −0.633239 0.773956i
\(626\) 0 0
\(627\) −6.17750 6.17750i −0.246705 0.246705i
\(628\) 0 0
\(629\) 1.91788i 0.0764708i
\(630\) 0 0
\(631\) 14.8529i 0.591284i 0.955299 + 0.295642i \(0.0955335\pi\)
−0.955299 + 0.295642i \(0.904466\pi\)
\(632\) 0 0
\(633\) 10.0520 + 10.0520i 0.399530 + 0.399530i
\(634\) 0 0
\(635\) 9.18859 40.8474i 0.364638 1.62098i
\(636\) 0 0
\(637\) −18.8245 + 18.8245i −0.745853 + 0.745853i
\(638\) 0 0
\(639\) 6.73172 0.266303
\(640\) 0 0
\(641\) 16.9651 0.670081 0.335040 0.942204i \(-0.391250\pi\)
0.335040 + 0.942204i \(0.391250\pi\)
\(642\) 0 0
\(643\) 34.9211 34.9211i 1.37715 1.37715i 0.527758 0.849395i \(-0.323033\pi\)
0.849395 0.527758i \(-0.176967\pi\)
\(644\) 0 0
\(645\) 10.7117 6.77751i 0.421772 0.266864i
\(646\) 0 0
\(647\) 33.1183 + 33.1183i 1.30201 + 1.30201i 0.927033 + 0.374981i \(0.122351\pi\)
0.374981 + 0.927033i \(0.377649\pi\)
\(648\) 0 0
\(649\) 9.28620i 0.364515i
\(650\) 0 0
\(651\) 0.175609i 0.00688268i
\(652\) 0 0
\(653\) −27.5635 27.5635i −1.07864 1.07864i −0.996631 0.0820105i \(-0.973866\pi\)
−0.0820105 0.996631i \(-0.526134\pi\)
\(654\) 0 0
\(655\) 33.4805 21.1838i 1.30819 0.827719i
\(656\) 0 0
\(657\) 7.84099 7.84099i 0.305906 0.305906i
\(658\) 0 0
\(659\) −18.6950 −0.728255 −0.364128 0.931349i \(-0.618633\pi\)
−0.364128 + 0.931349i \(0.618633\pi\)
\(660\) 0 0
\(661\) −28.1731 −1.09581 −0.547903 0.836542i \(-0.684574\pi\)
−0.547903 + 0.836542i \(0.684574\pi\)
\(662\) 0 0
\(663\) −2.10116 + 2.10116i −0.0816021 + 0.0816021i
\(664\) 0 0
\(665\) −0.281586 + 1.25178i −0.0109194 + 0.0485418i
\(666\) 0 0
\(667\) −7.79516 7.79516i −0.301830 0.301830i
\(668\) 0 0
\(669\) 7.02231i 0.271498i
\(670\) 0 0
\(671\) 6.79580i 0.262349i
\(672\) 0 0
\(673\) −21.9967 21.9967i −0.847912 0.847912i 0.141961 0.989872i \(-0.454659\pi\)
−0.989872 + 0.141961i \(0.954659\pi\)
\(674\) 0 0
\(675\) 19.8182 7.07440i 0.762803 0.272294i
\(676\) 0 0
\(677\) −18.0200 + 18.0200i −0.692563 + 0.692563i −0.962795 0.270232i \(-0.912900\pi\)
0.270232 + 0.962795i \(0.412900\pi\)
\(678\) 0 0
\(679\) −0.295556 −0.0113424
\(680\) 0 0
\(681\) 8.50580 0.325943
\(682\) 0 0
\(683\) 11.7524 11.7524i 0.449693 0.449693i −0.445559 0.895252i \(-0.646995\pi\)
0.895252 + 0.445559i \(0.146995\pi\)
\(684\) 0 0
\(685\) −5.14616 1.15763i −0.196625 0.0442306i
\(686\) 0 0
\(687\) 12.2964 + 12.2964i 0.469138 + 0.469138i
\(688\) 0 0
\(689\) 20.4101i 0.777561i
\(690\) 0 0
\(691\) 30.1130i 1.14555i 0.819712 + 0.572776i \(0.194134\pi\)
−0.819712 + 0.572776i \(0.805866\pi\)
\(692\) 0 0
\(693\) 0.168770 + 0.168770i 0.00641105 + 0.00641105i
\(694\) 0 0
\(695\) −19.7942 31.2842i −0.750835 1.18668i
\(696\) 0 0
\(697\) 2.26456 2.26456i 0.0857764 0.0857764i
\(698\) 0 0
\(699\) −20.4831 −0.774743
\(700\) 0 0
\(701\) −18.8598 −0.712324 −0.356162 0.934424i \(-0.615915\pi\)
−0.356162 + 0.934424i \(0.615915\pi\)
\(702\) 0 0
\(703\) 10.8749 10.8749i 0.410153 0.410153i
\(704\) 0 0
\(705\) −5.53477 8.74757i −0.208451 0.329453i
\(706\) 0 0
\(707\) −0.0219817 0.0219817i −0.000826706 0.000826706i
\(708\) 0 0
\(709\) 33.1192i 1.24382i −0.783090 0.621909i \(-0.786358\pi\)
0.783090 0.621909i \(-0.213642\pi\)
\(710\) 0 0
\(711\) 0.404312i 0.0151629i
\(712\) 0 0
\(713\) −3.51973 3.51973i −0.131815 0.131815i
\(714\) 0 0
\(715\) −11.5856 2.60617i −0.433276 0.0974652i
\(716\) 0 0
\(717\) 6.10475 6.10475i 0.227986 0.227986i
\(718\) 0 0
\(719\) −4.64634 −0.173279 −0.0866396 0.996240i \(-0.527613\pi\)
−0.0866396 + 0.996240i \(0.527613\pi\)
\(720\) 0 0
\(721\) −0.310409 −0.0115602
\(722\) 0 0
\(723\) 1.97622 1.97622i 0.0734962 0.0734962i
\(724\) 0 0
\(725\) 31.4547 + 14.9057i 1.16820 + 0.553583i
\(726\) 0 0
\(727\) −18.5017 18.5017i −0.686192 0.686192i 0.275196 0.961388i \(-0.411257\pi\)
−0.961388 + 0.275196i \(0.911257\pi\)
\(728\) 0 0
\(729\) 0.570016i 0.0211117i
\(730\) 0 0
\(731\) 7.26062i 0.268544i
\(732\) 0 0
\(733\) 10.8358 + 10.8358i 0.400230 + 0.400230i 0.878314 0.478084i \(-0.158668\pi\)
−0.478084 + 0.878314i \(0.658668\pi\)
\(734\) 0 0
\(735\) 2.68007 11.9141i 0.0988559 0.439458i
\(736\) 0 0
\(737\) 3.04137 3.04137i 0.112030 0.112030i
\(738\) 0 0
\(739\) 14.1025 0.518769 0.259385 0.965774i \(-0.416480\pi\)
0.259385 + 0.965774i \(0.416480\pi\)
\(740\) 0 0
\(741\) 23.8282 0.875351
\(742\) 0 0
\(743\) −27.1941 + 27.1941i −0.997654 + 0.997654i −0.999997 0.00234369i \(-0.999254\pi\)
0.00234369 + 0.999997i \(0.499254\pi\)
\(744\) 0 0
\(745\) 28.3623 17.9454i 1.03911 0.657469i
\(746\) 0 0
\(747\) 29.7545 + 29.7545i 1.08866 + 1.08866i
\(748\) 0 0
\(749\) 0.405895i 0.0148311i
\(750\) 0 0
\(751\) 23.4192i 0.854580i −0.904115 0.427290i \(-0.859468\pi\)
0.904115 0.427290i \(-0.140532\pi\)
\(752\) 0 0
\(753\) −4.07742 4.07742i −0.148589 0.148589i
\(754\) 0 0
\(755\) 18.2204 11.5284i 0.663109 0.419562i
\(756\) 0 0
\(757\) −8.50542 + 8.50542i −0.309135 + 0.309135i −0.844574 0.535439i \(-0.820146\pi\)
0.535439 + 0.844574i \(0.320146\pi\)
\(758\) 0 0
\(759\) −1.72522 −0.0626215
\(760\) 0 0
\(761\) −17.0043 −0.616406 −0.308203 0.951321i \(-0.599728\pi\)
−0.308203 + 0.951321i \(0.599728\pi\)
\(762\) 0 0
\(763\) −0.513524 + 0.513524i −0.0185908 + 0.0185908i
\(764\) 0 0
\(765\) −1.17307 + 5.21483i −0.0424125 + 0.188543i
\(766\) 0 0
\(767\) −17.9096 17.9096i −0.646680 0.646680i
\(768\) 0 0
\(769\) 6.51142i 0.234808i −0.993084 0.117404i \(-0.962543\pi\)
0.993084 0.117404i \(-0.0374572\pi\)
\(770\) 0 0
\(771\) 16.6730i 0.600464i
\(772\) 0 0
\(773\) 15.8647 + 15.8647i 0.570612 + 0.570612i 0.932299 0.361687i \(-0.117799\pi\)
−0.361687 + 0.932299i \(0.617799\pi\)
\(774\) 0 0
\(775\) 14.2027 + 6.73033i 0.510175 + 0.241761i
\(776\) 0 0
\(777\) 0.0757641 0.0757641i 0.00271802 0.00271802i
\(778\) 0 0
\(779\) −25.6813 −0.920129
\(780\) 0 0
\(781\) 3.92957 0.140611
\(782\) 0 0
\(783\) −20.7171 + 20.7171i −0.740368 + 0.740368i
\(784\) 0 0
\(785\) −30.8600 6.94194i −1.10144 0.247768i
\(786\) 0 0
\(787\) 10.2669 + 10.2669i 0.365974 + 0.365974i 0.866007 0.500032i \(-0.166679\pi\)
−0.500032 + 0.866007i \(0.666679\pi\)
\(788\) 0 0
\(789\) 11.0564i 0.393619i
\(790\) 0 0
\(791\) 0.285677i 0.0101575i
\(792\) 0 0
\(793\) 13.1066 + 13.1066i 0.465429 + 0.465429i
\(794\) 0 0
\(795\) −5.00590 7.91171i −0.177541 0.280600i
\(796\) 0 0
\(797\) −36.1862 + 36.1862i −1.28178 + 1.28178i −0.342127 + 0.939654i \(0.611147\pi\)
−0.939654 + 0.342127i \(0.888853\pi\)
\(798\) 0 0
\(799\) 5.92930 0.209763
\(800\) 0 0
\(801\) −1.83280 −0.0647589
\(802\) 0 0
\(803\) 4.57710 4.57710i 0.161522 0.161522i
\(804\) 0 0
\(805\) 0.135475 + 0.214115i 0.00477486 + 0.00754655i
\(806\) 0 0
\(807\) 11.0019 + 11.0019i 0.387285 + 0.387285i
\(808\) 0 0
\(809\) 30.1038i 1.05839i −0.848499 0.529196i \(-0.822494\pi\)
0.848499 0.529196i \(-0.177506\pi\)
\(810\) 0 0
\(811\) 17.2830i 0.606889i 0.952849 + 0.303444i \(0.0981366\pi\)
−0.952849 + 0.303444i \(0.901863\pi\)
\(812\) 0 0
\(813\) −14.7014 14.7014i −0.515601 0.515601i
\(814\) 0 0
\(815\) 18.6087 + 4.18602i 0.651835 + 0.146630i
\(816\) 0 0
\(817\) 41.1696 41.1696i 1.44034 1.44034i
\(818\) 0 0
\(819\) −0.650990 −0.0227474
\(820\) 0 0
\(821\) 19.4223 0.677844 0.338922 0.940814i \(-0.389938\pi\)
0.338922 + 0.940814i \(0.389938\pi\)
\(822\) 0 0
\(823\) 27.6292 27.6292i 0.963093 0.963093i −0.0362495 0.999343i \(-0.511541\pi\)
0.999343 + 0.0362495i \(0.0115411\pi\)
\(824\) 0 0
\(825\) 5.13022 1.83131i 0.178611 0.0637579i
\(826\) 0 0
\(827\) 35.1150 + 35.1150i 1.22107 + 1.22107i 0.967253 + 0.253815i \(0.0816854\pi\)
0.253815 + 0.967253i \(0.418315\pi\)
\(828\) 0 0
\(829\) 12.6190i 0.438275i 0.975694 + 0.219137i \(0.0703243\pi\)
−0.975694 + 0.219137i \(0.929676\pi\)
\(830\) 0 0
\(831\) 21.2590i 0.737466i
\(832\) 0 0
\(833\) 4.94613 + 4.94613i 0.171373 + 0.171373i
\(834\) 0 0
\(835\) −11.5639 + 51.4069i −0.400187 + 1.77901i
\(836\) 0 0
\(837\) −9.35434 + 9.35434i −0.323333 + 0.323333i
\(838\) 0 0
\(839\) −1.11833 −0.0386090 −0.0193045 0.999814i \(-0.506145\pi\)
−0.0193045 + 0.999814i \(0.506145\pi\)
\(840\) 0 0
\(841\) −19.4631 −0.671140
\(842\) 0 0
\(843\) 4.22248 4.22248i 0.145430 0.145430i
\(844\) 0 0
\(845\) 2.80588 1.77534i 0.0965252 0.0610735i
\(846\) 0 0
\(847\) −0.458052 0.458052i −0.0157389 0.0157389i
\(848\) 0 0
\(849\) 7.54756i 0.259032i
\(850\) 0 0
\(851\) 3.03708i 0.104110i
\(852\) 0 0
\(853\) 16.8257 + 16.8257i 0.576100 + 0.576100i 0.933826 0.357726i \(-0.116448\pi\)
−0.357726 + 0.933826i \(0.616448\pi\)
\(854\) 0 0
\(855\) 36.2211 22.9178i 1.23873 0.783773i
\(856\) 0 0
\(857\) 5.66521 5.66521i 0.193520 0.193520i −0.603695 0.797215i \(-0.706306\pi\)
0.797215 + 0.603695i \(0.206306\pi\)
\(858\) 0 0
\(859\) 48.2158 1.64510 0.822550 0.568693i \(-0.192551\pi\)
0.822550 + 0.568693i \(0.192551\pi\)
\(860\) 0 0
\(861\) −0.178919 −0.00609755
\(862\) 0 0
\(863\) −3.50464 + 3.50464i −0.119299 + 0.119299i −0.764236 0.644937i \(-0.776884\pi\)
0.644937 + 0.764236i \(0.276884\pi\)
\(864\) 0 0
\(865\) −0.947319 + 4.21126i −0.0322098 + 0.143187i
\(866\) 0 0
\(867\) 0.552078 + 0.552078i 0.0187495 + 0.0187495i
\(868\) 0 0
\(869\) 0.236013i 0.00800620i
\(870\) 0 0
\(871\) 11.7314i 0.397502i
\(872\) 0 0
\(873\) 6.98162 + 6.98162i 0.236292 + 0.236292i
\(874\) 0 0
\(875\) −0.630137 0.492899i −0.0213025 0.0166630i
\(876\) 0 0
\(877\) −27.5813 + 27.5813i −0.931353 + 0.931353i −0.997791 0.0664376i \(-0.978837\pi\)
0.0664376 + 0.997791i \(0.478837\pi\)
\(878\) 0 0
\(879\) 4.84930 0.163563
\(880\) 0 0
\(881\) 21.2061 0.714452 0.357226 0.934018i \(-0.383723\pi\)
0.357226 + 0.934018i \(0.383723\pi\)
\(882\) 0 0
\(883\) −37.5979 + 37.5979i −1.26527 + 1.26527i −0.316766 + 0.948504i \(0.602597\pi\)
−0.948504 + 0.316766i \(0.897403\pi\)
\(884\) 0 0
\(885\) 11.3351 + 2.54982i 0.381025 + 0.0857114i
\(886\) 0 0
\(887\) −17.2112 17.2112i −0.577896 0.577896i 0.356427 0.934323i \(-0.383995\pi\)
−0.934323 + 0.356427i \(0.883995\pi\)
\(888\) 0 0
\(889\) 1.33980i 0.0449355i
\(890\) 0 0
\(891\) 5.42158i 0.181630i
\(892\) 0 0
\(893\) −33.6207 33.6207i −1.12507 1.12507i
\(894\) 0 0
\(895\) 24.3756 + 38.5250i 0.814785 + 1.28775i
\(896\) 0 0
\(897\) 3.32731 3.32731i 0.111096 0.111096i
\(898\) 0 0
\(899\) −21.8824 −0.729820
\(900\) 0 0
\(901\) 5.36273 0.178659
\(902\) 0 0
\(903\) 0.286825 0.286825i 0.00954493 0.00954493i
\(904\) 0 0
\(905\) −20.0675 31.7163i −0.667067 1.05428i
\(906\) 0 0
\(907\) −14.2977 14.2977i −0.474746 0.474746i 0.428701 0.903447i \(-0.358971\pi\)
−0.903447 + 0.428701i \(0.858971\pi\)
\(908\) 0 0
\(909\) 1.03850i 0.0344450i
\(910\) 0 0
\(911\) 29.1425i 0.965533i −0.875749 0.482766i \(-0.839632\pi\)
0.875749 0.482766i \(-0.160368\pi\)
\(912\) 0 0
\(913\) 17.3689 + 17.3689i 0.574827 + 0.574827i
\(914\) 0 0
\(915\) −8.29522 1.86600i −0.274232 0.0616882i
\(916\) 0 0
\(917\) 0.896500 0.896500i 0.0296050 0.0296050i
\(918\) 0 0
\(919\) 8.14767 0.268767 0.134383 0.990929i \(-0.457095\pi\)
0.134383 + 0.990929i \(0.457095\pi\)
\(920\) 0 0
\(921\) −12.7170 −0.419040
\(922\) 0 0
\(923\) −7.57870 + 7.57870i −0.249456 + 0.249456i
\(924\) 0 0
\(925\) 3.22383 + 9.03124i 0.105999 + 0.296945i
\(926\) 0 0
\(927\) 7.33248 + 7.33248i 0.240830 + 0.240830i
\(928\) 0 0
\(929\) 4.50057i 0.147659i 0.997271 + 0.0738295i \(0.0235220\pi\)
−0.997271 + 0.0738295i \(0.976478\pi\)
\(930\) 0 0
\(931\) 56.0917i 1.83833i
\(932\) 0 0
\(933\) −8.02929 8.02929i −0.262867 0.262867i
\(934\) 0 0
\(935\) −0.684770 + 3.04411i −0.0223944 + 0.0995529i
\(936\) 0 0
\(937\) 27.7000 27.7000i 0.904919 0.904919i −0.0909374 0.995857i \(-0.528986\pi\)
0.995857 + 0.0909374i \(0.0289863\pi\)
\(938\) 0 0
\(939\) −12.0981 −0.394806
\(940\) 0 0
\(941\) −58.9292 −1.92104 −0.960519 0.278216i \(-0.910257\pi\)
−0.960519 + 0.278216i \(0.910257\pi\)
\(942\) 0 0
\(943\) −3.58607 + 3.58607i −0.116779 + 0.116779i
\(944\) 0 0
\(945\) 0.569049 0.360049i 0.0185112 0.0117124i
\(946\) 0 0
\(947\) −18.5943 18.5943i −0.604234 0.604234i 0.337199 0.941433i \(-0.390520\pi\)
−0.941433 + 0.337199i \(0.890520\pi\)
\(948\) 0 0
\(949\) 17.6551i 0.573108i
\(950\) 0 0
\(951\) 12.1428i 0.393757i
\(952\) 0 0
\(953\) 14.5640 + 14.5640i 0.471773 + 0.471773i 0.902488 0.430715i \(-0.141739\pi\)
−0.430715 + 0.902488i \(0.641739\pi\)
\(954\) 0 0
\(955\) 31.8392 20.1453i 1.03029 0.651887i
\(956\) 0 0
\(957\) −5.36290 + 5.36290i −0.173358 + 0.173358i
\(958\) 0 0
\(959\) −0.168795 −0.00545068
\(960\) 0 0
\(961\) 21.1195 0.681273
\(962\) 0 0
\(963\) 9.58807 9.58807i 0.308971 0.308971i
\(964\) 0 0
\(965\) −13.3983 + 59.5614i −0.431306 + 1.91735i
\(966\) 0 0
\(967\) −23.0548 23.0548i −0.741393 0.741393i 0.231453 0.972846i \(-0.425652\pi\)
−0.972846 + 0.231453i \(0.925652\pi\)
\(968\) 0 0
\(969\) 6.26085i 0.201128i
\(970\) 0 0
\(971\) 6.97371i 0.223797i 0.993720 + 0.111898i \(0.0356931\pi\)
−0.993720 + 0.111898i \(0.964307\pi\)
\(972\) 0 0
\(973\) −0.837690 0.837690i −0.0268551 0.0268551i
\(974\) 0 0
\(975\) −6.36238 + 13.4262i −0.203759 + 0.429983i
\(976\) 0 0
\(977\) 36.0919 36.0919i 1.15468 1.15468i 0.169081 0.985602i \(-0.445920\pi\)
0.985602 0.169081i \(-0.0540798\pi\)
\(978\) 0 0
\(979\) −1.06988 −0.0341935
\(980\) 0 0
\(981\) 24.2609 0.774592
\(982\) 0 0
\(983\) −8.59164 + 8.59164i −0.274031 + 0.274031i −0.830721 0.556690i \(-0.812071\pi\)
0.556690 + 0.830721i \(0.312071\pi\)
\(984\) 0 0
\(985\) 23.1665 + 5.21128i 0.738145 + 0.166045i
\(986\) 0 0
\(987\) −0.234232 0.234232i −0.00745568 0.00745568i
\(988\) 0 0
\(989\) 11.4976i 0.365604i
\(990\) 0 0
\(991\) 17.5035i 0.556016i −0.960579 0.278008i \(-0.910326\pi\)
0.960579 0.278008i \(-0.0896742\pi\)
\(992\) 0 0
\(993\) −14.6886 14.6886i −0.466128 0.466128i
\(994\) 0 0
\(995\) −14.6646 23.1770i −0.464898 0.734761i
\(996\) 0 0
\(997\) 23.2041 23.2041i 0.734881 0.734881i −0.236702 0.971582i \(-0.576066\pi\)
0.971582 + 0.236702i \(0.0760664\pi\)
\(998\) 0 0
\(999\) −8.07158 −0.255374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bn.b.783.13 64
4.3 odd 2 inner 1360.2.bn.b.783.20 yes 64
5.2 odd 4 inner 1360.2.bn.b.1327.20 yes 64
20.7 even 4 inner 1360.2.bn.b.1327.13 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1360.2.bn.b.783.13 64 1.1 even 1 trivial
1360.2.bn.b.783.20 yes 64 4.3 odd 2 inner
1360.2.bn.b.1327.13 yes 64 20.7 even 4 inner
1360.2.bn.b.1327.20 yes 64 5.2 odd 4 inner