Properties

Label 1360.2.bn.a.1327.4
Level $1360$
Weight $2$
Character 1360.1327
Analytic conductor $10.860$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(783,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bn (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1327.4
Character \(\chi\) \(=\) 1360.1327
Dual form 1360.2.bn.a.783.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62263 - 1.62263i) q^{3} +(1.74625 + 1.39664i) q^{5} +(-1.20200 + 1.20200i) q^{7} +2.26589i q^{9} +2.64044i q^{11} +(3.80108 - 3.80108i) q^{13} +(-0.567299 - 5.09977i) q^{15} +(-0.707107 - 0.707107i) q^{17} -4.76917 q^{19} +3.90082 q^{21} +(0.848105 + 0.848105i) q^{23} +(1.09881 + 4.87777i) q^{25} +(-1.19119 + 1.19119i) q^{27} +4.15666i q^{29} +3.91291i q^{31} +(4.28448 - 4.28448i) q^{33} +(-3.77776 + 0.420240i) q^{35} +(4.47368 + 4.47368i) q^{37} -12.3355 q^{39} -6.25974 q^{41} +(7.59005 + 7.59005i) q^{43} +(-3.16463 + 3.95682i) q^{45} +(6.80420 - 6.80420i) q^{47} +4.11038i q^{49} +2.29475i q^{51} +(-6.24599 + 6.24599i) q^{53} +(-3.68774 + 4.61088i) q^{55} +(7.73862 + 7.73862i) q^{57} +2.42164 q^{59} -0.875552 q^{61} +(-2.72360 - 2.72360i) q^{63} +(11.9464 - 1.32892i) q^{65} +(6.37536 - 6.37536i) q^{67} -2.75233i q^{69} -3.01403i q^{71} +(-1.95554 + 1.95554i) q^{73} +(6.13188 - 9.69780i) q^{75} +(-3.17382 - 3.17382i) q^{77} +17.1634 q^{79} +10.6634 q^{81} +(12.7110 + 12.7110i) q^{83} +(-0.247216 - 2.22236i) q^{85} +(6.74475 - 6.74475i) q^{87} -10.0727i q^{89} +9.13781i q^{91} +(6.34923 - 6.34923i) q^{93} +(-8.32818 - 6.66080i) q^{95} +(2.55854 + 2.55854i) q^{97} -5.98295 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{13} - 16 q^{21} - 24 q^{25} + 8 q^{33} - 16 q^{41} + 24 q^{45} - 16 q^{53} + 32 q^{57} + 16 q^{61} + 56 q^{65} - 8 q^{73} + 40 q^{77} + 32 q^{81} + 56 q^{93} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.62263 1.62263i −0.936829 0.936829i 0.0612912 0.998120i \(-0.480478\pi\)
−0.998120 + 0.0612912i \(0.980478\pi\)
\(4\) 0 0
\(5\) 1.74625 + 1.39664i 0.780949 + 0.624595i
\(6\) 0 0
\(7\) −1.20200 + 1.20200i −0.454314 + 0.454314i −0.896784 0.442469i \(-0.854103\pi\)
0.442469 + 0.896784i \(0.354103\pi\)
\(8\) 0 0
\(9\) 2.26589i 0.755296i
\(10\) 0 0
\(11\) 2.64044i 0.796124i 0.917359 + 0.398062i \(0.130317\pi\)
−0.917359 + 0.398062i \(0.869683\pi\)
\(12\) 0 0
\(13\) 3.80108 3.80108i 1.05423 1.05423i 0.0557864 0.998443i \(-0.482233\pi\)
0.998443 0.0557864i \(-0.0177666\pi\)
\(14\) 0 0
\(15\) −0.567299 5.09977i −0.146476 1.31675i
\(16\) 0 0
\(17\) −0.707107 0.707107i −0.171499 0.171499i
\(18\) 0 0
\(19\) −4.76917 −1.09412 −0.547061 0.837092i \(-0.684254\pi\)
−0.547061 + 0.837092i \(0.684254\pi\)
\(20\) 0 0
\(21\) 3.90082 0.851230
\(22\) 0 0
\(23\) 0.848105 + 0.848105i 0.176842 + 0.176842i 0.789978 0.613136i \(-0.210092\pi\)
−0.613136 + 0.789978i \(0.710092\pi\)
\(24\) 0 0
\(25\) 1.09881 + 4.87777i 0.219761 + 0.975554i
\(26\) 0 0
\(27\) −1.19119 + 1.19119i −0.229246 + 0.229246i
\(28\) 0 0
\(29\) 4.15666i 0.771873i 0.922525 + 0.385936i \(0.126122\pi\)
−0.922525 + 0.385936i \(0.873878\pi\)
\(30\) 0 0
\(31\) 3.91291i 0.702779i 0.936229 + 0.351390i \(0.114291\pi\)
−0.936229 + 0.351390i \(0.885709\pi\)
\(32\) 0 0
\(33\) 4.28448 4.28448i 0.745832 0.745832i
\(34\) 0 0
\(35\) −3.77776 + 0.420240i −0.638559 + 0.0710335i
\(36\) 0 0
\(37\) 4.47368 + 4.47368i 0.735468 + 0.735468i 0.971697 0.236230i \(-0.0759117\pi\)
−0.236230 + 0.971697i \(0.575912\pi\)
\(38\) 0 0
\(39\) −12.3355 −1.97526
\(40\) 0 0
\(41\) −6.25974 −0.977608 −0.488804 0.872394i \(-0.662567\pi\)
−0.488804 + 0.872394i \(0.662567\pi\)
\(42\) 0 0
\(43\) 7.59005 + 7.59005i 1.15747 + 1.15747i 0.985018 + 0.172453i \(0.0551694\pi\)
0.172453 + 0.985018i \(0.444831\pi\)
\(44\) 0 0
\(45\) −3.16463 + 3.95682i −0.471755 + 0.589847i
\(46\) 0 0
\(47\) 6.80420 6.80420i 0.992494 0.992494i −0.00747772 0.999972i \(-0.502380\pi\)
0.999972 + 0.00747772i \(0.00238025\pi\)
\(48\) 0 0
\(49\) 4.11038i 0.587197i
\(50\) 0 0
\(51\) 2.29475i 0.321330i
\(52\) 0 0
\(53\) −6.24599 + 6.24599i −0.857953 + 0.857953i −0.991097 0.133144i \(-0.957493\pi\)
0.133144 + 0.991097i \(0.457493\pi\)
\(54\) 0 0
\(55\) −3.68774 + 4.61088i −0.497255 + 0.621732i
\(56\) 0 0
\(57\) 7.73862 + 7.73862i 1.02501 + 1.02501i
\(58\) 0 0
\(59\) 2.42164 0.315270 0.157635 0.987497i \(-0.449613\pi\)
0.157635 + 0.987497i \(0.449613\pi\)
\(60\) 0 0
\(61\) −0.875552 −0.112103 −0.0560515 0.998428i \(-0.517851\pi\)
−0.0560515 + 0.998428i \(0.517851\pi\)
\(62\) 0 0
\(63\) −2.72360 2.72360i −0.343142 0.343142i
\(64\) 0 0
\(65\) 11.9464 1.32892i 1.48177 0.164832i
\(66\) 0 0
\(67\) 6.37536 6.37536i 0.778874 0.778874i −0.200765 0.979639i \(-0.564343\pi\)
0.979639 + 0.200765i \(0.0643428\pi\)
\(68\) 0 0
\(69\) 2.75233i 0.331342i
\(70\) 0 0
\(71\) 3.01403i 0.357700i −0.983876 0.178850i \(-0.942762\pi\)
0.983876 0.178850i \(-0.0572377\pi\)
\(72\) 0 0
\(73\) −1.95554 + 1.95554i −0.228879 + 0.228879i −0.812224 0.583345i \(-0.801744\pi\)
0.583345 + 0.812224i \(0.301744\pi\)
\(74\) 0 0
\(75\) 6.13188 9.69780i 0.708048 1.11981i
\(76\) 0 0
\(77\) −3.17382 3.17382i −0.361690 0.361690i
\(78\) 0 0
\(79\) 17.1634 1.93103 0.965516 0.260345i \(-0.0838364\pi\)
0.965516 + 0.260345i \(0.0838364\pi\)
\(80\) 0 0
\(81\) 10.6634 1.18482
\(82\) 0 0
\(83\) 12.7110 + 12.7110i 1.39521 + 1.39521i 0.813134 + 0.582076i \(0.197760\pi\)
0.582076 + 0.813134i \(0.302240\pi\)
\(84\) 0 0
\(85\) −0.247216 2.22236i −0.0268143 0.241049i
\(86\) 0 0
\(87\) 6.74475 6.74475i 0.723113 0.723113i
\(88\) 0 0
\(89\) 10.0727i 1.06770i −0.845579 0.533850i \(-0.820745\pi\)
0.845579 0.533850i \(-0.179255\pi\)
\(90\) 0 0
\(91\) 9.13781i 0.957903i
\(92\) 0 0
\(93\) 6.34923 6.34923i 0.658384 0.658384i
\(94\) 0 0
\(95\) −8.32818 6.66080i −0.854454 0.683384i
\(96\) 0 0
\(97\) 2.55854 + 2.55854i 0.259780 + 0.259780i 0.824965 0.565184i \(-0.191195\pi\)
−0.565184 + 0.824965i \(0.691195\pi\)
\(98\) 0 0
\(99\) −5.98295 −0.601309
\(100\) 0 0
\(101\) −10.8276 −1.07739 −0.538693 0.842502i \(-0.681082\pi\)
−0.538693 + 0.842502i \(0.681082\pi\)
\(102\) 0 0
\(103\) −8.82240 8.82240i −0.869297 0.869297i 0.123097 0.992395i \(-0.460717\pi\)
−0.992395 + 0.123097i \(0.960717\pi\)
\(104\) 0 0
\(105\) 6.81183 + 5.44804i 0.664766 + 0.531674i
\(106\) 0 0
\(107\) 1.55754 1.55754i 0.150573 0.150573i −0.627801 0.778374i \(-0.716045\pi\)
0.778374 + 0.627801i \(0.216045\pi\)
\(108\) 0 0
\(109\) 14.4651i 1.38551i 0.721174 + 0.692754i \(0.243603\pi\)
−0.721174 + 0.692754i \(0.756397\pi\)
\(110\) 0 0
\(111\) 14.5183i 1.37801i
\(112\) 0 0
\(113\) 1.97253 1.97253i 0.185560 0.185560i −0.608214 0.793773i \(-0.708114\pi\)
0.793773 + 0.608214i \(0.208114\pi\)
\(114\) 0 0
\(115\) 0.296511 + 2.66550i 0.0276498 + 0.248559i
\(116\) 0 0
\(117\) 8.61282 + 8.61282i 0.796255 + 0.796255i
\(118\) 0 0
\(119\) 1.69989 0.155829
\(120\) 0 0
\(121\) 4.02806 0.366187
\(122\) 0 0
\(123\) 10.1573 + 10.1573i 0.915851 + 0.915851i
\(124\) 0 0
\(125\) −4.89368 + 10.0525i −0.437704 + 0.899119i
\(126\) 0 0
\(127\) 1.19937 1.19937i 0.106427 0.106427i −0.651888 0.758315i \(-0.726023\pi\)
0.758315 + 0.651888i \(0.226023\pi\)
\(128\) 0 0
\(129\) 24.6317i 2.16870i
\(130\) 0 0
\(131\) 14.3026i 1.24962i 0.780776 + 0.624812i \(0.214824\pi\)
−0.780776 + 0.624812i \(0.785176\pi\)
\(132\) 0 0
\(133\) 5.73256 5.73256i 0.497076 0.497076i
\(134\) 0 0
\(135\) −3.74380 + 0.416461i −0.322215 + 0.0358433i
\(136\) 0 0
\(137\) 10.1291 + 10.1291i 0.865387 + 0.865387i 0.991958 0.126570i \(-0.0403970\pi\)
−0.126570 + 0.991958i \(0.540397\pi\)
\(138\) 0 0
\(139\) −16.0334 −1.35994 −0.679969 0.733241i \(-0.738007\pi\)
−0.679969 + 0.733241i \(0.738007\pi\)
\(140\) 0 0
\(141\) −22.0815 −1.85959
\(142\) 0 0
\(143\) 10.0365 + 10.0365i 0.839297 + 0.839297i
\(144\) 0 0
\(145\) −5.80535 + 7.25859i −0.482108 + 0.602793i
\(146\) 0 0
\(147\) 6.66964 6.66964i 0.550103 0.550103i
\(148\) 0 0
\(149\) 3.60173i 0.295065i 0.989057 + 0.147533i \(0.0471332\pi\)
−0.989057 + 0.147533i \(0.952867\pi\)
\(150\) 0 0
\(151\) 8.44607i 0.687331i 0.939092 + 0.343666i \(0.111669\pi\)
−0.939092 + 0.343666i \(0.888331\pi\)
\(152\) 0 0
\(153\) 1.60223 1.60223i 0.129532 0.129532i
\(154\) 0 0
\(155\) −5.46492 + 6.83294i −0.438953 + 0.548835i
\(156\) 0 0
\(157\) 10.8937 + 10.8937i 0.869415 + 0.869415i 0.992408 0.122993i \(-0.0392491\pi\)
−0.122993 + 0.992408i \(0.539249\pi\)
\(158\) 0 0
\(159\) 20.2699 1.60751
\(160\) 0 0
\(161\) −2.03885 −0.160684
\(162\) 0 0
\(163\) −3.49398 3.49398i −0.273670 0.273670i 0.556906 0.830576i \(-0.311988\pi\)
−0.830576 + 0.556906i \(0.811988\pi\)
\(164\) 0 0
\(165\) 13.4656 1.49792i 1.04830 0.116613i
\(166\) 0 0
\(167\) 0.829798 0.829798i 0.0642117 0.0642117i −0.674272 0.738483i \(-0.735542\pi\)
0.738483 + 0.674272i \(0.235542\pi\)
\(168\) 0 0
\(169\) 15.8964i 1.22280i
\(170\) 0 0
\(171\) 10.8064i 0.826387i
\(172\) 0 0
\(173\) −2.62725 + 2.62725i −0.199746 + 0.199746i −0.799891 0.600145i \(-0.795110\pi\)
0.600145 + 0.799891i \(0.295110\pi\)
\(174\) 0 0
\(175\) −7.18386 4.54232i −0.543049 0.343367i
\(176\) 0 0
\(177\) −3.92943 3.92943i −0.295354 0.295354i
\(178\) 0 0
\(179\) −13.2509 −0.990417 −0.495209 0.868774i \(-0.664908\pi\)
−0.495209 + 0.868774i \(0.664908\pi\)
\(180\) 0 0
\(181\) −6.88026 −0.511406 −0.255703 0.966755i \(-0.582307\pi\)
−0.255703 + 0.966755i \(0.582307\pi\)
\(182\) 0 0
\(183\) 1.42070 + 1.42070i 0.105021 + 0.105021i
\(184\) 0 0
\(185\) 1.56407 + 14.0603i 0.114993 + 1.03373i
\(186\) 0 0
\(187\) 1.86708 1.86708i 0.136534 0.136534i
\(188\) 0 0
\(189\) 2.86364i 0.208299i
\(190\) 0 0
\(191\) 5.90023i 0.426925i 0.976951 + 0.213463i \(0.0684742\pi\)
−0.976951 + 0.213463i \(0.931526\pi\)
\(192\) 0 0
\(193\) 10.5763 10.5763i 0.761298 0.761298i −0.215259 0.976557i \(-0.569060\pi\)
0.976557 + 0.215259i \(0.0690596\pi\)
\(194\) 0 0
\(195\) −21.5410 17.2283i −1.54258 1.23374i
\(196\) 0 0
\(197\) 3.61519 + 3.61519i 0.257572 + 0.257572i 0.824066 0.566494i \(-0.191701\pi\)
−0.566494 + 0.824066i \(0.691701\pi\)
\(198\) 0 0
\(199\) 7.33590 0.520028 0.260014 0.965605i \(-0.416273\pi\)
0.260014 + 0.965605i \(0.416273\pi\)
\(200\) 0 0
\(201\) −20.6898 −1.45934
\(202\) 0 0
\(203\) −4.99632 4.99632i −0.350673 0.350673i
\(204\) 0 0
\(205\) −10.9311 8.74260i −0.763461 0.610609i
\(206\) 0 0
\(207\) −1.92171 + 1.92171i −0.133568 + 0.133568i
\(208\) 0 0
\(209\) 12.5927i 0.871057i
\(210\) 0 0
\(211\) 6.52445i 0.449162i 0.974455 + 0.224581i \(0.0721013\pi\)
−0.974455 + 0.224581i \(0.927899\pi\)
\(212\) 0 0
\(213\) −4.89068 + 4.89068i −0.335104 + 0.335104i
\(214\) 0 0
\(215\) 2.65360 + 23.8547i 0.180974 + 1.62688i
\(216\) 0 0
\(217\) −4.70333 4.70333i −0.319283 0.319283i
\(218\) 0 0
\(219\) 6.34627 0.428841
\(220\) 0 0
\(221\) −5.37553 −0.361598
\(222\) 0 0
\(223\) −17.8237 17.8237i −1.19356 1.19356i −0.976060 0.217500i \(-0.930210\pi\)
−0.217500 0.976060i \(-0.569790\pi\)
\(224\) 0 0
\(225\) −11.0525 + 2.48977i −0.736832 + 0.165985i
\(226\) 0 0
\(227\) −5.06497 + 5.06497i −0.336174 + 0.336174i −0.854925 0.518751i \(-0.826397\pi\)
0.518751 + 0.854925i \(0.326397\pi\)
\(228\) 0 0
\(229\) 3.52529i 0.232958i −0.993193 0.116479i \(-0.962839\pi\)
0.993193 0.116479i \(-0.0371607\pi\)
\(230\) 0 0
\(231\) 10.2999i 0.677684i
\(232\) 0 0
\(233\) 12.7321 12.7321i 0.834110 0.834110i −0.153966 0.988076i \(-0.549205\pi\)
0.988076 + 0.153966i \(0.0492046\pi\)
\(234\) 0 0
\(235\) 21.3849 2.37886i 1.39499 0.155180i
\(236\) 0 0
\(237\) −27.8499 27.8499i −1.80905 1.80905i
\(238\) 0 0
\(239\) −3.68172 −0.238151 −0.119075 0.992885i \(-0.537993\pi\)
−0.119075 + 0.992885i \(0.537993\pi\)
\(240\) 0 0
\(241\) −6.53949 −0.421246 −0.210623 0.977567i \(-0.567549\pi\)
−0.210623 + 0.977567i \(0.567549\pi\)
\(242\) 0 0
\(243\) −13.7292 13.7292i −0.880731 0.880731i
\(244\) 0 0
\(245\) −5.74071 + 7.17776i −0.366760 + 0.458571i
\(246\) 0 0
\(247\) −18.1280 + 18.1280i −1.15346 + 1.15346i
\(248\) 0 0
\(249\) 41.2505i 2.61415i
\(250\) 0 0
\(251\) 14.2752i 0.901044i −0.892765 0.450522i \(-0.851238\pi\)
0.892765 0.450522i \(-0.148762\pi\)
\(252\) 0 0
\(253\) −2.23937 + 2.23937i −0.140788 + 0.140788i
\(254\) 0 0
\(255\) −3.20494 + 4.00722i −0.200701 + 0.250942i
\(256\) 0 0
\(257\) −12.0214 12.0214i −0.749873 0.749873i 0.224583 0.974455i \(-0.427898\pi\)
−0.974455 + 0.224583i \(0.927898\pi\)
\(258\) 0 0
\(259\) −10.7547 −0.668267
\(260\) 0 0
\(261\) −9.41853 −0.582993
\(262\) 0 0
\(263\) −21.6788 21.6788i −1.33677 1.33677i −0.899167 0.437606i \(-0.855826\pi\)
−0.437606 0.899167i \(-0.644174\pi\)
\(264\) 0 0
\(265\) −19.6305 + 2.18370i −1.20589 + 0.134144i
\(266\) 0 0
\(267\) −16.3443 + 16.3443i −1.00025 + 1.00025i
\(268\) 0 0
\(269\) 14.0117i 0.854306i 0.904179 + 0.427153i \(0.140483\pi\)
−0.904179 + 0.427153i \(0.859517\pi\)
\(270\) 0 0
\(271\) 13.4228i 0.815378i 0.913121 + 0.407689i \(0.133665\pi\)
−0.913121 + 0.407689i \(0.866335\pi\)
\(272\) 0 0
\(273\) 14.8273 14.8273i 0.897391 0.897391i
\(274\) 0 0
\(275\) −12.8795 + 2.90133i −0.776661 + 0.174957i
\(276\) 0 0
\(277\) 5.09588 + 5.09588i 0.306181 + 0.306181i 0.843426 0.537245i \(-0.180535\pi\)
−0.537245 + 0.843426i \(0.680535\pi\)
\(278\) 0 0
\(279\) −8.86622 −0.530807
\(280\) 0 0
\(281\) −3.76441 −0.224566 −0.112283 0.993676i \(-0.535816\pi\)
−0.112283 + 0.993676i \(0.535816\pi\)
\(282\) 0 0
\(283\) 16.3366 + 16.3366i 0.971111 + 0.971111i 0.999594 0.0284835i \(-0.00906781\pi\)
−0.0284835 + 0.999594i \(0.509068\pi\)
\(284\) 0 0
\(285\) 2.70555 + 24.3217i 0.160263 + 1.44069i
\(286\) 0 0
\(287\) 7.52423 7.52423i 0.444141 0.444141i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 8.30315i 0.486739i
\(292\) 0 0
\(293\) −11.4684 + 11.4684i −0.669990 + 0.669990i −0.957714 0.287723i \(-0.907102\pi\)
0.287723 + 0.957714i \(0.407102\pi\)
\(294\) 0 0
\(295\) 4.22880 + 3.38215i 0.246210 + 0.196916i
\(296\) 0 0
\(297\) −3.14528 3.14528i −0.182508 0.182508i
\(298\) 0 0
\(299\) 6.44743 0.372864
\(300\) 0 0
\(301\) −18.2465 −1.05171
\(302\) 0 0
\(303\) 17.5692 + 17.5692i 1.00933 + 1.00933i
\(304\) 0 0
\(305\) −1.52894 1.22283i −0.0875467 0.0700190i
\(306\) 0 0
\(307\) 0.180986 0.180986i 0.0103294 0.0103294i −0.701923 0.712253i \(-0.747675\pi\)
0.712253 + 0.701923i \(0.247675\pi\)
\(308\) 0 0
\(309\) 28.6311i 1.62877i
\(310\) 0 0
\(311\) 11.8937i 0.674432i 0.941427 + 0.337216i \(0.109485\pi\)
−0.941427 + 0.337216i \(0.890515\pi\)
\(312\) 0 0
\(313\) 8.10613 8.10613i 0.458186 0.458186i −0.439874 0.898060i \(-0.644977\pi\)
0.898060 + 0.439874i \(0.144977\pi\)
\(314\) 0 0
\(315\) −0.952216 8.55999i −0.0536513 0.482301i
\(316\) 0 0
\(317\) −15.4386 15.4386i −0.867120 0.867120i 0.125032 0.992153i \(-0.460097\pi\)
−0.992153 + 0.125032i \(0.960097\pi\)
\(318\) 0 0
\(319\) −10.9754 −0.614506
\(320\) 0 0
\(321\) −5.05465 −0.282123
\(322\) 0 0
\(323\) 3.37231 + 3.37231i 0.187641 + 0.187641i
\(324\) 0 0
\(325\) 22.7174 + 14.3641i 1.26014 + 0.796778i
\(326\) 0 0
\(327\) 23.4716 23.4716i 1.29798 1.29798i
\(328\) 0 0
\(329\) 16.3573i 0.901809i
\(330\) 0 0
\(331\) 21.3694i 1.17457i −0.809380 0.587285i \(-0.800197\pi\)
0.809380 0.587285i \(-0.199803\pi\)
\(332\) 0 0
\(333\) −10.1369 + 10.1369i −0.555496 + 0.555496i
\(334\) 0 0
\(335\) 20.0371 2.22893i 1.09474 0.121779i
\(336\) 0 0
\(337\) −16.9583 16.9583i −0.923776 0.923776i 0.0735176 0.997294i \(-0.476577\pi\)
−0.997294 + 0.0735176i \(0.976577\pi\)
\(338\) 0 0
\(339\) −6.40138 −0.347675
\(340\) 0 0
\(341\) −10.3318 −0.559499
\(342\) 0 0
\(343\) −13.3547 13.3547i −0.721086 0.721086i
\(344\) 0 0
\(345\) 3.84401 4.80627i 0.206954 0.258761i
\(346\) 0 0
\(347\) 22.0044 22.0044i 1.18126 1.18126i 0.201841 0.979418i \(-0.435307\pi\)
0.979418 0.201841i \(-0.0646925\pi\)
\(348\) 0 0
\(349\) 34.1564i 1.82835i −0.405321 0.914174i \(-0.632840\pi\)
0.405321 0.914174i \(-0.367160\pi\)
\(350\) 0 0
\(351\) 9.05565i 0.483355i
\(352\) 0 0
\(353\) −10.8601 + 10.8601i −0.578025 + 0.578025i −0.934359 0.356333i \(-0.884027\pi\)
0.356333 + 0.934359i \(0.384027\pi\)
\(354\) 0 0
\(355\) 4.20951 5.26327i 0.223418 0.279345i
\(356\) 0 0
\(357\) −2.75830 2.75830i −0.145985 0.145985i
\(358\) 0 0
\(359\) −3.66807 −0.193593 −0.0967966 0.995304i \(-0.530860\pi\)
−0.0967966 + 0.995304i \(0.530860\pi\)
\(360\) 0 0
\(361\) 3.74499 0.197105
\(362\) 0 0
\(363\) −6.53607 6.53607i −0.343055 0.343055i
\(364\) 0 0
\(365\) −6.14607 + 0.683690i −0.321700 + 0.0357860i
\(366\) 0 0
\(367\) −7.05281 + 7.05281i −0.368154 + 0.368154i −0.866804 0.498650i \(-0.833829\pi\)
0.498650 + 0.866804i \(0.333829\pi\)
\(368\) 0 0
\(369\) 14.1839i 0.738383i
\(370\) 0 0
\(371\) 15.0154i 0.779560i
\(372\) 0 0
\(373\) 26.9600 26.9600i 1.39594 1.39594i 0.584649 0.811286i \(-0.301232\pi\)
0.811286 0.584649i \(-0.198768\pi\)
\(374\) 0 0
\(375\) 24.2521 8.37081i 1.25237 0.432267i
\(376\) 0 0
\(377\) 15.7998 + 15.7998i 0.813731 + 0.813731i
\(378\) 0 0
\(379\) 17.9215 0.920566 0.460283 0.887772i \(-0.347748\pi\)
0.460283 + 0.887772i \(0.347748\pi\)
\(380\) 0 0
\(381\) −3.89229 −0.199408
\(382\) 0 0
\(383\) −8.16744 8.16744i −0.417337 0.417337i 0.466948 0.884285i \(-0.345354\pi\)
−0.884285 + 0.466948i \(0.845354\pi\)
\(384\) 0 0
\(385\) −1.10962 9.97497i −0.0565514 0.508372i
\(386\) 0 0
\(387\) −17.1982 + 17.1982i −0.874233 + 0.874233i
\(388\) 0 0
\(389\) 8.86301i 0.449372i 0.974431 + 0.224686i \(0.0721357\pi\)
−0.974431 + 0.224686i \(0.927864\pi\)
\(390\) 0 0
\(391\) 1.19940i 0.0606563i
\(392\) 0 0
\(393\) 23.2079 23.2079i 1.17068 1.17068i
\(394\) 0 0
\(395\) 29.9716 + 23.9710i 1.50804 + 1.20611i
\(396\) 0 0
\(397\) 0.768547 + 0.768547i 0.0385722 + 0.0385722i 0.726130 0.687558i \(-0.241317\pi\)
−0.687558 + 0.726130i \(0.741317\pi\)
\(398\) 0 0
\(399\) −18.6037 −0.931350
\(400\) 0 0
\(401\) −35.0311 −1.74937 −0.874686 0.484690i \(-0.838932\pi\)
−0.874686 + 0.484690i \(0.838932\pi\)
\(402\) 0 0
\(403\) 14.8733 + 14.8733i 0.740891 + 0.740891i
\(404\) 0 0
\(405\) 18.6210 + 14.8929i 0.925286 + 0.740036i
\(406\) 0 0
\(407\) −11.8125 + 11.8125i −0.585523 + 0.585523i
\(408\) 0 0
\(409\) 35.5481i 1.75774i −0.477063 0.878869i \(-0.658299\pi\)
0.477063 0.878869i \(-0.341701\pi\)
\(410\) 0 0
\(411\) 32.8717i 1.62144i
\(412\) 0 0
\(413\) −2.91082 + 2.91082i −0.143232 + 0.143232i
\(414\) 0 0
\(415\) 4.44396 + 39.9492i 0.218146 + 1.96103i
\(416\) 0 0
\(417\) 26.0164 + 26.0164i 1.27403 + 1.27403i
\(418\) 0 0
\(419\) 26.9073 1.31451 0.657254 0.753669i \(-0.271718\pi\)
0.657254 + 0.753669i \(0.271718\pi\)
\(420\) 0 0
\(421\) −25.3667 −1.23630 −0.618148 0.786061i \(-0.712117\pi\)
−0.618148 + 0.786061i \(0.712117\pi\)
\(422\) 0 0
\(423\) 15.4176 + 15.4176i 0.749627 + 0.749627i
\(424\) 0 0
\(425\) 2.67213 4.22608i 0.129617 0.204995i
\(426\) 0 0
\(427\) 1.05242 1.05242i 0.0509300 0.0509300i
\(428\) 0 0
\(429\) 32.5712i 1.57255i
\(430\) 0 0
\(431\) 11.7901i 0.567908i 0.958838 + 0.283954i \(0.0916462\pi\)
−0.958838 + 0.283954i \(0.908354\pi\)
\(432\) 0 0
\(433\) 9.11541 9.11541i 0.438059 0.438059i −0.453300 0.891358i \(-0.649753\pi\)
0.891358 + 0.453300i \(0.149753\pi\)
\(434\) 0 0
\(435\) 21.1980 2.35807i 1.01637 0.113061i
\(436\) 0 0
\(437\) −4.04476 4.04476i −0.193487 0.193487i
\(438\) 0 0
\(439\) 33.3994 1.59407 0.797034 0.603934i \(-0.206401\pi\)
0.797034 + 0.603934i \(0.206401\pi\)
\(440\) 0 0
\(441\) −9.31366 −0.443508
\(442\) 0 0
\(443\) −4.28922 4.28922i −0.203787 0.203787i 0.597833 0.801620i \(-0.296028\pi\)
−0.801620 + 0.597833i \(0.796028\pi\)
\(444\) 0 0
\(445\) 14.0679 17.5894i 0.666881 0.833819i
\(446\) 0 0
\(447\) 5.84430 5.84430i 0.276426 0.276426i
\(448\) 0 0
\(449\) 31.4310i 1.48332i 0.670777 + 0.741659i \(0.265961\pi\)
−0.670777 + 0.741659i \(0.734039\pi\)
\(450\) 0 0
\(451\) 16.5285i 0.778297i
\(452\) 0 0
\(453\) 13.7049 13.7049i 0.643912 0.643912i
\(454\) 0 0
\(455\) −12.7622 + 15.9569i −0.598302 + 0.748073i
\(456\) 0 0
\(457\) 25.5007 + 25.5007i 1.19287 + 1.19287i 0.976257 + 0.216614i \(0.0695014\pi\)
0.216614 + 0.976257i \(0.430499\pi\)
\(458\) 0 0
\(459\) 1.68460 0.0786306
\(460\) 0 0
\(461\) −27.0350 −1.25915 −0.629573 0.776942i \(-0.716770\pi\)
−0.629573 + 0.776942i \(0.716770\pi\)
\(462\) 0 0
\(463\) 12.1613 + 12.1613i 0.565185 + 0.565185i 0.930776 0.365591i \(-0.119133\pi\)
−0.365591 + 0.930776i \(0.619133\pi\)
\(464\) 0 0
\(465\) 19.9549 2.21979i 0.925388 0.102940i
\(466\) 0 0
\(467\) −28.9190 + 28.9190i −1.33821 + 1.33821i −0.440422 + 0.897791i \(0.645171\pi\)
−0.897791 + 0.440422i \(0.854829\pi\)
\(468\) 0 0
\(469\) 15.3264i 0.707707i
\(470\) 0 0
\(471\) 35.3531i 1.62899i
\(472\) 0 0
\(473\) −20.0411 + 20.0411i −0.921490 + 0.921490i
\(474\) 0 0
\(475\) −5.24039 23.2629i −0.240446 1.06738i
\(476\) 0 0
\(477\) −14.1527 14.1527i −0.648008 0.648008i
\(478\) 0 0
\(479\) 8.00770 0.365881 0.182941 0.983124i \(-0.441438\pi\)
0.182941 + 0.983124i \(0.441438\pi\)
\(480\) 0 0
\(481\) 34.0096 1.55070
\(482\) 0 0
\(483\) 3.30831 + 3.30831i 0.150533 + 0.150533i
\(484\) 0 0
\(485\) 0.894507 + 8.04121i 0.0406175 + 0.365133i
\(486\) 0 0
\(487\) −18.6236 + 18.6236i −0.843918 + 0.843918i −0.989366 0.145448i \(-0.953538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(488\) 0 0
\(489\) 11.3389i 0.512764i
\(490\) 0 0
\(491\) 41.5559i 1.87539i 0.347456 + 0.937696i \(0.387046\pi\)
−0.347456 + 0.937696i \(0.612954\pi\)
\(492\) 0 0
\(493\) 2.93920 2.93920i 0.132375 0.132375i
\(494\) 0 0
\(495\) −10.4478 8.35601i −0.469591 0.375575i
\(496\) 0 0
\(497\) 3.62288 + 3.62288i 0.162508 + 0.162508i
\(498\) 0 0
\(499\) 32.0111 1.43301 0.716506 0.697581i \(-0.245740\pi\)
0.716506 + 0.697581i \(0.245740\pi\)
\(500\) 0 0
\(501\) −2.69292 −0.120311
\(502\) 0 0
\(503\) −26.7786 26.7786i −1.19400 1.19400i −0.975934 0.218067i \(-0.930025\pi\)
−0.218067 0.975934i \(-0.569975\pi\)
\(504\) 0 0
\(505\) −18.9077 15.1222i −0.841382 0.672930i
\(506\) 0 0
\(507\) −25.7940 + 25.7940i −1.14555 + 1.14555i
\(508\) 0 0
\(509\) 0.975619i 0.0432436i −0.999766 0.0216218i \(-0.993117\pi\)
0.999766 0.0216218i \(-0.00688296\pi\)
\(510\) 0 0
\(511\) 4.70114i 0.207966i
\(512\) 0 0
\(513\) 5.68101 5.68101i 0.250823 0.250823i
\(514\) 0 0
\(515\) −3.08445 27.7279i −0.135917 1.22184i
\(516\) 0 0
\(517\) 17.9661 + 17.9661i 0.790148 + 0.790148i
\(518\) 0 0
\(519\) 8.52614 0.374256
\(520\) 0 0
\(521\) 31.9559 1.40001 0.700006 0.714136i \(-0.253180\pi\)
0.700006 + 0.714136i \(0.253180\pi\)
\(522\) 0 0
\(523\) −20.8299 20.8299i −0.910829 0.910829i 0.0855081 0.996337i \(-0.472749\pi\)
−0.996337 + 0.0855081i \(0.972749\pi\)
\(524\) 0 0
\(525\) 4.28625 + 19.0273i 0.187067 + 0.830420i
\(526\) 0 0
\(527\) 2.76685 2.76685i 0.120526 0.120526i
\(528\) 0 0
\(529\) 21.5614i 0.937454i
\(530\) 0 0
\(531\) 5.48716i 0.238123i
\(532\) 0 0
\(533\) −23.7938 + 23.7938i −1.03062 + 1.03062i
\(534\) 0 0
\(535\) 4.89519 0.544543i 0.211638 0.0235426i
\(536\) 0 0
\(537\) 21.5013 + 21.5013i 0.927851 + 0.927851i
\(538\) 0 0
\(539\) −10.8532 −0.467481
\(540\) 0 0
\(541\) 1.41989 0.0610460 0.0305230 0.999534i \(-0.490283\pi\)
0.0305230 + 0.999534i \(0.490283\pi\)
\(542\) 0 0
\(543\) 11.1642 + 11.1642i 0.479100 + 0.479100i
\(544\) 0 0
\(545\) −20.2025 + 25.2598i −0.865382 + 1.08201i
\(546\) 0 0
\(547\) 3.72598 3.72598i 0.159311 0.159311i −0.622950 0.782262i \(-0.714066\pi\)
0.782262 + 0.622950i \(0.214066\pi\)
\(548\) 0 0
\(549\) 1.98390i 0.0846710i
\(550\) 0 0
\(551\) 19.8238i 0.844524i
\(552\) 0 0
\(553\) −20.6304 + 20.6304i −0.877295 + 0.877295i
\(554\) 0 0
\(555\) 20.2768 25.3526i 0.860702 1.07616i
\(556\) 0 0
\(557\) 8.92785 + 8.92785i 0.378285 + 0.378285i 0.870483 0.492198i \(-0.163806\pi\)
−0.492198 + 0.870483i \(0.663806\pi\)
\(558\) 0 0
\(559\) 57.7007 2.44048
\(560\) 0 0
\(561\) −6.05916 −0.255818
\(562\) 0 0
\(563\) 4.73075 + 4.73075i 0.199377 + 0.199377i 0.799733 0.600356i \(-0.204974\pi\)
−0.600356 + 0.799733i \(0.704974\pi\)
\(564\) 0 0
\(565\) 6.19944 0.689627i 0.260812 0.0290128i
\(566\) 0 0
\(567\) −12.8175 + 12.8175i −0.538283 + 0.538283i
\(568\) 0 0
\(569\) 10.3040i 0.431965i −0.976397 0.215982i \(-0.930705\pi\)
0.976397 0.215982i \(-0.0692954\pi\)
\(570\) 0 0
\(571\) 15.0575i 0.630138i −0.949069 0.315069i \(-0.897972\pi\)
0.949069 0.315069i \(-0.102028\pi\)
\(572\) 0 0
\(573\) 9.57391 9.57391i 0.399956 0.399956i
\(574\) 0 0
\(575\) −3.20496 + 5.06876i −0.133656 + 0.211382i
\(576\) 0 0
\(577\) −15.5222 15.5222i −0.646199 0.646199i 0.305874 0.952072i \(-0.401052\pi\)
−0.952072 + 0.305874i \(0.901052\pi\)
\(578\) 0 0
\(579\) −34.3229 −1.42641
\(580\) 0 0
\(581\) −30.5572 −1.26773
\(582\) 0 0
\(583\) −16.4922 16.4922i −0.683036 0.683036i
\(584\) 0 0
\(585\) 3.01118 + 27.0692i 0.124497 + 1.11917i
\(586\) 0 0
\(587\) 12.8730 12.8730i 0.531327 0.531327i −0.389640 0.920967i \(-0.627401\pi\)
0.920967 + 0.389640i \(0.127401\pi\)
\(588\) 0 0
\(589\) 18.6613i 0.768927i
\(590\) 0 0
\(591\) 11.7323i 0.482601i
\(592\) 0 0
\(593\) −20.4257 + 20.4257i −0.838785 + 0.838785i −0.988699 0.149914i \(-0.952100\pi\)
0.149914 + 0.988699i \(0.452100\pi\)
\(594\) 0 0
\(595\) 2.96844 + 2.37413i 0.121694 + 0.0973298i
\(596\) 0 0
\(597\) −11.9035 11.9035i −0.487177 0.487177i
\(598\) 0 0
\(599\) −36.0087 −1.47128 −0.735639 0.677374i \(-0.763118\pi\)
−0.735639 + 0.677374i \(0.763118\pi\)
\(600\) 0 0
\(601\) −1.99521 −0.0813865 −0.0406932 0.999172i \(-0.512957\pi\)
−0.0406932 + 0.999172i \(0.512957\pi\)
\(602\) 0 0
\(603\) 14.4459 + 14.4459i 0.588281 + 0.588281i
\(604\) 0 0
\(605\) 7.03401 + 5.62574i 0.285973 + 0.228719i
\(606\) 0 0
\(607\) 7.52888 7.52888i 0.305588 0.305588i −0.537607 0.843195i \(-0.680672\pi\)
0.843195 + 0.537607i \(0.180672\pi\)
\(608\) 0 0
\(609\) 16.2144i 0.657041i
\(610\) 0 0
\(611\) 51.7266i 2.09263i
\(612\) 0 0
\(613\) 8.03392 8.03392i 0.324487 0.324487i −0.525999 0.850485i \(-0.676308\pi\)
0.850485 + 0.525999i \(0.176308\pi\)
\(614\) 0 0
\(615\) 3.55115 + 31.9232i 0.143196 + 1.28727i
\(616\) 0 0
\(617\) 7.60146 + 7.60146i 0.306023 + 0.306023i 0.843365 0.537342i \(-0.180571\pi\)
−0.537342 + 0.843365i \(0.680571\pi\)
\(618\) 0 0
\(619\) −37.9897 −1.52694 −0.763468 0.645846i \(-0.776505\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(620\) 0 0
\(621\) −2.02052 −0.0810806
\(622\) 0 0
\(623\) 12.1074 + 12.1074i 0.485072 + 0.485072i
\(624\) 0 0
\(625\) −22.5853 + 10.7194i −0.903410 + 0.428778i
\(626\) 0 0
\(627\) −20.4334 + 20.4334i −0.816031 + 0.816031i
\(628\) 0 0
\(629\) 6.32673i 0.252263i
\(630\) 0 0
\(631\) 12.7035i 0.505718i 0.967503 + 0.252859i \(0.0813708\pi\)
−0.967503 + 0.252859i \(0.918629\pi\)
\(632\) 0 0
\(633\) 10.5868 10.5868i 0.420788 0.420788i
\(634\) 0 0
\(635\) 3.76950 0.419320i 0.149588 0.0166402i
\(636\) 0 0
\(637\) 15.6239 + 15.6239i 0.619040 + 0.619040i
\(638\) 0 0
\(639\) 6.82947 0.270169
\(640\) 0 0
\(641\) −16.0173 −0.632643 −0.316322 0.948652i \(-0.602448\pi\)
−0.316322 + 0.948652i \(0.602448\pi\)
\(642\) 0 0
\(643\) −26.9924 26.9924i −1.06448 1.06448i −0.997773 0.0667042i \(-0.978752\pi\)
−0.0667042 0.997773i \(-0.521248\pi\)
\(644\) 0 0
\(645\) 34.4016 43.0133i 1.35456 1.69365i
\(646\) 0 0
\(647\) −12.3728 + 12.3728i −0.486424 + 0.486424i −0.907176 0.420752i \(-0.861766\pi\)
0.420752 + 0.907176i \(0.361766\pi\)
\(648\) 0 0
\(649\) 6.39420i 0.250994i
\(650\) 0 0
\(651\) 15.2636i 0.598227i
\(652\) 0 0
\(653\) 19.4689 19.4689i 0.761879 0.761879i −0.214783 0.976662i \(-0.568904\pi\)
0.976662 + 0.214783i \(0.0689044\pi\)
\(654\) 0 0
\(655\) −19.9755 + 24.9760i −0.780509 + 0.975891i
\(656\) 0 0
\(657\) −4.43105 4.43105i −0.172872 0.172872i
\(658\) 0 0
\(659\) 8.17037 0.318273 0.159136 0.987257i \(-0.449129\pi\)
0.159136 + 0.987257i \(0.449129\pi\)
\(660\) 0 0
\(661\) 47.9393 1.86462 0.932312 0.361655i \(-0.117788\pi\)
0.932312 + 0.361655i \(0.117788\pi\)
\(662\) 0 0
\(663\) 8.72253 + 8.72253i 0.338755 + 0.338755i
\(664\) 0 0
\(665\) 18.0168 2.00419i 0.698662 0.0777193i
\(666\) 0 0
\(667\) −3.52529 + 3.52529i −0.136500 + 0.136500i
\(668\) 0 0
\(669\) 57.8426i 2.23632i
\(670\) 0 0
\(671\) 2.31185i 0.0892479i
\(672\) 0 0
\(673\) 16.0689 16.0689i 0.619410 0.619410i −0.325970 0.945380i \(-0.605691\pi\)
0.945380 + 0.325970i \(0.105691\pi\)
\(674\) 0 0
\(675\) −7.11927 4.50148i −0.274021 0.173262i
\(676\) 0 0
\(677\) −0.872671 0.872671i −0.0335395 0.0335395i 0.690138 0.723678i \(-0.257550\pi\)
−0.723678 + 0.690138i \(0.757550\pi\)
\(678\) 0 0
\(679\) −6.15074 −0.236044
\(680\) 0 0
\(681\) 16.4372 0.629875
\(682\) 0 0
\(683\) 14.5816 + 14.5816i 0.557948 + 0.557948i 0.928723 0.370775i \(-0.120908\pi\)
−0.370775 + 0.928723i \(0.620908\pi\)
\(684\) 0 0
\(685\) 3.54130 + 31.8347i 0.135306 + 1.21634i
\(686\) 0 0
\(687\) −5.72026 + 5.72026i −0.218242 + 0.218242i
\(688\) 0 0
\(689\) 47.4830i 1.80896i
\(690\) 0 0
\(691\) 21.9981i 0.836847i 0.908252 + 0.418423i \(0.137417\pi\)
−0.908252 + 0.418423i \(0.862583\pi\)
\(692\) 0 0
\(693\) 7.19152 7.19152i 0.273183 0.273183i
\(694\) 0 0
\(695\) −27.9985 22.3929i −1.06204 0.849411i
\(696\) 0 0
\(697\) 4.42631 + 4.42631i 0.167658 + 0.167658i
\(698\) 0 0
\(699\) −41.3192 −1.56284
\(700\) 0 0
\(701\) −4.15440 −0.156909 −0.0784547 0.996918i \(-0.524999\pi\)
−0.0784547 + 0.996918i \(0.524999\pi\)
\(702\) 0 0
\(703\) −21.3357 21.3357i −0.804692 0.804692i
\(704\) 0 0
\(705\) −38.5598 30.8398i −1.45225 1.16149i
\(706\) 0 0
\(707\) 13.0148 13.0148i 0.489472 0.489472i
\(708\) 0 0
\(709\) 42.6097i 1.60024i −0.599839 0.800121i \(-0.704769\pi\)
0.599839 0.800121i \(-0.295231\pi\)
\(710\) 0 0
\(711\) 38.8903i 1.45850i
\(712\) 0 0
\(713\) −3.31856 + 3.31856i −0.124281 + 0.124281i
\(714\) 0 0
\(715\) 3.50893 + 31.5437i 0.131227 + 1.17967i
\(716\) 0 0
\(717\) 5.97409 + 5.97409i 0.223107 + 0.223107i
\(718\) 0 0
\(719\) −30.9444 −1.15403 −0.577015 0.816734i \(-0.695783\pi\)
−0.577015 + 0.816734i \(0.695783\pi\)
\(720\) 0 0
\(721\) 21.2091 0.789868
\(722\) 0 0
\(723\) 10.6112 + 10.6112i 0.394635 + 0.394635i
\(724\) 0 0
\(725\) −20.2752 + 4.56737i −0.753003 + 0.169628i
\(726\) 0 0
\(727\) 13.8348 13.8348i 0.513105 0.513105i −0.402371 0.915477i \(-0.631814\pi\)
0.915477 + 0.402371i \(0.131814\pi\)
\(728\) 0 0
\(729\) 12.5649i 0.465365i
\(730\) 0 0
\(731\) 10.7339i 0.397009i
\(732\) 0 0
\(733\) −6.75386 + 6.75386i −0.249459 + 0.249459i −0.820749 0.571289i \(-0.806443\pi\)
0.571289 + 0.820749i \(0.306443\pi\)
\(734\) 0 0
\(735\) 20.9620 2.33182i 0.773194 0.0860103i
\(736\) 0 0
\(737\) 16.8338 + 16.8338i 0.620080 + 0.620080i
\(738\) 0 0
\(739\) −2.36223 −0.0868962 −0.0434481 0.999056i \(-0.513834\pi\)
−0.0434481 + 0.999056i \(0.513834\pi\)
\(740\) 0 0
\(741\) 58.8302 2.16118
\(742\) 0 0
\(743\) −16.1834 16.1834i −0.593710 0.593710i 0.344921 0.938632i \(-0.387906\pi\)
−0.938632 + 0.344921i \(0.887906\pi\)
\(744\) 0 0
\(745\) −5.03032 + 6.28954i −0.184297 + 0.230431i
\(746\) 0 0
\(747\) −28.8016 + 28.8016i −1.05380 + 1.05380i
\(748\) 0 0
\(749\) 3.74434i 0.136815i
\(750\) 0 0
\(751\) 48.2104i 1.75922i −0.475692 0.879612i \(-0.657802\pi\)
0.475692 0.879612i \(-0.342198\pi\)
\(752\) 0 0
\(753\) −23.1635 + 23.1635i −0.844124 + 0.844124i
\(754\) 0 0
\(755\) −11.7961 + 14.7490i −0.429304 + 0.536770i
\(756\) 0 0
\(757\) 27.8759 + 27.8759i 1.01317 + 1.01317i 0.999912 + 0.0132549i \(0.00421930\pi\)
0.0132549 + 0.999912i \(0.495781\pi\)
\(758\) 0 0
\(759\) 7.26737 0.263789
\(760\) 0 0
\(761\) 44.9607 1.62982 0.814912 0.579584i \(-0.196785\pi\)
0.814912 + 0.579584i \(0.196785\pi\)
\(762\) 0 0
\(763\) −17.3871 17.3871i −0.629456 0.629456i
\(764\) 0 0
\(765\) 5.03562 0.560164i 0.182063 0.0202528i
\(766\) 0 0
\(767\) 9.20483 9.20483i 0.332367 0.332367i
\(768\) 0 0
\(769\) 37.8420i 1.36462i −0.731064 0.682308i \(-0.760976\pi\)
0.731064 0.682308i \(-0.239024\pi\)
\(770\) 0 0
\(771\) 39.0126i 1.40500i
\(772\) 0 0
\(773\) 30.4766 30.4766i 1.09617 1.09617i 0.101311 0.994855i \(-0.467696\pi\)
0.994855 0.101311i \(-0.0323036\pi\)
\(774\) 0 0
\(775\) −19.0863 + 4.29953i −0.685599 + 0.154444i
\(776\) 0 0
\(777\) 17.4510 + 17.4510i 0.626052 + 0.626052i
\(778\) 0 0
\(779\) 29.8538 1.06962
\(780\) 0 0
\(781\) 7.95839 0.284773
\(782\) 0 0
\(783\) −4.95140 4.95140i −0.176948 0.176948i
\(784\) 0 0
\(785\) 3.80863 + 34.2378i 0.135936 + 1.22200i
\(786\) 0 0
\(787\) −7.38453 + 7.38453i −0.263230 + 0.263230i −0.826365 0.563135i \(-0.809595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(788\) 0 0
\(789\) 70.3536i 2.50465i
\(790\) 0 0
\(791\) 4.74197i 0.168605i
\(792\) 0 0
\(793\) −3.32804 + 3.32804i −0.118182 + 0.118182i
\(794\) 0 0
\(795\) 35.3964 + 28.3097i 1.25538 + 1.00404i
\(796\) 0 0
\(797\) −29.6225 29.6225i −1.04928 1.04928i −0.998721 0.0505617i \(-0.983899\pi\)
−0.0505617 0.998721i \(-0.516101\pi\)
\(798\) 0 0
\(799\) −9.62259 −0.340423
\(800\) 0 0
\(801\) 22.8235 0.806430
\(802\) 0 0
\(803\) −5.16351 5.16351i −0.182216 0.182216i
\(804\) 0 0
\(805\) −3.56035 2.84753i −0.125486 0.100362i
\(806\) 0 0
\(807\) 22.7358 22.7358i 0.800338 0.800338i
\(808\) 0 0
\(809\) 38.4538i 1.35196i 0.736918 + 0.675982i \(0.236280\pi\)
−0.736918 + 0.675982i \(0.763720\pi\)
\(810\) 0 0
\(811\) 10.1069i 0.354902i 0.984130 + 0.177451i \(0.0567851\pi\)
−0.984130 + 0.177451i \(0.943215\pi\)
\(812\) 0 0
\(813\) 21.7803 21.7803i 0.763869 0.763869i
\(814\) 0 0
\(815\) −1.22155 10.9812i −0.0427891 0.384655i
\(816\) 0 0
\(817\) −36.1982 36.1982i −1.26642 1.26642i
\(818\) 0 0
\(819\) −20.7053 −0.723500
\(820\) 0 0
\(821\) 18.7015 0.652685 0.326343 0.945252i \(-0.394184\pi\)
0.326343 + 0.945252i \(0.394184\pi\)
\(822\) 0 0
\(823\) 2.39249 + 2.39249i 0.0833970 + 0.0833970i 0.747575 0.664178i \(-0.231218\pi\)
−0.664178 + 0.747575i \(0.731218\pi\)
\(824\) 0 0
\(825\) 25.6065 + 16.1909i 0.891504 + 0.563694i
\(826\) 0 0
\(827\) −9.10551 + 9.10551i −0.316630 + 0.316630i −0.847471 0.530842i \(-0.821876\pi\)
0.530842 + 0.847471i \(0.321876\pi\)
\(828\) 0 0
\(829\) 33.5611i 1.16563i −0.812606 0.582813i \(-0.801952\pi\)
0.812606 0.582813i \(-0.198048\pi\)
\(830\) 0 0
\(831\) 16.5375i 0.573679i
\(832\) 0 0
\(833\) 2.90648 2.90648i 0.100703 0.100703i
\(834\) 0 0
\(835\) 2.60797 0.290111i 0.0902524 0.0100397i
\(836\) 0 0
\(837\) −4.66104 4.66104i −0.161109 0.161109i
\(838\) 0 0
\(839\) 46.0966 1.59143 0.795716 0.605670i \(-0.207095\pi\)
0.795716 + 0.605670i \(0.207095\pi\)
\(840\) 0 0
\(841\) 11.7222 0.404212
\(842\) 0 0
\(843\) 6.10826 + 6.10826i 0.210380 + 0.210380i
\(844\) 0 0
\(845\) 22.2015 27.7591i 0.763754 0.954942i
\(846\) 0 0
\(847\) −4.84174 + 4.84174i −0.166364 + 0.166364i
\(848\) 0 0
\(849\) 53.0167i 1.81953i
\(850\) 0 0
\(851\) 7.58829i 0.260123i
\(852\) 0 0
\(853\) −26.5299 + 26.5299i −0.908367 + 0.908367i −0.996141 0.0877730i \(-0.972025\pi\)
0.0877730 + 0.996141i \(0.472025\pi\)
\(854\) 0 0
\(855\) 15.0926 18.8707i 0.516157 0.645366i
\(856\) 0 0
\(857\) 38.0282 + 38.0282i 1.29902 + 1.29902i 0.929041 + 0.369977i \(0.120634\pi\)
0.369977 + 0.929041i \(0.379366\pi\)
\(858\) 0 0
\(859\) 46.5438 1.58805 0.794027 0.607882i \(-0.207981\pi\)
0.794027 + 0.607882i \(0.207981\pi\)
\(860\) 0 0
\(861\) −24.4182 −0.832169
\(862\) 0 0
\(863\) 11.5399 + 11.5399i 0.392822 + 0.392822i 0.875692 0.482870i \(-0.160406\pi\)
−0.482870 + 0.875692i \(0.660406\pi\)
\(864\) 0 0
\(865\) −8.25717 + 0.918530i −0.280752 + 0.0312309i
\(866\) 0 0
\(867\) 1.62263 1.62263i 0.0551076 0.0551076i
\(868\) 0 0
\(869\) 45.3189i 1.53734i
\(870\) 0 0
\(871\) 48.4665i 1.64222i
\(872\) 0 0
\(873\) −5.79736 + 5.79736i −0.196211 + 0.196211i
\(874\) 0 0
\(875\) −6.20086 17.9653i −0.209627 0.607338i
\(876\) 0 0
\(877\) 10.9661 + 10.9661i 0.370300 + 0.370300i 0.867586 0.497286i \(-0.165670\pi\)
−0.497286 + 0.867586i \(0.665670\pi\)
\(878\) 0 0
\(879\) 37.2180 1.25533
\(880\) 0 0
\(881\) 17.8076 0.599952 0.299976 0.953947i \(-0.403021\pi\)
0.299976 + 0.953947i \(0.403021\pi\)
\(882\) 0 0
\(883\) 22.1027 + 22.1027i 0.743815 + 0.743815i 0.973310 0.229495i \(-0.0737075\pi\)
−0.229495 + 0.973310i \(0.573707\pi\)
\(884\) 0 0
\(885\) −1.37379 12.3498i −0.0461796 0.415134i
\(886\) 0 0
\(887\) 37.4622 37.4622i 1.25786 1.25786i 0.305742 0.952114i \(-0.401095\pi\)
0.952114 0.305742i \(-0.0989045\pi\)
\(888\) 0 0
\(889\) 2.88330i 0.0967028i
\(890\) 0 0
\(891\) 28.1561i 0.943266i
\(892\) 0 0
\(893\) −32.4504 + 32.4504i −1.08591 + 1.08591i
\(894\) 0 0
\(895\) −23.1394 18.5067i −0.773465 0.618610i
\(896\) 0 0
\(897\) −10.4618 10.4618i −0.349310 0.349310i
\(898\) 0 0
\(899\) −16.2646 −0.542456
\(900\) 0 0
\(901\) 8.83316 0.294275
\(902\) 0 0
\(903\) 29.6074 + 29.6074i 0.985274 + 0.985274i
\(904\) 0 0
\(905\) −12.0147 9.60924i −0.399382 0.319422i
\(906\) 0 0
\(907\) −1.54841 + 1.54841i −0.0514140 + 0.0514140i −0.732346 0.680932i \(-0.761575\pi\)
0.680932 + 0.732346i \(0.261575\pi\)
\(908\) 0 0
\(909\) 24.5341i 0.813745i
\(910\) 0 0
\(911\) 41.9628i 1.39029i 0.718870 + 0.695145i \(0.244660\pi\)
−0.718870 + 0.695145i \(0.755340\pi\)
\(912\) 0 0
\(913\) −33.5626 + 33.5626i −1.11076 + 1.11076i
\(914\) 0 0
\(915\) 0.496700 + 4.46511i 0.0164204 + 0.147612i
\(916\) 0 0
\(917\) −17.1918 17.1918i −0.567722 0.567722i
\(918\) 0 0
\(919\) −47.9702 −1.58239 −0.791195 0.611564i \(-0.790541\pi\)
−0.791195 + 0.611564i \(0.790541\pi\)
\(920\) 0 0
\(921\) −0.587349 −0.0193538
\(922\) 0 0
\(923\) −11.4566 11.4566i −0.377098 0.377098i
\(924\) 0 0
\(925\) −16.9059 + 26.7373i −0.555861 + 0.879116i
\(926\) 0 0
\(927\) 19.9906 19.9906i 0.656577 0.656577i
\(928\) 0 0
\(929\) 16.2536i 0.533262i −0.963799 0.266631i \(-0.914089\pi\)
0.963799 0.266631i \(-0.0859106\pi\)
\(930\) 0 0
\(931\) 19.6031i 0.642466i
\(932\) 0 0
\(933\) 19.2992 19.2992i 0.631828 0.631828i
\(934\) 0 0
\(935\) 5.86802 0.652760i 0.191905 0.0213475i
\(936\) 0 0
\(937\) 0.579498 + 0.579498i 0.0189314 + 0.0189314i 0.716509 0.697578i \(-0.245739\pi\)
−0.697578 + 0.716509i \(0.745739\pi\)
\(938\) 0 0
\(939\) −26.3066 −0.858483
\(940\) 0 0
\(941\) −10.6463 −0.347060 −0.173530 0.984829i \(-0.555517\pi\)
−0.173530 + 0.984829i \(0.555517\pi\)
\(942\) 0 0
\(943\) −5.30892 5.30892i −0.172882 0.172882i
\(944\) 0 0
\(945\) 3.99947 5.00064i 0.130103 0.162671i
\(946\) 0 0
\(947\) 17.7246 17.7246i 0.575973 0.575973i −0.357818 0.933791i \(-0.616479\pi\)
0.933791 + 0.357818i \(0.116479\pi\)
\(948\) 0 0
\(949\) 14.8664i 0.482582i
\(950\) 0 0
\(951\) 50.1025i 1.62469i
\(952\) 0 0
\(953\) 20.9430 20.9430i 0.678411 0.678411i −0.281229 0.959641i \(-0.590742\pi\)
0.959641 + 0.281229i \(0.0907421\pi\)
\(954\) 0 0
\(955\) −8.24048 + 10.3033i −0.266656 + 0.333407i
\(956\) 0 0
\(957\) 17.8091 + 17.8091i 0.575687 + 0.575687i
\(958\) 0 0
\(959\) −24.3504 −0.786316
\(960\) 0 0
\(961\) 15.6891 0.506101
\(962\) 0 0
\(963\) 3.52922 + 3.52922i 0.113728 + 0.113728i
\(964\) 0 0
\(965\) 33.2401 3.69764i 1.07004 0.119031i
\(966\) 0 0
\(967\) 11.2472 11.2472i 0.361685 0.361685i −0.502748 0.864433i \(-0.667678\pi\)
0.864433 + 0.502748i \(0.167678\pi\)
\(968\) 0 0
\(969\) 10.9441i 0.351574i
\(970\) 0 0
\(971\) 25.7004i 0.824765i −0.911011 0.412383i \(-0.864697\pi\)
0.911011 0.412383i \(-0.135303\pi\)
\(972\) 0 0
\(973\) 19.2722 19.2722i 0.617840 0.617840i
\(974\) 0 0
\(975\) −13.5543 60.1698i −0.434086 1.92698i
\(976\) 0 0
\(977\) −29.0277 29.0277i −0.928678 0.928678i 0.0689424 0.997621i \(-0.478038\pi\)
−0.997621 + 0.0689424i \(0.978038\pi\)
\(978\) 0 0
\(979\) 26.5963 0.850022
\(980\) 0 0
\(981\) −32.7764 −1.04647
\(982\) 0 0
\(983\) −27.9994 27.9994i −0.893042 0.893042i 0.101766 0.994808i \(-0.467551\pi\)
−0.994808 + 0.101766i \(0.967551\pi\)
\(984\) 0 0
\(985\) 1.26393 + 11.3621i 0.0402721 + 0.362028i
\(986\) 0 0
\(987\) 26.5420 26.5420i 0.844840 0.844840i
\(988\) 0 0
\(989\) 12.8743i 0.409379i
\(990\) 0 0
\(991\) 34.4814i 1.09534i 0.836695 + 0.547669i \(0.184485\pi\)
−0.836695 + 0.547669i \(0.815515\pi\)
\(992\) 0 0
\(993\) −34.6748 + 34.6748i −1.10037 + 1.10037i
\(994\) 0 0
\(995\) 12.8103 + 10.2456i 0.406115 + 0.324807i
\(996\) 0 0
\(997\) −33.3082 33.3082i −1.05488 1.05488i −0.998404 0.0564788i \(-0.982013\pi\)
−0.0564788 0.998404i \(-0.517987\pi\)
\(998\) 0 0
\(999\) −10.6580 −0.337205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bn.a.1327.4 yes 32
4.3 odd 2 inner 1360.2.bn.a.1327.13 yes 32
5.3 odd 4 inner 1360.2.bn.a.783.13 yes 32
20.3 even 4 inner 1360.2.bn.a.783.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1360.2.bn.a.783.4 32 20.3 even 4 inner
1360.2.bn.a.783.13 yes 32 5.3 odd 4 inner
1360.2.bn.a.1327.4 yes 32 1.1 even 1 trivial
1360.2.bn.a.1327.13 yes 32 4.3 odd 2 inner