Properties

Label 1360.2.bn.a.1327.3
Level $1360$
Weight $2$
Character 1360.1327
Analytic conductor $10.860$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1360,2,Mod(783,1360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1360.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bn (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1327.3
Character \(\chi\) \(=\) 1360.1327
Dual form 1360.2.bn.a.783.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.75921 - 1.75921i) q^{3} +(0.152427 - 2.23087i) q^{5} +(-3.52764 + 3.52764i) q^{7} +3.18965i q^{9} +0.109362i q^{11} +(-0.552044 + 0.552044i) q^{13} +(-4.19272 + 3.65642i) q^{15} +(0.707107 + 0.707107i) q^{17} +4.27687 q^{19} +12.4117 q^{21} +(-1.44065 - 1.44065i) q^{23} +(-4.95353 - 0.680089i) q^{25} +(0.333636 - 0.333636i) q^{27} -1.87634i q^{29} +8.59324i q^{31} +(0.192391 - 0.192391i) q^{33} +(7.33198 + 8.40739i) q^{35} +(7.20372 + 7.20372i) q^{37} +1.94232 q^{39} +7.43204 q^{41} +(-3.49344 - 3.49344i) q^{43} +(7.11569 + 0.486189i) q^{45} +(0.532434 - 0.532434i) q^{47} -17.8884i q^{49} -2.48790i q^{51} +(4.27220 - 4.27220i) q^{53} +(0.243973 + 0.0166698i) q^{55} +(-7.52392 - 7.52392i) q^{57} +12.2435 q^{59} -11.6072 q^{61} +(-11.2519 - 11.2519i) q^{63} +(1.14739 + 1.31568i) q^{65} +(-0.0701639 + 0.0701639i) q^{67} +5.06881i q^{69} -13.4448i q^{71} +(0.756996 - 0.756996i) q^{73} +(7.51789 + 9.91073i) q^{75} +(-0.385790 - 0.385790i) q^{77} -2.36101 q^{79} +8.39508 q^{81} +(-2.50801 - 2.50801i) q^{83} +(1.68524 - 1.46968i) q^{85} +(-3.30089 + 3.30089i) q^{87} +3.22396i q^{89} -3.89482i q^{91} +(15.1173 - 15.1173i) q^{93} +(0.651911 - 9.54113i) q^{95} +(4.52718 + 4.52718i) q^{97} -0.348828 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{13} - 16 q^{21} - 24 q^{25} + 8 q^{33} - 16 q^{41} + 24 q^{45} - 16 q^{53} + 32 q^{57} + 16 q^{61} + 56 q^{65} - 8 q^{73} + 40 q^{77} + 32 q^{81} + 56 q^{93} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.75921 1.75921i −1.01568 1.01568i −0.999875 0.0158062i \(-0.994969\pi\)
−0.0158062 0.999875i \(-0.505031\pi\)
\(4\) 0 0
\(5\) 0.152427 2.23087i 0.0681674 0.997674i
\(6\) 0 0
\(7\) −3.52764 + 3.52764i −1.33332 + 1.33332i −0.430941 + 0.902380i \(0.641818\pi\)
−0.902380 + 0.430941i \(0.858182\pi\)
\(8\) 0 0
\(9\) 3.18965i 1.06322i
\(10\) 0 0
\(11\) 0.109362i 0.0329740i 0.999864 + 0.0164870i \(0.00524821\pi\)
−0.999864 + 0.0164870i \(0.994752\pi\)
\(12\) 0 0
\(13\) −0.552044 + 0.552044i −0.153110 + 0.153110i −0.779505 0.626396i \(-0.784529\pi\)
0.626396 + 0.779505i \(0.284529\pi\)
\(14\) 0 0
\(15\) −4.19272 + 3.65642i −1.08256 + 0.944082i
\(16\) 0 0
\(17\) 0.707107 + 0.707107i 0.171499 + 0.171499i
\(18\) 0 0
\(19\) 4.27687 0.981181 0.490591 0.871390i \(-0.336781\pi\)
0.490591 + 0.871390i \(0.336781\pi\)
\(20\) 0 0
\(21\) 12.4117 2.70846
\(22\) 0 0
\(23\) −1.44065 1.44065i −0.300396 0.300396i 0.540773 0.841169i \(-0.318132\pi\)
−0.841169 + 0.540773i \(0.818132\pi\)
\(24\) 0 0
\(25\) −4.95353 0.680089i −0.990706 0.136018i
\(26\) 0 0
\(27\) 0.333636 0.333636i 0.0642082 0.0642082i
\(28\) 0 0
\(29\) 1.87634i 0.348428i −0.984708 0.174214i \(-0.944261\pi\)
0.984708 0.174214i \(-0.0557385\pi\)
\(30\) 0 0
\(31\) 8.59324i 1.54339i 0.635991 + 0.771696i \(0.280591\pi\)
−0.635991 + 0.771696i \(0.719409\pi\)
\(32\) 0 0
\(33\) 0.192391 0.192391i 0.0334910 0.0334910i
\(34\) 0 0
\(35\) 7.33198 + 8.40739i 1.23933 + 1.42111i
\(36\) 0 0
\(37\) 7.20372 + 7.20372i 1.18428 + 1.18428i 0.978623 + 0.205661i \(0.0659345\pi\)
0.205661 + 0.978623i \(0.434066\pi\)
\(38\) 0 0
\(39\) 1.94232 0.311021
\(40\) 0 0
\(41\) 7.43204 1.16069 0.580345 0.814371i \(-0.302918\pi\)
0.580345 + 0.814371i \(0.302918\pi\)
\(42\) 0 0
\(43\) −3.49344 3.49344i −0.532745 0.532745i 0.388644 0.921388i \(-0.372944\pi\)
−0.921388 + 0.388644i \(0.872944\pi\)
\(44\) 0 0
\(45\) 7.11569 + 0.486189i 1.06074 + 0.0724768i
\(46\) 0 0
\(47\) 0.532434 0.532434i 0.0776634 0.0776634i −0.667208 0.744871i \(-0.732511\pi\)
0.744871 + 0.667208i \(0.232511\pi\)
\(48\) 0 0
\(49\) 17.8884i 2.55549i
\(50\) 0 0
\(51\) 2.48790i 0.348376i
\(52\) 0 0
\(53\) 4.27220 4.27220i 0.586832 0.586832i −0.349940 0.936772i \(-0.613798\pi\)
0.936772 + 0.349940i \(0.113798\pi\)
\(54\) 0 0
\(55\) 0.243973 + 0.0166698i 0.0328973 + 0.00224775i
\(56\) 0 0
\(57\) −7.52392 7.52392i −0.996567 0.996567i
\(58\) 0 0
\(59\) 12.2435 1.59396 0.796981 0.604005i \(-0.206429\pi\)
0.796981 + 0.604005i \(0.206429\pi\)
\(60\) 0 0
\(61\) −11.6072 −1.48616 −0.743078 0.669205i \(-0.766635\pi\)
−0.743078 + 0.669205i \(0.766635\pi\)
\(62\) 0 0
\(63\) −11.2519 11.2519i −1.41761 1.41761i
\(64\) 0 0
\(65\) 1.14739 + 1.31568i 0.142316 + 0.163190i
\(66\) 0 0
\(67\) −0.0701639 + 0.0701639i −0.00857189 + 0.00857189i −0.711380 0.702808i \(-0.751929\pi\)
0.702808 + 0.711380i \(0.251929\pi\)
\(68\) 0 0
\(69\) 5.06881i 0.610213i
\(70\) 0 0
\(71\) 13.4448i 1.59561i −0.602917 0.797804i \(-0.705995\pi\)
0.602917 0.797804i \(-0.294005\pi\)
\(72\) 0 0
\(73\) 0.756996 0.756996i 0.0885997 0.0885997i −0.661418 0.750018i \(-0.730045\pi\)
0.750018 + 0.661418i \(0.230045\pi\)
\(74\) 0 0
\(75\) 7.51789 + 9.91073i 0.868091 + 1.14439i
\(76\) 0 0
\(77\) −0.385790 0.385790i −0.0439649 0.0439649i
\(78\) 0 0
\(79\) −2.36101 −0.265634 −0.132817 0.991141i \(-0.542402\pi\)
−0.132817 + 0.991141i \(0.542402\pi\)
\(80\) 0 0
\(81\) 8.39508 0.932787
\(82\) 0 0
\(83\) −2.50801 2.50801i −0.275290 0.275290i 0.555935 0.831226i \(-0.312360\pi\)
−0.831226 + 0.555935i \(0.812360\pi\)
\(84\) 0 0
\(85\) 1.68524 1.46968i 0.182790 0.159409i
\(86\) 0 0
\(87\) −3.30089 + 3.30089i −0.353892 + 0.353892i
\(88\) 0 0
\(89\) 3.22396i 0.341739i 0.985294 + 0.170869i \(0.0546576\pi\)
−0.985294 + 0.170869i \(0.945342\pi\)
\(90\) 0 0
\(91\) 3.89482i 0.408288i
\(92\) 0 0
\(93\) 15.1173 15.1173i 1.56759 1.56759i
\(94\) 0 0
\(95\) 0.651911 9.54113i 0.0668846 0.978899i
\(96\) 0 0
\(97\) 4.52718 + 4.52718i 0.459666 + 0.459666i 0.898546 0.438880i \(-0.144625\pi\)
−0.438880 + 0.898546i \(0.644625\pi\)
\(98\) 0 0
\(99\) −0.348828 −0.0350585
\(100\) 0 0
\(101\) 13.0132 1.29486 0.647432 0.762123i \(-0.275843\pi\)
0.647432 + 0.762123i \(0.275843\pi\)
\(102\) 0 0
\(103\) 7.60481 + 7.60481i 0.749325 + 0.749325i 0.974352 0.225028i \(-0.0722473\pi\)
−0.225028 + 0.974352i \(0.572247\pi\)
\(104\) 0 0
\(105\) 1.89188 27.6889i 0.184629 2.70216i
\(106\) 0 0
\(107\) 4.23466 4.23466i 0.409380 0.409380i −0.472142 0.881522i \(-0.656519\pi\)
0.881522 + 0.472142i \(0.156519\pi\)
\(108\) 0 0
\(109\) 10.1767i 0.974749i 0.873193 + 0.487374i \(0.162045\pi\)
−0.873193 + 0.487374i \(0.837955\pi\)
\(110\) 0 0
\(111\) 25.3457i 2.40571i
\(112\) 0 0
\(113\) −11.2950 + 11.2950i −1.06254 + 1.06254i −0.0646354 + 0.997909i \(0.520588\pi\)
−0.997909 + 0.0646354i \(0.979412\pi\)
\(114\) 0 0
\(115\) −3.43349 + 2.99430i −0.320175 + 0.279220i
\(116\) 0 0
\(117\) −1.76083 1.76083i −0.162789 0.162789i
\(118\) 0 0
\(119\) −4.98883 −0.457325
\(120\) 0 0
\(121\) 10.9880 0.998913
\(122\) 0 0
\(123\) −13.0745 13.0745i −1.17889 1.17889i
\(124\) 0 0
\(125\) −2.27224 + 10.9470i −0.203235 + 0.979130i
\(126\) 0 0
\(127\) 5.84996 5.84996i 0.519100 0.519100i −0.398199 0.917299i \(-0.630365\pi\)
0.917299 + 0.398199i \(0.130365\pi\)
\(128\) 0 0
\(129\) 12.2914i 1.08220i
\(130\) 0 0
\(131\) 16.7142i 1.46033i −0.683270 0.730165i \(-0.739443\pi\)
0.683270 0.730165i \(-0.260557\pi\)
\(132\) 0 0
\(133\) −15.0872 + 15.0872i −1.30823 + 1.30823i
\(134\) 0 0
\(135\) −0.693442 0.795152i −0.0596820 0.0684358i
\(136\) 0 0
\(137\) 9.45271 + 9.45271i 0.807600 + 0.807600i 0.984270 0.176670i \(-0.0565327\pi\)
−0.176670 + 0.984270i \(0.556533\pi\)
\(138\) 0 0
\(139\) 15.3612 1.30292 0.651460 0.758683i \(-0.274157\pi\)
0.651460 + 0.758683i \(0.274157\pi\)
\(140\) 0 0
\(141\) −1.87333 −0.157763
\(142\) 0 0
\(143\) −0.0603728 0.0603728i −0.00504863 0.00504863i
\(144\) 0 0
\(145\) −4.18587 0.286006i −0.347618 0.0237515i
\(146\) 0 0
\(147\) −31.4695 + 31.4695i −2.59556 + 2.59556i
\(148\) 0 0
\(149\) 11.7109i 0.959397i 0.877433 + 0.479699i \(0.159254\pi\)
−0.877433 + 0.479699i \(0.840746\pi\)
\(150\) 0 0
\(151\) 15.5459i 1.26510i 0.774518 + 0.632552i \(0.217993\pi\)
−0.774518 + 0.632552i \(0.782007\pi\)
\(152\) 0 0
\(153\) −2.25542 + 2.25542i −0.182340 + 0.182340i
\(154\) 0 0
\(155\) 19.1704 + 1.30984i 1.53980 + 0.105209i
\(156\) 0 0
\(157\) −14.1273 14.1273i −1.12748 1.12748i −0.990586 0.136893i \(-0.956288\pi\)
−0.136893 0.990586i \(-0.543712\pi\)
\(158\) 0 0
\(159\) −15.0314 −1.19207
\(160\) 0 0
\(161\) 10.1642 0.801049
\(162\) 0 0
\(163\) 4.90171 + 4.90171i 0.383931 + 0.383931i 0.872516 0.488585i \(-0.162487\pi\)
−0.488585 + 0.872516i \(0.662487\pi\)
\(164\) 0 0
\(165\) −0.399874 0.458525i −0.0311301 0.0356961i
\(166\) 0 0
\(167\) −5.13078 + 5.13078i −0.397031 + 0.397031i −0.877185 0.480153i \(-0.840581\pi\)
0.480153 + 0.877185i \(0.340581\pi\)
\(168\) 0 0
\(169\) 12.3905i 0.953115i
\(170\) 0 0
\(171\) 13.6417i 1.04321i
\(172\) 0 0
\(173\) −12.3074 + 12.3074i −0.935716 + 0.935716i −0.998055 0.0623386i \(-0.980144\pi\)
0.0623386 + 0.998055i \(0.480144\pi\)
\(174\) 0 0
\(175\) 19.8734 15.0751i 1.50228 1.13957i
\(176\) 0 0
\(177\) −21.5388 21.5388i −1.61896 1.61896i
\(178\) 0 0
\(179\) 16.4309 1.22811 0.614053 0.789265i \(-0.289538\pi\)
0.614053 + 0.789265i \(0.289538\pi\)
\(180\) 0 0
\(181\) 12.0336 0.894450 0.447225 0.894421i \(-0.352412\pi\)
0.447225 + 0.894421i \(0.352412\pi\)
\(182\) 0 0
\(183\) 20.4196 + 20.4196i 1.50946 + 1.50946i
\(184\) 0 0
\(185\) 17.1686 14.9725i 1.26226 1.10080i
\(186\) 0 0
\(187\) −0.0773308 + 0.0773308i −0.00565499 + 0.00565499i
\(188\) 0 0
\(189\) 2.35389i 0.171220i
\(190\) 0 0
\(191\) 2.36391i 0.171046i −0.996336 0.0855231i \(-0.972744\pi\)
0.996336 0.0855231i \(-0.0272562\pi\)
\(192\) 0 0
\(193\) 5.47309 5.47309i 0.393962 0.393962i −0.482135 0.876097i \(-0.660139\pi\)
0.876097 + 0.482135i \(0.160139\pi\)
\(194\) 0 0
\(195\) 0.296063 4.33307i 0.0212015 0.310297i
\(196\) 0 0
\(197\) 17.6717 + 17.6717i 1.25906 + 1.25906i 0.951543 + 0.307515i \(0.0994975\pi\)
0.307515 + 0.951543i \(0.400502\pi\)
\(198\) 0 0
\(199\) −8.09068 −0.573533 −0.286766 0.958001i \(-0.592580\pi\)
−0.286766 + 0.958001i \(0.592580\pi\)
\(200\) 0 0
\(201\) 0.246866 0.0174126
\(202\) 0 0
\(203\) 6.61906 + 6.61906i 0.464567 + 0.464567i
\(204\) 0 0
\(205\) 1.13284 16.5799i 0.0791213 1.15799i
\(206\) 0 0
\(207\) 4.59517 4.59517i 0.319386 0.319386i
\(208\) 0 0
\(209\) 0.467728i 0.0323534i
\(210\) 0 0
\(211\) 14.2747i 0.982713i 0.870959 + 0.491356i \(0.163499\pi\)
−0.870959 + 0.491356i \(0.836501\pi\)
\(212\) 0 0
\(213\) −23.6523 + 23.6523i −1.62063 + 1.62063i
\(214\) 0 0
\(215\) −8.32589 + 7.26090i −0.567821 + 0.495190i
\(216\) 0 0
\(217\) −30.3138 30.3138i −2.05784 2.05784i
\(218\) 0 0
\(219\) −2.66343 −0.179978
\(220\) 0 0
\(221\) −0.780708 −0.0525161
\(222\) 0 0
\(223\) 6.75233 + 6.75233i 0.452169 + 0.452169i 0.896074 0.443905i \(-0.146407\pi\)
−0.443905 + 0.896074i \(0.646407\pi\)
\(224\) 0 0
\(225\) 2.16925 15.8000i 0.144616 1.05334i
\(226\) 0 0
\(227\) −17.7157 + 17.7157i −1.17583 + 1.17583i −0.195034 + 0.980797i \(0.562482\pi\)
−0.980797 + 0.195034i \(0.937518\pi\)
\(228\) 0 0
\(229\) 17.4226i 1.15132i 0.817689 + 0.575660i \(0.195255\pi\)
−0.817689 + 0.575660i \(0.804745\pi\)
\(230\) 0 0
\(231\) 1.35737i 0.0893086i
\(232\) 0 0
\(233\) 9.47429 9.47429i 0.620681 0.620681i −0.325024 0.945706i \(-0.605372\pi\)
0.945706 + 0.325024i \(0.105372\pi\)
\(234\) 0 0
\(235\) −1.10663 1.26895i −0.0721887 0.0827769i
\(236\) 0 0
\(237\) 4.15352 + 4.15352i 0.269800 + 0.269800i
\(238\) 0 0
\(239\) 5.61969 0.363507 0.181754 0.983344i \(-0.441823\pi\)
0.181754 + 0.983344i \(0.441823\pi\)
\(240\) 0 0
\(241\) −27.8044 −1.79104 −0.895519 0.445023i \(-0.853196\pi\)
−0.895519 + 0.445023i \(0.853196\pi\)
\(242\) 0 0
\(243\) −15.7696 15.7696i −1.01162 1.01162i
\(244\) 0 0
\(245\) −39.9067 2.72668i −2.54954 0.174201i
\(246\) 0 0
\(247\) −2.36102 + 2.36102i −0.150228 + 0.150228i
\(248\) 0 0
\(249\) 8.82425i 0.559214i
\(250\) 0 0
\(251\) 1.27835i 0.0806889i 0.999186 + 0.0403444i \(0.0128455\pi\)
−0.999186 + 0.0403444i \(0.987154\pi\)
\(252\) 0 0
\(253\) 0.157553 0.157553i 0.00990525 0.00990525i
\(254\) 0 0
\(255\) −5.55018 0.379223i −0.347565 0.0237479i
\(256\) 0 0
\(257\) −14.3886 14.3886i −0.897536 0.897536i 0.0976820 0.995218i \(-0.468857\pi\)
−0.995218 + 0.0976820i \(0.968857\pi\)
\(258\) 0 0
\(259\) −50.8242 −3.15806
\(260\) 0 0
\(261\) 5.98488 0.370455
\(262\) 0 0
\(263\) 16.7118 + 16.7118i 1.03049 + 1.03049i 0.999520 + 0.0309740i \(0.00986089\pi\)
0.0309740 + 0.999520i \(0.490139\pi\)
\(264\) 0 0
\(265\) −8.87951 10.1819i −0.545464 0.625469i
\(266\) 0 0
\(267\) 5.67162 5.67162i 0.347098 0.347098i
\(268\) 0 0
\(269\) 6.02653i 0.367444i −0.982978 0.183722i \(-0.941185\pi\)
0.982978 0.183722i \(-0.0588147\pi\)
\(270\) 0 0
\(271\) 3.35799i 0.203983i 0.994785 + 0.101992i \(0.0325215\pi\)
−0.994785 + 0.101992i \(0.967478\pi\)
\(272\) 0 0
\(273\) −6.85181 + 6.85181i −0.414691 + 0.414691i
\(274\) 0 0
\(275\) 0.0743761 0.541730i 0.00448505 0.0326675i
\(276\) 0 0
\(277\) 0.388962 + 0.388962i 0.0233705 + 0.0233705i 0.718695 0.695325i \(-0.244740\pi\)
−0.695325 + 0.718695i \(0.744740\pi\)
\(278\) 0 0
\(279\) −27.4094 −1.64096
\(280\) 0 0
\(281\) −10.0143 −0.597404 −0.298702 0.954346i \(-0.596554\pi\)
−0.298702 + 0.954346i \(0.596554\pi\)
\(282\) 0 0
\(283\) 3.18556 + 3.18556i 0.189362 + 0.189362i 0.795420 0.606058i \(-0.207250\pi\)
−0.606058 + 0.795420i \(0.707250\pi\)
\(284\) 0 0
\(285\) −17.9317 + 15.6380i −1.06218 + 0.926316i
\(286\) 0 0
\(287\) −26.2175 + 26.2175i −1.54757 + 1.54757i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 15.9285i 0.933748i
\(292\) 0 0
\(293\) −6.89671 + 6.89671i −0.402910 + 0.402910i −0.879257 0.476347i \(-0.841961\pi\)
0.476347 + 0.879257i \(0.341961\pi\)
\(294\) 0 0
\(295\) 1.86623 27.3135i 0.108656 1.59025i
\(296\) 0 0
\(297\) 0.0364872 + 0.0364872i 0.00211720 + 0.00211720i
\(298\) 0 0
\(299\) 1.59060 0.0919870
\(300\) 0 0
\(301\) 24.6472 1.42064
\(302\) 0 0
\(303\) −22.8930 22.8930i −1.31517 1.31517i
\(304\) 0 0
\(305\) −1.76926 + 25.8942i −0.101307 + 1.48270i
\(306\) 0 0
\(307\) 15.0648 15.0648i 0.859796 0.859796i −0.131518 0.991314i \(-0.541985\pi\)
0.991314 + 0.131518i \(0.0419851\pi\)
\(308\) 0 0
\(309\) 26.7570i 1.52215i
\(310\) 0 0
\(311\) 7.85414i 0.445367i 0.974891 + 0.222684i \(0.0714817\pi\)
−0.974891 + 0.222684i \(0.928518\pi\)
\(312\) 0 0
\(313\) 7.07894 7.07894i 0.400125 0.400125i −0.478152 0.878277i \(-0.658693\pi\)
0.878277 + 0.478152i \(0.158693\pi\)
\(314\) 0 0
\(315\) −26.8166 + 23.3864i −1.51095 + 1.31768i
\(316\) 0 0
\(317\) 15.0732 + 15.0732i 0.846593 + 0.846593i 0.989706 0.143114i \(-0.0457114\pi\)
−0.143114 + 0.989706i \(0.545711\pi\)
\(318\) 0 0
\(319\) 0.205201 0.0114891
\(320\) 0 0
\(321\) −14.8993 −0.831599
\(322\) 0 0
\(323\) 3.02420 + 3.02420i 0.168271 + 0.168271i
\(324\) 0 0
\(325\) 3.11001 2.35913i 0.172512 0.130861i
\(326\) 0 0
\(327\) 17.9029 17.9029i 0.990034 0.990034i
\(328\) 0 0
\(329\) 3.75646i 0.207101i
\(330\) 0 0
\(331\) 18.7357i 1.02981i −0.857248 0.514904i \(-0.827828\pi\)
0.857248 0.514904i \(-0.172172\pi\)
\(332\) 0 0
\(333\) −22.9774 + 22.9774i −1.25915 + 1.25915i
\(334\) 0 0
\(335\) 0.145832 + 0.167221i 0.00796763 + 0.00913627i
\(336\) 0 0
\(337\) 5.24836 + 5.24836i 0.285896 + 0.285896i 0.835455 0.549559i \(-0.185204\pi\)
−0.549559 + 0.835455i \(0.685204\pi\)
\(338\) 0 0
\(339\) 39.7406 2.15841
\(340\) 0 0
\(341\) −0.939777 −0.0508918
\(342\) 0 0
\(343\) 38.4104 + 38.4104i 2.07397 + 2.07397i
\(344\) 0 0
\(345\) 11.3078 + 0.772624i 0.608794 + 0.0415967i
\(346\) 0 0
\(347\) 10.8985 10.8985i 0.585060 0.585060i −0.351229 0.936289i \(-0.614236\pi\)
0.936289 + 0.351229i \(0.114236\pi\)
\(348\) 0 0
\(349\) 9.69684i 0.519060i −0.965735 0.259530i \(-0.916432\pi\)
0.965735 0.259530i \(-0.0835676\pi\)
\(350\) 0 0
\(351\) 0.368363i 0.0196618i
\(352\) 0 0
\(353\) 2.96119 2.96119i 0.157608 0.157608i −0.623898 0.781506i \(-0.714452\pi\)
0.781506 + 0.623898i \(0.214452\pi\)
\(354\) 0 0
\(355\) −29.9936 2.04936i −1.59190 0.108769i
\(356\) 0 0
\(357\) 8.77641 + 8.77641i 0.464497 + 0.464497i
\(358\) 0 0
\(359\) −16.4624 −0.868851 −0.434425 0.900708i \(-0.643049\pi\)
−0.434425 + 0.900708i \(0.643049\pi\)
\(360\) 0 0
\(361\) −0.708384 −0.0372834
\(362\) 0 0
\(363\) −19.3303 19.3303i −1.01458 1.01458i
\(364\) 0 0
\(365\) −1.57337 1.80414i −0.0823540 0.0944332i
\(366\) 0 0
\(367\) 18.8652 18.8652i 0.984754 0.984754i −0.0151317 0.999886i \(-0.504817\pi\)
0.999886 + 0.0151317i \(0.00481675\pi\)
\(368\) 0 0
\(369\) 23.7056i 1.23407i
\(370\) 0 0
\(371\) 30.1415i 1.56487i
\(372\) 0 0
\(373\) 1.88413 1.88413i 0.0975566 0.0975566i −0.656644 0.754201i \(-0.728025\pi\)
0.754201 + 0.656644i \(0.228025\pi\)
\(374\) 0 0
\(375\) 23.2554 15.2607i 1.20091 0.788062i
\(376\) 0 0
\(377\) 1.03582 + 1.03582i 0.0533477 + 0.0533477i
\(378\) 0 0
\(379\) 18.9361 0.972684 0.486342 0.873768i \(-0.338331\pi\)
0.486342 + 0.873768i \(0.338331\pi\)
\(380\) 0 0
\(381\) −20.5826 −1.05448
\(382\) 0 0
\(383\) 17.5530 + 17.5530i 0.896919 + 0.896919i 0.995162 0.0982437i \(-0.0313225\pi\)
−0.0982437 + 0.995162i \(0.531322\pi\)
\(384\) 0 0
\(385\) −0.919452 + 0.801842i −0.0468596 + 0.0408656i
\(386\) 0 0
\(387\) 11.1429 11.1429i 0.566423 0.566423i
\(388\) 0 0
\(389\) 9.17311i 0.465095i 0.972585 + 0.232547i \(0.0747061\pi\)
−0.972585 + 0.232547i \(0.925294\pi\)
\(390\) 0 0
\(391\) 2.03739i 0.103035i
\(392\) 0 0
\(393\) −29.4039 + 29.4039i −1.48323 + 1.48323i
\(394\) 0 0
\(395\) −0.359882 + 5.26710i −0.0181076 + 0.265017i
\(396\) 0 0
\(397\) −11.2035 11.2035i −0.562286 0.562286i 0.367670 0.929956i \(-0.380156\pi\)
−0.929956 + 0.367670i \(0.880156\pi\)
\(398\) 0 0
\(399\) 53.0833 2.65749
\(400\) 0 0
\(401\) −4.64840 −0.232130 −0.116065 0.993242i \(-0.537028\pi\)
−0.116065 + 0.993242i \(0.537028\pi\)
\(402\) 0 0
\(403\) −4.74385 4.74385i −0.236308 0.236308i
\(404\) 0 0
\(405\) 1.27964 18.7283i 0.0635857 0.930617i
\(406\) 0 0
\(407\) −0.787815 + 0.787815i −0.0390506 + 0.0390506i
\(408\) 0 0
\(409\) 4.70539i 0.232667i 0.993210 + 0.116333i \(0.0371141\pi\)
−0.993210 + 0.116333i \(0.962886\pi\)
\(410\) 0 0
\(411\) 33.2586i 1.64053i
\(412\) 0 0
\(413\) −43.1904 + 43.1904i −2.12526 + 2.12526i
\(414\) 0 0
\(415\) −5.97733 + 5.21276i −0.293416 + 0.255884i
\(416\) 0 0
\(417\) −27.0236 27.0236i −1.32335 1.32335i
\(418\) 0 0
\(419\) −25.7707 −1.25898 −0.629490 0.777008i \(-0.716736\pi\)
−0.629490 + 0.777008i \(0.716736\pi\)
\(420\) 0 0
\(421\) 35.8176 1.74564 0.872821 0.488040i \(-0.162288\pi\)
0.872821 + 0.488040i \(0.162288\pi\)
\(422\) 0 0
\(423\) 1.69828 + 1.69828i 0.0825731 + 0.0825731i
\(424\) 0 0
\(425\) −3.02178 3.98357i −0.146578 0.193232i
\(426\) 0 0
\(427\) 40.9461 40.9461i 1.98152 1.98152i
\(428\) 0 0
\(429\) 0.212417i 0.0102556i
\(430\) 0 0
\(431\) 31.9957i 1.54118i 0.637331 + 0.770591i \(0.280039\pi\)
−0.637331 + 0.770591i \(0.719961\pi\)
\(432\) 0 0
\(433\) −0.524098 + 0.524098i −0.0251865 + 0.0251865i −0.719588 0.694401i \(-0.755669\pi\)
0.694401 + 0.719588i \(0.255669\pi\)
\(434\) 0 0
\(435\) 6.86069 + 7.86698i 0.328945 + 0.377193i
\(436\) 0 0
\(437\) −6.16147 6.16147i −0.294743 0.294743i
\(438\) 0 0
\(439\) −39.8558 −1.90222 −0.951108 0.308859i \(-0.900053\pi\)
−0.951108 + 0.308859i \(0.900053\pi\)
\(440\) 0 0
\(441\) 57.0578 2.71704
\(442\) 0 0
\(443\) −24.1179 24.1179i −1.14588 1.14588i −0.987356 0.158522i \(-0.949327\pi\)
−0.158522 0.987356i \(-0.550673\pi\)
\(444\) 0 0
\(445\) 7.19221 + 0.491418i 0.340944 + 0.0232954i
\(446\) 0 0
\(447\) 20.6020 20.6020i 0.974442 0.974442i
\(448\) 0 0
\(449\) 29.5450i 1.39432i 0.716917 + 0.697158i \(0.245552\pi\)
−0.716917 + 0.697158i \(0.754448\pi\)
\(450\) 0 0
\(451\) 0.812785i 0.0382726i
\(452\) 0 0
\(453\) 27.3485 27.3485i 1.28494 1.28494i
\(454\) 0 0
\(455\) −8.68883 0.593676i −0.407338 0.0278320i
\(456\) 0 0
\(457\) −17.6876 17.6876i −0.827393 0.827393i 0.159763 0.987155i \(-0.448927\pi\)
−0.987155 + 0.159763i \(0.948927\pi\)
\(458\) 0 0
\(459\) 0.471832 0.0220232
\(460\) 0 0
\(461\) 34.4158 1.60291 0.801453 0.598058i \(-0.204061\pi\)
0.801453 + 0.598058i \(0.204061\pi\)
\(462\) 0 0
\(463\) 11.4133 + 11.4133i 0.530421 + 0.530421i 0.920698 0.390276i \(-0.127621\pi\)
−0.390276 + 0.920698i \(0.627621\pi\)
\(464\) 0 0
\(465\) −31.4205 36.0290i −1.45709 1.67081i
\(466\) 0 0
\(467\) 0.283320 0.283320i 0.0131105 0.0131105i −0.700521 0.713632i \(-0.747049\pi\)
0.713632 + 0.700521i \(0.247049\pi\)
\(468\) 0 0
\(469\) 0.495026i 0.0228582i
\(470\) 0 0
\(471\) 49.7057i 2.29032i
\(472\) 0 0
\(473\) 0.382051 0.382051i 0.0175667 0.0175667i
\(474\) 0 0
\(475\) −21.1856 2.90865i −0.972063 0.133458i
\(476\) 0 0
\(477\) 13.6268 + 13.6268i 0.623929 + 0.623929i
\(478\) 0 0
\(479\) 4.18997 0.191445 0.0957223 0.995408i \(-0.469484\pi\)
0.0957223 + 0.995408i \(0.469484\pi\)
\(480\) 0 0
\(481\) −7.95354 −0.362650
\(482\) 0 0
\(483\) −17.8809 17.8809i −0.813610 0.813610i
\(484\) 0 0
\(485\) 10.7896 9.40948i 0.489931 0.427262i
\(486\) 0 0
\(487\) 2.95223 2.95223i 0.133778 0.133778i −0.637047 0.770825i \(-0.719844\pi\)
0.770825 + 0.637047i \(0.219844\pi\)
\(488\) 0 0
\(489\) 17.2463i 0.779904i
\(490\) 0 0
\(491\) 16.8566i 0.760725i −0.924837 0.380363i \(-0.875799\pi\)
0.924837 0.380363i \(-0.124201\pi\)
\(492\) 0 0
\(493\) 1.32678 1.32678i 0.0597550 0.0597550i
\(494\) 0 0
\(495\) −0.0531707 + 0.778188i −0.00238985 + 0.0349769i
\(496\) 0 0
\(497\) 47.4285 + 47.4285i 2.12746 + 2.12746i
\(498\) 0 0
\(499\) 28.6700 1.28345 0.641724 0.766936i \(-0.278220\pi\)
0.641724 + 0.766936i \(0.278220\pi\)
\(500\) 0 0
\(501\) 18.0522 0.806515
\(502\) 0 0
\(503\) −21.0768 21.0768i −0.939766 0.939766i 0.0585200 0.998286i \(-0.481362\pi\)
−0.998286 + 0.0585200i \(0.981362\pi\)
\(504\) 0 0
\(505\) 1.98357 29.0308i 0.0882675 1.29185i
\(506\) 0 0
\(507\) 21.7975 21.7975i 0.968061 0.968061i
\(508\) 0 0
\(509\) 31.5330i 1.39768i 0.715280 + 0.698838i \(0.246299\pi\)
−0.715280 + 0.698838i \(0.753701\pi\)
\(510\) 0 0
\(511\) 5.34081i 0.236264i
\(512\) 0 0
\(513\) 1.42692 1.42692i 0.0629999 0.0629999i
\(514\) 0 0
\(515\) 18.1245 15.8061i 0.798661 0.696502i
\(516\) 0 0
\(517\) 0.0582282 + 0.0582282i 0.00256087 + 0.00256087i
\(518\) 0 0
\(519\) 43.3027 1.90078
\(520\) 0 0
\(521\) 15.2951 0.670090 0.335045 0.942202i \(-0.391248\pi\)
0.335045 + 0.942202i \(0.391248\pi\)
\(522\) 0 0
\(523\) 3.43425 + 3.43425i 0.150169 + 0.150169i 0.778194 0.628024i \(-0.216136\pi\)
−0.628024 + 0.778194i \(0.716136\pi\)
\(524\) 0 0
\(525\) −61.4818 8.44107i −2.68329 0.368398i
\(526\) 0 0
\(527\) −6.07634 + 6.07634i −0.264690 + 0.264690i
\(528\) 0 0
\(529\) 18.8491i 0.819524i
\(530\) 0 0
\(531\) 39.0523i 1.69473i
\(532\) 0 0
\(533\) −4.10282 + 4.10282i −0.177713 + 0.177713i
\(534\) 0 0
\(535\) −8.80148 10.0924i −0.380521 0.436334i
\(536\) 0 0
\(537\) −28.9055 28.9055i −1.24736 1.24736i
\(538\) 0 0
\(539\) 1.95632 0.0842646
\(540\) 0 0
\(541\) −12.4383 −0.534766 −0.267383 0.963590i \(-0.586159\pi\)
−0.267383 + 0.963590i \(0.586159\pi\)
\(542\) 0 0
\(543\) −21.1696 21.1696i −0.908476 0.908476i
\(544\) 0 0
\(545\) 22.7028 + 1.55120i 0.972481 + 0.0664461i
\(546\) 0 0
\(547\) 10.5055 10.5055i 0.449183 0.449183i −0.445900 0.895083i \(-0.647116\pi\)
0.895083 + 0.445900i \(0.147116\pi\)
\(548\) 0 0
\(549\) 37.0231i 1.58011i
\(550\) 0 0
\(551\) 8.02488i 0.341871i
\(552\) 0 0
\(553\) 8.32878 8.32878i 0.354176 0.354176i
\(554\) 0 0
\(555\) −56.5430 3.86338i −2.40011 0.163991i
\(556\) 0 0
\(557\) −5.15060 5.15060i −0.218238 0.218238i 0.589518 0.807755i \(-0.299318\pi\)
−0.807755 + 0.589518i \(0.799318\pi\)
\(558\) 0 0
\(559\) 3.85707 0.163137
\(560\) 0 0
\(561\) 0.272083 0.0114873
\(562\) 0 0
\(563\) 21.4026 + 21.4026i 0.902010 + 0.902010i 0.995610 0.0935998i \(-0.0298374\pi\)
−0.0935998 + 0.995610i \(0.529837\pi\)
\(564\) 0 0
\(565\) 23.4760 + 26.9193i 0.987642 + 1.13250i
\(566\) 0 0
\(567\) −29.6148 + 29.6148i −1.24370 + 1.24370i
\(568\) 0 0
\(569\) 3.07975i 0.129110i 0.997914 + 0.0645550i \(0.0205628\pi\)
−0.997914 + 0.0645550i \(0.979437\pi\)
\(570\) 0 0
\(571\) 29.2676i 1.22481i 0.790544 + 0.612406i \(0.209798\pi\)
−0.790544 + 0.612406i \(0.790202\pi\)
\(572\) 0 0
\(573\) −4.15861 + 4.15861i −0.173728 + 0.173728i
\(574\) 0 0
\(575\) 6.15653 + 8.11607i 0.256745 + 0.338464i
\(576\) 0 0
\(577\) 7.25982 + 7.25982i 0.302230 + 0.302230i 0.841886 0.539656i \(-0.181446\pi\)
−0.539656 + 0.841886i \(0.681446\pi\)
\(578\) 0 0
\(579\) −19.2566 −0.800279
\(580\) 0 0
\(581\) 17.6947 0.734101
\(582\) 0 0
\(583\) 0.467217 + 0.467217i 0.0193502 + 0.0193502i
\(584\) 0 0
\(585\) −4.19657 + 3.65977i −0.173507 + 0.151313i
\(586\) 0 0
\(587\) 9.66688 9.66688i 0.398995 0.398995i −0.478884 0.877878i \(-0.658958\pi\)
0.877878 + 0.478884i \(0.158958\pi\)
\(588\) 0 0
\(589\) 36.7522i 1.51435i
\(590\) 0 0
\(591\) 62.1766i 2.55760i
\(592\) 0 0
\(593\) −26.1809 + 26.1809i −1.07512 + 1.07512i −0.0781823 + 0.996939i \(0.524912\pi\)
−0.996939 + 0.0781823i \(0.975088\pi\)
\(594\) 0 0
\(595\) −0.760433 + 11.1294i −0.0311747 + 0.456261i
\(596\) 0 0
\(597\) 14.2332 + 14.2332i 0.582527 + 0.582527i
\(598\) 0 0
\(599\) −33.1930 −1.35623 −0.678114 0.734957i \(-0.737202\pi\)
−0.678114 + 0.734957i \(0.737202\pi\)
\(600\) 0 0
\(601\) −36.9553 −1.50744 −0.753720 0.657196i \(-0.771742\pi\)
−0.753720 + 0.657196i \(0.771742\pi\)
\(602\) 0 0
\(603\) −0.223798 0.223798i −0.00911378 0.00911378i
\(604\) 0 0
\(605\) 1.67487 24.5129i 0.0680933 0.996589i
\(606\) 0 0
\(607\) −24.5130 + 24.5130i −0.994953 + 0.994953i −0.999987 0.00503385i \(-0.998398\pi\)
0.00503385 + 0.999987i \(0.498398\pi\)
\(608\) 0 0
\(609\) 23.2886i 0.943703i
\(610\) 0 0
\(611\) 0.587854i 0.0237820i
\(612\) 0 0
\(613\) 32.3391 32.3391i 1.30616 1.30616i 0.382002 0.924162i \(-0.375235\pi\)
0.924162 0.382002i \(-0.124765\pi\)
\(614\) 0 0
\(615\) −31.1605 + 27.1746i −1.25651 + 1.09579i
\(616\) 0 0
\(617\) −7.36012 7.36012i −0.296307 0.296307i 0.543258 0.839566i \(-0.317190\pi\)
−0.839566 + 0.543258i \(0.817190\pi\)
\(618\) 0 0
\(619\) −31.4305 −1.26330 −0.631649 0.775254i \(-0.717622\pi\)
−0.631649 + 0.775254i \(0.717622\pi\)
\(620\) 0 0
\(621\) −0.961304 −0.0385758
\(622\) 0 0
\(623\) −11.3729 11.3729i −0.455647 0.455647i
\(624\) 0 0
\(625\) 24.0750 + 6.73768i 0.962998 + 0.269507i
\(626\) 0 0
\(627\) 0.822833 0.822833i 0.0328608 0.0328608i
\(628\) 0 0
\(629\) 10.1876i 0.406206i
\(630\) 0 0
\(631\) 20.0645i 0.798756i 0.916786 + 0.399378i \(0.130774\pi\)
−0.916786 + 0.399378i \(0.869226\pi\)
\(632\) 0 0
\(633\) 25.1123 25.1123i 0.998123 0.998123i
\(634\) 0 0
\(635\) −12.1588 13.9422i −0.482507 0.553278i
\(636\) 0 0
\(637\) 9.87520 + 9.87520i 0.391270 + 0.391270i
\(638\) 0 0
\(639\) 42.8843 1.69648
\(640\) 0 0
\(641\) −3.43110 −0.135520 −0.0677601 0.997702i \(-0.521585\pi\)
−0.0677601 + 0.997702i \(0.521585\pi\)
\(642\) 0 0
\(643\) 1.14597 + 1.14597i 0.0451928 + 0.0451928i 0.729342 0.684149i \(-0.239826\pi\)
−0.684149 + 0.729342i \(0.739826\pi\)
\(644\) 0 0
\(645\) 27.4205 + 1.87354i 1.07968 + 0.0737706i
\(646\) 0 0
\(647\) 30.0909 30.0909i 1.18300 1.18300i 0.204033 0.978964i \(-0.434595\pi\)
0.978964 0.204033i \(-0.0654050\pi\)
\(648\) 0 0
\(649\) 1.33897i 0.0525592i
\(650\) 0 0
\(651\) 106.657i 4.18021i
\(652\) 0 0
\(653\) 29.4673 29.4673i 1.15314 1.15314i 0.167224 0.985919i \(-0.446520\pi\)
0.985919 0.167224i \(-0.0534804\pi\)
\(654\) 0 0
\(655\) −37.2873 2.54770i −1.45693 0.0995470i
\(656\) 0 0
\(657\) 2.41455 + 2.41455i 0.0942007 + 0.0942007i
\(658\) 0 0
\(659\) −16.5893 −0.646228 −0.323114 0.946360i \(-0.604730\pi\)
−0.323114 + 0.946360i \(0.604730\pi\)
\(660\) 0 0
\(661\) 0.00772812 0.000300589 0.000150295 1.00000i \(-0.499952\pi\)
0.000150295 1.00000i \(0.499952\pi\)
\(662\) 0 0
\(663\) 1.37343 + 1.37343i 0.0533396 + 0.0533396i
\(664\) 0 0
\(665\) 31.3579 + 35.9573i 1.21601 + 1.39436i
\(666\) 0 0
\(667\) −2.70315 + 2.70315i −0.104667 + 0.104667i
\(668\) 0 0
\(669\) 23.7575i 0.918519i
\(670\) 0 0
\(671\) 1.26940i 0.0490045i
\(672\) 0 0
\(673\) 34.9745 34.9745i 1.34817 1.34817i 0.460520 0.887649i \(-0.347663\pi\)
0.887649 0.460520i \(-0.152337\pi\)
\(674\) 0 0
\(675\) −1.87958 + 1.42577i −0.0723450 + 0.0548780i
\(676\) 0 0
\(677\) −20.4495 20.4495i −0.785939 0.785939i 0.194886 0.980826i \(-0.437566\pi\)
−0.980826 + 0.194886i \(0.937566\pi\)
\(678\) 0 0
\(679\) −31.9405 −1.22576
\(680\) 0 0
\(681\) 62.3312 2.38854
\(682\) 0 0
\(683\) 10.5327 + 10.5327i 0.403022 + 0.403022i 0.879297 0.476274i \(-0.158013\pi\)
−0.476274 + 0.879297i \(0.658013\pi\)
\(684\) 0 0
\(685\) 22.5286 19.6469i 0.860773 0.750669i
\(686\) 0 0
\(687\) 30.6501 30.6501i 1.16937 1.16937i
\(688\) 0 0
\(689\) 4.71688i 0.179699i
\(690\) 0 0
\(691\) 30.8502i 1.17360i −0.809733 0.586798i \(-0.800388\pi\)
0.809733 0.586798i \(-0.199612\pi\)
\(692\) 0 0
\(693\) 1.23054 1.23054i 0.0467442 0.0467442i
\(694\) 0 0
\(695\) 2.34146 34.2688i 0.0888167 1.29989i
\(696\) 0 0
\(697\) 5.25525 + 5.25525i 0.199057 + 0.199057i
\(698\) 0 0
\(699\) −33.3346 −1.26083
\(700\) 0 0
\(701\) −15.0793 −0.569539 −0.284770 0.958596i \(-0.591917\pi\)
−0.284770 + 0.958596i \(0.591917\pi\)
\(702\) 0 0
\(703\) 30.8094 + 30.8094i 1.16200 + 1.16200i
\(704\) 0 0
\(705\) −0.285546 + 4.17914i −0.0107543 + 0.157396i
\(706\) 0 0
\(707\) −45.9059 + 45.9059i −1.72647 + 1.72647i
\(708\) 0 0
\(709\) 23.0503i 0.865673i −0.901473 0.432836i \(-0.857513\pi\)
0.901473 0.432836i \(-0.142487\pi\)
\(710\) 0 0
\(711\) 7.53080i 0.282427i
\(712\) 0 0
\(713\) 12.3799 12.3799i 0.463629 0.463629i
\(714\) 0 0
\(715\) −0.143886 + 0.125481i −0.00538104 + 0.00469273i
\(716\) 0 0
\(717\) −9.88622 9.88622i −0.369208 0.369208i
\(718\) 0 0
\(719\) −18.9075 −0.705131 −0.352565 0.935787i \(-0.614691\pi\)
−0.352565 + 0.935787i \(0.614691\pi\)
\(720\) 0 0
\(721\) −53.6540 −1.99818
\(722\) 0 0
\(723\) 48.9138 + 48.9138i 1.81912 + 1.81912i
\(724\) 0 0
\(725\) −1.27608 + 9.29453i −0.0473924 + 0.345190i
\(726\) 0 0
\(727\) −8.98596 + 8.98596i −0.333271 + 0.333271i −0.853827 0.520556i \(-0.825725\pi\)
0.520556 + 0.853827i \(0.325725\pi\)
\(728\) 0 0
\(729\) 30.2990i 1.12218i
\(730\) 0 0
\(731\) 4.94047i 0.182730i
\(732\) 0 0
\(733\) −2.40490 + 2.40490i −0.0888272 + 0.0888272i −0.750124 0.661297i \(-0.770006\pi\)
0.661297 + 0.750124i \(0.270006\pi\)
\(734\) 0 0
\(735\) 65.4075 + 75.0011i 2.41259 + 2.76646i
\(736\) 0 0
\(737\) −0.00767329 0.00767329i −0.000282649 0.000282649i
\(738\) 0 0
\(739\) 31.2816 1.15071 0.575357 0.817903i \(-0.304863\pi\)
0.575357 + 0.817903i \(0.304863\pi\)
\(740\) 0 0
\(741\) 8.30707 0.305168
\(742\) 0 0
\(743\) 28.1502 + 28.1502i 1.03273 + 1.03273i 0.999446 + 0.0332849i \(0.0105969\pi\)
0.0332849 + 0.999446i \(0.489403\pi\)
\(744\) 0 0
\(745\) 26.1255 + 1.78506i 0.957165 + 0.0653996i
\(746\) 0 0
\(747\) 7.99969 7.99969i 0.292693 0.292693i
\(748\) 0 0
\(749\) 29.8767i 1.09167i
\(750\) 0 0
\(751\) 27.9186i 1.01877i −0.860540 0.509383i \(-0.829874\pi\)
0.860540 0.509383i \(-0.170126\pi\)
\(752\) 0 0
\(753\) 2.24889 2.24889i 0.0819542 0.0819542i
\(754\) 0 0
\(755\) 34.6807 + 2.36961i 1.26216 + 0.0862389i
\(756\) 0 0
\(757\) −21.2982 21.2982i −0.774096 0.774096i 0.204724 0.978820i \(-0.434370\pi\)
−0.978820 + 0.204724i \(0.934370\pi\)
\(758\) 0 0
\(759\) −0.554337 −0.0201212
\(760\) 0 0
\(761\) −38.5324 −1.39680 −0.698398 0.715709i \(-0.746104\pi\)
−0.698398 + 0.715709i \(0.746104\pi\)
\(762\) 0 0
\(763\) −35.8996 35.8996i −1.29965 1.29965i
\(764\) 0 0
\(765\) 4.68776 + 5.37534i 0.169486 + 0.194346i
\(766\) 0 0
\(767\) −6.75893 + 6.75893i −0.244051 + 0.244051i
\(768\) 0 0
\(769\) 6.50538i 0.234590i 0.993097 + 0.117295i \(0.0374223\pi\)
−0.993097 + 0.117295i \(0.962578\pi\)
\(770\) 0 0
\(771\) 50.6252i 1.82322i
\(772\) 0 0
\(773\) −17.0779 + 17.0779i −0.614248 + 0.614248i −0.944050 0.329802i \(-0.893018\pi\)
0.329802 + 0.944050i \(0.393018\pi\)
\(774\) 0 0
\(775\) 5.84417 42.5669i 0.209929 1.52905i
\(776\) 0 0
\(777\) 89.4105 + 89.4105i 3.20758 + 3.20758i
\(778\) 0 0
\(779\) 31.7859 1.13885
\(780\) 0 0
\(781\) 1.47036 0.0526135
\(782\) 0 0
\(783\) −0.626015 0.626015i −0.0223720 0.0223720i
\(784\) 0 0
\(785\) −33.6694 + 29.3627i −1.20171 + 1.04800i
\(786\) 0 0
\(787\) −5.62237 + 5.62237i −0.200416 + 0.200416i −0.800178 0.599762i \(-0.795262\pi\)
0.599762 + 0.800178i \(0.295262\pi\)
\(788\) 0 0
\(789\) 58.7992i 2.09331i
\(790\) 0 0
\(791\) 79.6893i 2.83343i
\(792\) 0 0
\(793\) 6.40771 6.40771i 0.227545 0.227545i
\(794\) 0 0
\(795\) −2.29119 + 33.5331i −0.0812602 + 1.18929i
\(796\) 0 0
\(797\) −24.5999 24.5999i −0.871374 0.871374i 0.121248 0.992622i \(-0.461310\pi\)
−0.992622 + 0.121248i \(0.961310\pi\)
\(798\) 0 0
\(799\) 0.752975 0.0266383
\(800\) 0 0
\(801\) −10.2833 −0.363342
\(802\) 0 0
\(803\) 0.0827868 + 0.0827868i 0.00292148 + 0.00292148i
\(804\) 0 0
\(805\) 1.54929 22.6749i 0.0546055 0.799186i
\(806\) 0 0
\(807\) −10.6019 + 10.6019i −0.373206 + 0.373206i
\(808\) 0 0
\(809\) 1.78029i 0.0625916i 0.999510 + 0.0312958i \(0.00996339\pi\)
−0.999510 + 0.0312958i \(0.990037\pi\)
\(810\) 0 0
\(811\) 32.9274i 1.15624i 0.815952 + 0.578119i \(0.196213\pi\)
−0.815952 + 0.578119i \(0.803787\pi\)
\(812\) 0 0
\(813\) 5.90742 5.90742i 0.207182 0.207182i
\(814\) 0 0
\(815\) 11.6822 10.1879i 0.409210 0.356867i
\(816\) 0 0
\(817\) −14.9410 14.9410i −0.522719 0.522719i
\(818\) 0 0
\(819\) 12.4231 0.434099
\(820\) 0 0
\(821\) 2.83836 0.0990596 0.0495298 0.998773i \(-0.484228\pi\)
0.0495298 + 0.998773i \(0.484228\pi\)
\(822\) 0 0
\(823\) −0.443760 0.443760i −0.0154685 0.0154685i 0.699330 0.714799i \(-0.253482\pi\)
−0.714799 + 0.699330i \(0.753482\pi\)
\(824\) 0 0
\(825\) −1.08386 + 0.822174i −0.0377352 + 0.0286244i
\(826\) 0 0
\(827\) 3.17598 3.17598i 0.110440 0.110440i −0.649728 0.760167i \(-0.725117\pi\)
0.760167 + 0.649728i \(0.225117\pi\)
\(828\) 0 0
\(829\) 12.5801i 0.436926i −0.975845 0.218463i \(-0.929896\pi\)
0.975845 0.218463i \(-0.0701043\pi\)
\(830\) 0 0
\(831\) 1.36853i 0.0474739i
\(832\) 0 0
\(833\) 12.6490 12.6490i 0.438263 0.438263i
\(834\) 0 0
\(835\) 10.6640 + 12.2281i 0.369043 + 0.423172i
\(836\) 0 0
\(837\) 2.86701 + 2.86701i 0.0990985 + 0.0990985i
\(838\) 0 0
\(839\) 6.00678 0.207377 0.103688 0.994610i \(-0.466936\pi\)
0.103688 + 0.994610i \(0.466936\pi\)
\(840\) 0 0
\(841\) 25.4793 0.878598
\(842\) 0 0
\(843\) 17.6173 + 17.6173i 0.606772 + 0.606772i
\(844\) 0 0
\(845\) 27.6415 + 1.88865i 0.950898 + 0.0649714i
\(846\) 0 0
\(847\) −38.7618 + 38.7618i −1.33187 + 1.33187i
\(848\) 0 0
\(849\) 11.2081i 0.384663i
\(850\) 0 0
\(851\) 20.7561i 0.711509i
\(852\) 0 0
\(853\) 4.95951 4.95951i 0.169810 0.169810i −0.617086 0.786896i \(-0.711687\pi\)
0.786896 + 0.617086i \(0.211687\pi\)
\(854\) 0 0
\(855\) 30.4329 + 2.07937i 1.04078 + 0.0711129i
\(856\) 0 0
\(857\) −9.58425 9.58425i −0.327392 0.327392i 0.524202 0.851594i \(-0.324364\pi\)
−0.851594 + 0.524202i \(0.824364\pi\)
\(858\) 0 0
\(859\) −45.0588 −1.53739 −0.768693 0.639618i \(-0.779093\pi\)
−0.768693 + 0.639618i \(0.779093\pi\)
\(860\) 0 0
\(861\) 92.2444 3.14368
\(862\) 0 0
\(863\) −22.3227 22.3227i −0.759873 0.759873i 0.216426 0.976299i \(-0.430560\pi\)
−0.976299 + 0.216426i \(0.930560\pi\)
\(864\) 0 0
\(865\) 25.5802 + 29.3322i 0.869754 + 0.997325i
\(866\) 0 0
\(867\) 1.75921 1.75921i 0.0597460 0.0597460i
\(868\) 0 0
\(869\) 0.258206i 0.00875902i
\(870\) 0 0
\(871\) 0.0774672i 0.00262488i
\(872\) 0 0
\(873\) −14.4401 + 14.4401i −0.488724 + 0.488724i
\(874\) 0 0
\(875\) −30.6014 46.6327i −1.03452 1.57647i
\(876\) 0 0
\(877\) 2.22152 + 2.22152i 0.0750154 + 0.0750154i 0.743619 0.668604i \(-0.233108\pi\)
−0.668604 + 0.743619i \(0.733108\pi\)
\(878\) 0 0
\(879\) 24.2656 0.818457
\(880\) 0 0
\(881\) 51.2560 1.72686 0.863429 0.504470i \(-0.168312\pi\)
0.863429 + 0.504470i \(0.168312\pi\)
\(882\) 0 0
\(883\) 23.4708 + 23.4708i 0.789857 + 0.789857i 0.981470 0.191614i \(-0.0613721\pi\)
−0.191614 + 0.981470i \(0.561372\pi\)
\(884\) 0 0
\(885\) −51.3333 + 44.7671i −1.72555 + 1.50483i
\(886\) 0 0
\(887\) −13.0504 + 13.0504i −0.438188 + 0.438188i −0.891402 0.453214i \(-0.850277\pi\)
0.453214 + 0.891402i \(0.350277\pi\)
\(888\) 0 0
\(889\) 41.2731i 1.38425i
\(890\) 0 0
\(891\) 0.918105i 0.0307577i
\(892\) 0 0
\(893\) 2.27715 2.27715i 0.0762019 0.0762019i
\(894\) 0 0
\(895\) 2.50452 36.6552i 0.0837169 1.22525i
\(896\) 0 0
\(897\) −2.79821 2.79821i −0.0934295 0.0934295i
\(898\) 0 0
\(899\) 16.1239 0.537762
\(900\) 0 0
\(901\) 6.04180 0.201282
\(902\) 0 0
\(903\) −43.3596 43.3596i −1.44292 1.44292i
\(904\) 0 0
\(905\) 1.83425 26.8454i 0.0609724 0.892370i
\(906\) 0 0
\(907\) 29.0168 29.0168i 0.963486 0.963486i −0.0358701 0.999356i \(-0.511420\pi\)
0.999356 + 0.0358701i \(0.0114203\pi\)
\(908\) 0 0
\(909\) 41.5076i 1.37672i
\(910\) 0 0
\(911\) 4.32871i 0.143417i 0.997426 + 0.0717083i \(0.0228451\pi\)
−0.997426 + 0.0717083i \(0.977155\pi\)
\(912\) 0 0
\(913\) 0.274282 0.274282i 0.00907742 0.00907742i
\(914\) 0 0
\(915\) 48.6659 42.4409i 1.60885 1.40305i
\(916\) 0 0
\(917\) 58.9618 + 58.9618i 1.94709 + 1.94709i
\(918\) 0 0
\(919\) −48.6191 −1.60380 −0.801899 0.597460i \(-0.796177\pi\)
−0.801899 + 0.597460i \(0.796177\pi\)
\(920\) 0 0
\(921\) −53.0045 −1.74656
\(922\) 0 0
\(923\) 7.42214 + 7.42214i 0.244303 + 0.244303i
\(924\) 0 0
\(925\) −30.7847 40.5830i −1.01219 1.33436i
\(926\) 0 0
\(927\) −24.2567 + 24.2567i −0.796695 + 0.796695i
\(928\) 0 0
\(929\) 16.8326i 0.552259i −0.961120 0.276129i \(-0.910948\pi\)
0.961120 0.276129i \(-0.0890518\pi\)
\(930\) 0 0
\(931\) 76.5065i 2.50740i
\(932\) 0 0
\(933\) 13.8171 13.8171i 0.452351 0.452351i
\(934\) 0 0
\(935\) 0.160727 + 0.184302i 0.00525635 + 0.00602732i
\(936\) 0 0
\(937\) −3.14361 3.14361i −0.102697 0.102697i 0.653891 0.756589i \(-0.273135\pi\)
−0.756589 + 0.653891i \(0.773135\pi\)
\(938\) 0 0
\(939\) −24.9067 −0.812800
\(940\) 0 0
\(941\) 17.0461 0.555686 0.277843 0.960627i \(-0.410381\pi\)
0.277843 + 0.960627i \(0.410381\pi\)
\(942\) 0 0
\(943\) −10.7070 10.7070i −0.348667 0.348667i
\(944\) 0 0
\(945\) 5.25122 + 0.358797i 0.170822 + 0.0116717i
\(946\) 0 0
\(947\) 16.4471 16.4471i 0.534460 0.534460i −0.387436 0.921896i \(-0.626639\pi\)
0.921896 + 0.387436i \(0.126639\pi\)
\(948\) 0 0
\(949\) 0.835791i 0.0271309i
\(950\) 0 0
\(951\) 53.0337i 1.71974i
\(952\) 0 0
\(953\) 20.8036 20.8036i 0.673896 0.673896i −0.284716 0.958612i \(-0.591899\pi\)
0.958612 + 0.284716i \(0.0918993\pi\)
\(954\) 0 0
\(955\) −5.27356 0.360323i −0.170648 0.0116598i
\(956\) 0 0
\(957\) −0.360992 0.360992i −0.0116692 0.0116692i
\(958\) 0 0
\(959\) −66.6914 −2.15358
\(960\) 0 0
\(961\) −42.8438 −1.38206
\(962\) 0 0
\(963\) 13.5071 + 13.5071i 0.435260 + 0.435260i
\(964\) 0 0
\(965\) −11.3755 13.0440i −0.366190 0.419901i
\(966\) 0 0
\(967\) −22.9821 + 22.9821i −0.739053 + 0.739053i −0.972395 0.233341i \(-0.925034\pi\)
0.233341 + 0.972395i \(0.425034\pi\)
\(968\) 0 0
\(969\) 10.6404i 0.341820i
\(970\) 0 0
\(971\) 8.44567i 0.271034i −0.990775 0.135517i \(-0.956730\pi\)
0.990775 0.135517i \(-0.0432696\pi\)
\(972\) 0 0
\(973\) −54.1887 + 54.1887i −1.73721 + 1.73721i
\(974\) 0 0
\(975\) −9.62137 1.32095i −0.308130 0.0423044i
\(976\) 0 0
\(977\) 15.5180 + 15.5180i 0.496466 + 0.496466i 0.910336 0.413870i \(-0.135823\pi\)
−0.413870 + 0.910336i \(0.635823\pi\)
\(978\) 0 0
\(979\) −0.352579 −0.0112685
\(980\) 0 0
\(981\) −32.4600 −1.03637
\(982\) 0 0
\(983\) −20.7889 20.7889i −0.663063 0.663063i 0.293038 0.956101i \(-0.405334\pi\)
−0.956101 + 0.293038i \(0.905334\pi\)
\(984\) 0 0
\(985\) 42.1169 36.7296i 1.34196 1.17030i
\(986\) 0 0
\(987\) 6.60842 6.60842i 0.210348 0.210348i
\(988\) 0 0
\(989\) 10.0656i 0.320069i
\(990\) 0 0
\(991\) 7.30002i 0.231893i −0.993255 0.115946i \(-0.963010\pi\)
0.993255 0.115946i \(-0.0369901\pi\)
\(992\) 0 0
\(993\) −32.9601 + 32.9601i −1.04596 + 1.04596i
\(994\) 0 0
\(995\) −1.23324 + 18.0492i −0.0390963 + 0.572199i
\(996\) 0 0
\(997\) −13.5478 13.5478i −0.429065 0.429065i 0.459245 0.888310i \(-0.348120\pi\)
−0.888310 + 0.459245i \(0.848120\pi\)
\(998\) 0 0
\(999\) 4.80684 0.152082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bn.a.1327.3 yes 32
4.3 odd 2 inner 1360.2.bn.a.1327.14 yes 32
5.3 odd 4 inner 1360.2.bn.a.783.14 yes 32
20.3 even 4 inner 1360.2.bn.a.783.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1360.2.bn.a.783.3 32 20.3 even 4 inner
1360.2.bn.a.783.14 yes 32 5.3 odd 4 inner
1360.2.bn.a.1327.3 yes 32 1.1 even 1 trivial
1360.2.bn.a.1327.14 yes 32 4.3 odd 2 inner