Properties

Label 1350.4.a.t
Level $1350$
Weight $4$
Character orbit 1350.a
Self dual yes
Analytic conductor $79.653$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,4,Mod(1,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,0,4,0,0,-8,8,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.6525785077\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} - 8 q^{7} + 8 q^{8} - 18 q^{11} - 8 q^{13} - 16 q^{14} + 16 q^{16} + 15 q^{17} + 23 q^{19} - 36 q^{22} + 63 q^{23} - 16 q^{26} - 32 q^{28} - 156 q^{29} - 85 q^{31} + 32 q^{32} + 30 q^{34}+ \cdots - 558 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 0 0 −8.00000 8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.4.a.t 1
3.b odd 2 1 1350.4.a.f 1
5.b even 2 1 270.4.a.b 1
5.c odd 4 2 1350.4.c.g 2
15.d odd 2 1 270.4.a.l yes 1
15.e even 4 2 1350.4.c.n 2
20.d odd 2 1 2160.4.a.c 1
45.h odd 6 2 810.4.e.b 2
45.j even 6 2 810.4.e.v 2
60.h even 2 1 2160.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.b 1 5.b even 2 1
270.4.a.l yes 1 15.d odd 2 1
810.4.e.b 2 45.h odd 6 2
810.4.e.v 2 45.j even 6 2
1350.4.a.f 1 3.b odd 2 1
1350.4.a.t 1 1.a even 1 1 trivial
1350.4.c.g 2 5.c odd 4 2
1350.4.c.n 2 15.e even 4 2
2160.4.a.c 1 20.d odd 2 1
2160.4.a.m 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1350))\):

\( T_{7} + 8 \) Copy content Toggle raw display
\( T_{11} + 18 \) Copy content Toggle raw display
\( T_{17} - 15 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T + 18 \) Copy content Toggle raw display
$13$ \( T + 8 \) Copy content Toggle raw display
$17$ \( T - 15 \) Copy content Toggle raw display
$19$ \( T - 23 \) Copy content Toggle raw display
$23$ \( T - 63 \) Copy content Toggle raw display
$29$ \( T + 156 \) Copy content Toggle raw display
$31$ \( T + 85 \) Copy content Toggle raw display
$37$ \( T + 74 \) Copy content Toggle raw display
$41$ \( T + 246 \) Copy content Toggle raw display
$43$ \( T - 190 \) Copy content Toggle raw display
$47$ \( T - 288 \) Copy content Toggle raw display
$53$ \( T + 177 \) Copy content Toggle raw display
$59$ \( T + 792 \) Copy content Toggle raw display
$61$ \( T + 907 \) Copy content Toggle raw display
$67$ \( T - 322 \) Copy content Toggle raw display
$71$ \( T - 270 \) Copy content Toggle raw display
$73$ \( T + 254 \) Copy content Toggle raw display
$79$ \( T + 1123 \) Copy content Toggle raw display
$83$ \( T + 771 \) Copy content Toggle raw display
$89$ \( T - 198 \) Copy content Toggle raw display
$97$ \( T - 1192 \) Copy content Toggle raw display
show more
show less