Properties

Label 1350.4.a.bu
Level $1350$
Weight $4$
Character orbit 1350.a
Self dual yes
Analytic conductor $79.653$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,4,Mod(1,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,0,0,0,-32,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.6525785077\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29021904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 50x^{2} + 109 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + \beta_1 q^{7} - 8 q^{8} - \beta_1 q^{11} + ( - \beta_{2} + \beta_1) q^{13} - 2 \beta_1 q^{14} + 16 q^{16} + (\beta_{3} - 27) q^{17} + (\beta_{3} + 11) q^{19} + 2 \beta_1 q^{22}+ \cdots + ( - 2 \beta_{3} - 538) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} - 32 q^{8} + 64 q^{16} - 110 q^{17} + 42 q^{19} - 122 q^{23} + 400 q^{31} - 128 q^{32} + 220 q^{34} - 84 q^{38} + 244 q^{46} - 772 q^{47} + 1074 q^{49} - 372 q^{53} + 1562 q^{61}+ \cdots - 2148 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 50x^{2} + 109 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 63\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 5\nu^{3} - 195\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 15\nu^{2} - 377 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} + 377 ) / 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 21\beta_{2} + 65\beta_1 ) / 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.90765
−1.51141
1.51141
6.90765
−2.00000 0 4.00000 0 0 −26.3948 −8.00000 0 0
1.2 −2.00000 0 4.00000 0 0 −22.9416 −8.00000 0 0
1.3 −2.00000 0 4.00000 0 0 22.9416 −8.00000 0 0
1.4 −2.00000 0 4.00000 0 0 26.3948 −8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.4.a.bu 4
3.b odd 2 1 1350.4.a.bv 4
5.b even 2 1 1350.4.a.bv 4
5.c odd 4 2 270.4.c.e 8
15.d odd 2 1 inner 1350.4.a.bu 4
15.e even 4 2 270.4.c.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.c.e 8 5.c odd 4 2
270.4.c.e 8 15.e even 4 2
1350.4.a.bu 4 1.a even 1 1 trivial
1350.4.a.bu 4 15.d odd 2 1 inner
1350.4.a.bv 4 3.b odd 2 1
1350.4.a.bv 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1350))\):

\( T_{7}^{4} - 1223T_{7}^{2} + 366676 \) Copy content Toggle raw display
\( T_{11}^{4} - 1223T_{11}^{2} + 366676 \) Copy content Toggle raw display
\( T_{17}^{2} + 55T_{17} - 6500 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 1223 T^{2} + 366676 \) Copy content Toggle raw display
$11$ \( T^{4} - 1223 T^{2} + 366676 \) Copy content Toggle raw display
$13$ \( T^{4} - 10908 T^{2} + 20342016 \) Copy content Toggle raw display
$17$ \( (T^{2} + 55 T - 6500)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 21 T - 7146)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 61 T - 6326)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 1647703296 \) Copy content Toggle raw display
$31$ \( (T^{2} - 200 T - 19025)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 132812 T^{2} + 262548736 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 9169688656 \) Copy content Toggle raw display
$43$ \( T^{4} - 113000 T^{2} + 916690000 \) Copy content Toggle raw display
$47$ \( (T^{2} + 386 T + 8224)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 186 T - 107451)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 67407499216 \) Copy content Toggle raw display
$61$ \( (T^{2} - 781 T - 28916)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 110836055296 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 12713760000 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 106363578196 \) Copy content Toggle raw display
$79$ \( (T^{2} - 1629 T + 598104)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 632 T - 161369)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 1839447376 \) Copy content Toggle raw display
$97$ \( T^{4} - 556883 T^{2} + 365828416 \) Copy content Toggle raw display
show more
show less