Properties

Label 1350.3.g.j.757.2
Level $1350$
Weight $3$
Character 1350.757
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,0,-8,0,0,0,0,0,0,0,-16,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 757.2
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1350.757
Dual form 1350.3.g.j.1243.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(3.67423 + 3.67423i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-3.67423 + 3.67423i) q^{13} +7.34847i q^{14} -4.00000 q^{16} +(6.00000 + 6.00000i) q^{17} -7.00000i q^{19} +(-12.0000 + 12.0000i) q^{23} -7.34847 q^{26} +(-7.34847 + 7.34847i) q^{28} +44.0908i q^{29} +10.0000 q^{31} +(-4.00000 - 4.00000i) q^{32} +12.0000i q^{34} +(25.7196 + 25.7196i) q^{37} +(7.00000 - 7.00000i) q^{38} -44.0908 q^{41} +(-29.3939 + 29.3939i) q^{43} -24.0000 q^{46} +(-18.0000 - 18.0000i) q^{47} -22.0000i q^{49} +(-7.34847 - 7.34847i) q^{52} +(30.0000 - 30.0000i) q^{53} -14.6969 q^{56} +(-44.0908 + 44.0908i) q^{58} +44.0908i q^{59} +23.0000 q^{61} +(10.0000 + 10.0000i) q^{62} -8.00000i q^{64} +(33.0681 + 33.0681i) q^{67} +(-12.0000 + 12.0000i) q^{68} -132.272 q^{71} +(-33.0681 + 33.0681i) q^{73} +51.4393i q^{74} +14.0000 q^{76} +103.000i q^{79} +(-44.0908 - 44.0908i) q^{82} +(42.0000 - 42.0000i) q^{83} -58.7878 q^{86} +44.0908i q^{89} -27.0000 q^{91} +(-24.0000 - 24.0000i) q^{92} -36.0000i q^{94} +(91.8559 + 91.8559i) q^{97} +(22.0000 - 22.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 16 q^{16} + 24 q^{17} - 48 q^{23} + 40 q^{31} - 16 q^{32} + 28 q^{38} - 96 q^{46} - 72 q^{47} + 120 q^{53} + 92 q^{61} + 40 q^{62} - 48 q^{68} + 56 q^{76} + 168 q^{83} - 108 q^{91}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 3.67423 + 3.67423i 0.524891 + 0.524891i 0.919044 0.394154i \(-0.128962\pi\)
−0.394154 + 0.919044i \(0.628962\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −3.67423 + 3.67423i −0.282633 + 0.282633i −0.834158 0.551525i \(-0.814046\pi\)
0.551525 + 0.834158i \(0.314046\pi\)
\(14\) 7.34847i 0.524891i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 6.00000 + 6.00000i 0.352941 + 0.352941i 0.861203 0.508262i \(-0.169712\pi\)
−0.508262 + 0.861203i \(0.669712\pi\)
\(18\) 0 0
\(19\) 7.00000i 0.368421i −0.982887 0.184211i \(-0.941027\pi\)
0.982887 0.184211i \(-0.0589728\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −12.0000 + 12.0000i −0.521739 + 0.521739i −0.918096 0.396357i \(-0.870274\pi\)
0.396357 + 0.918096i \(0.370274\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.34847 −0.282633
\(27\) 0 0
\(28\) −7.34847 + 7.34847i −0.262445 + 0.262445i
\(29\) 44.0908i 1.52037i 0.649705 + 0.760186i \(0.274892\pi\)
−0.649705 + 0.760186i \(0.725108\pi\)
\(30\) 0 0
\(31\) 10.0000 0.322581 0.161290 0.986907i \(-0.448434\pi\)
0.161290 + 0.986907i \(0.448434\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 0 0
\(34\) 12.0000i 0.352941i
\(35\) 0 0
\(36\) 0 0
\(37\) 25.7196 + 25.7196i 0.695125 + 0.695125i 0.963355 0.268230i \(-0.0864386\pi\)
−0.268230 + 0.963355i \(0.586439\pi\)
\(38\) 7.00000 7.00000i 0.184211 0.184211i
\(39\) 0 0
\(40\) 0 0
\(41\) −44.0908 −1.07539 −0.537693 0.843141i \(-0.680704\pi\)
−0.537693 + 0.843141i \(0.680704\pi\)
\(42\) 0 0
\(43\) −29.3939 + 29.3939i −0.683579 + 0.683579i −0.960805 0.277226i \(-0.910585\pi\)
0.277226 + 0.960805i \(0.410585\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −24.0000 −0.521739
\(47\) −18.0000 18.0000i −0.382979 0.382979i 0.489195 0.872174i \(-0.337290\pi\)
−0.872174 + 0.489195i \(0.837290\pi\)
\(48\) 0 0
\(49\) 22.0000i 0.448980i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.34847 7.34847i −0.141317 0.141317i
\(53\) 30.0000 30.0000i 0.566038 0.566038i −0.364978 0.931016i \(-0.618924\pi\)
0.931016 + 0.364978i \(0.118924\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −14.6969 −0.262445
\(57\) 0 0
\(58\) −44.0908 + 44.0908i −0.760186 + 0.760186i
\(59\) 44.0908i 0.747302i 0.927569 + 0.373651i \(0.121894\pi\)
−0.927569 + 0.373651i \(0.878106\pi\)
\(60\) 0 0
\(61\) 23.0000 0.377049 0.188525 0.982068i \(-0.439629\pi\)
0.188525 + 0.982068i \(0.439629\pi\)
\(62\) 10.0000 + 10.0000i 0.161290 + 0.161290i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 33.0681 + 33.0681i 0.493554 + 0.493554i 0.909424 0.415870i \(-0.136523\pi\)
−0.415870 + 0.909424i \(0.636523\pi\)
\(68\) −12.0000 + 12.0000i −0.176471 + 0.176471i
\(69\) 0 0
\(70\) 0 0
\(71\) −132.272 −1.86299 −0.931496 0.363751i \(-0.881496\pi\)
−0.931496 + 0.363751i \(0.881496\pi\)
\(72\) 0 0
\(73\) −33.0681 + 33.0681i −0.452988 + 0.452988i −0.896345 0.443357i \(-0.853787\pi\)
0.443357 + 0.896345i \(0.353787\pi\)
\(74\) 51.4393i 0.695125i
\(75\) 0 0
\(76\) 14.0000 0.184211
\(77\) 0 0
\(78\) 0 0
\(79\) 103.000i 1.30380i 0.758306 + 0.651899i \(0.226027\pi\)
−0.758306 + 0.651899i \(0.773973\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −44.0908 44.0908i −0.537693 0.537693i
\(83\) 42.0000 42.0000i 0.506024 0.506024i −0.407279 0.913304i \(-0.633523\pi\)
0.913304 + 0.407279i \(0.133523\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −58.7878 −0.683579
\(87\) 0 0
\(88\) 0 0
\(89\) 44.0908i 0.495402i 0.968836 + 0.247701i \(0.0796751\pi\)
−0.968836 + 0.247701i \(0.920325\pi\)
\(90\) 0 0
\(91\) −27.0000 −0.296703
\(92\) −24.0000 24.0000i −0.260870 0.260870i
\(93\) 0 0
\(94\) 36.0000i 0.382979i
\(95\) 0 0
\(96\) 0 0
\(97\) 91.8559 + 91.8559i 0.946968 + 0.946968i 0.998663 0.0516952i \(-0.0164624\pi\)
−0.0516952 + 0.998663i \(0.516462\pi\)
\(98\) 22.0000 22.0000i 0.224490 0.224490i
\(99\) 0 0
\(100\) 0 0
\(101\) −176.363 −1.74617 −0.873085 0.487567i \(-0.837884\pi\)
−0.873085 + 0.487567i \(0.837884\pi\)
\(102\) 0 0
\(103\) 55.1135 55.1135i 0.535083 0.535083i −0.386998 0.922081i \(-0.626488\pi\)
0.922081 + 0.386998i \(0.126488\pi\)
\(104\) 14.6969i 0.141317i
\(105\) 0 0
\(106\) 60.0000 0.566038
\(107\) 36.0000 + 36.0000i 0.336449 + 0.336449i 0.855029 0.518580i \(-0.173539\pi\)
−0.518580 + 0.855029i \(0.673539\pi\)
\(108\) 0 0
\(109\) 146.000i 1.33945i −0.742609 0.669725i \(-0.766412\pi\)
0.742609 0.669725i \(-0.233588\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −14.6969 14.6969i −0.131223 0.131223i
\(113\) −144.000 + 144.000i −1.27434 + 1.27434i −0.330547 + 0.943790i \(0.607233\pi\)
−0.943790 + 0.330547i \(0.892767\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −88.1816 −0.760186
\(117\) 0 0
\(118\) −44.0908 + 44.0908i −0.373651 + 0.373651i
\(119\) 44.0908i 0.370511i
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 23.0000 + 23.0000i 0.188525 + 0.188525i
\(123\) 0 0
\(124\) 20.0000i 0.161290i
\(125\) 0 0
\(126\) 0 0
\(127\) 58.7878 + 58.7878i 0.462896 + 0.462896i 0.899603 0.436708i \(-0.143856\pi\)
−0.436708 + 0.899603i \(0.643856\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) −176.363 −1.34628 −0.673142 0.739513i \(-0.735056\pi\)
−0.673142 + 0.739513i \(0.735056\pi\)
\(132\) 0 0
\(133\) 25.7196 25.7196i 0.193381 0.193381i
\(134\) 66.1362i 0.493554i
\(135\) 0 0
\(136\) −24.0000 −0.176471
\(137\) −48.0000 48.0000i −0.350365 0.350365i 0.509880 0.860245i \(-0.329690\pi\)
−0.860245 + 0.509880i \(0.829690\pi\)
\(138\) 0 0
\(139\) 89.0000i 0.640288i 0.947369 + 0.320144i \(0.103731\pi\)
−0.947369 + 0.320144i \(0.896269\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −132.272 132.272i −0.931496 0.931496i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −66.1362 −0.452988
\(147\) 0 0
\(148\) −51.4393 + 51.4393i −0.347563 + 0.347563i
\(149\) 88.1816i 0.591823i 0.955215 + 0.295912i \(0.0956234\pi\)
−0.955215 + 0.295912i \(0.904377\pi\)
\(150\) 0 0
\(151\) 103.000 0.682119 0.341060 0.940042i \(-0.389214\pi\)
0.341060 + 0.940042i \(0.389214\pi\)
\(152\) 14.0000 + 14.0000i 0.0921053 + 0.0921053i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 29.3939 + 29.3939i 0.187222 + 0.187222i 0.794494 0.607272i \(-0.207736\pi\)
−0.607272 + 0.794494i \(0.707736\pi\)
\(158\) −103.000 + 103.000i −0.651899 + 0.651899i
\(159\) 0 0
\(160\) 0 0
\(161\) −88.1816 −0.547712
\(162\) 0 0
\(163\) 172.689 172.689i 1.05944 1.05944i 0.0613240 0.998118i \(-0.480468\pi\)
0.998118 0.0613240i \(-0.0195323\pi\)
\(164\) 88.1816i 0.537693i
\(165\) 0 0
\(166\) 84.0000 0.506024
\(167\) 102.000 + 102.000i 0.610778 + 0.610778i 0.943149 0.332370i \(-0.107848\pi\)
−0.332370 + 0.943149i \(0.607848\pi\)
\(168\) 0 0
\(169\) 142.000i 0.840237i
\(170\) 0 0
\(171\) 0 0
\(172\) −58.7878 58.7878i −0.341789 0.341789i
\(173\) 192.000 192.000i 1.10983 1.10983i 0.116654 0.993173i \(-0.462783\pi\)
0.993173 0.116654i \(-0.0372168\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −44.0908 + 44.0908i −0.247701 + 0.247701i
\(179\) 220.454i 1.23159i 0.787908 + 0.615794i \(0.211164\pi\)
−0.787908 + 0.615794i \(0.788836\pi\)
\(180\) 0 0
\(181\) −47.0000 −0.259669 −0.129834 0.991536i \(-0.541445\pi\)
−0.129834 + 0.991536i \(0.541445\pi\)
\(182\) −27.0000 27.0000i −0.148352 0.148352i
\(183\) 0 0
\(184\) 48.0000i 0.260870i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 36.0000 36.0000i 0.191489 0.191489i
\(189\) 0 0
\(190\) 0 0
\(191\) −132.272 −0.692526 −0.346263 0.938138i \(-0.612549\pi\)
−0.346263 + 0.938138i \(0.612549\pi\)
\(192\) 0 0
\(193\) 121.250 121.250i 0.628237 0.628237i −0.319387 0.947624i \(-0.603477\pi\)
0.947624 + 0.319387i \(0.103477\pi\)
\(194\) 183.712i 0.946968i
\(195\) 0 0
\(196\) 44.0000 0.224490
\(197\) −42.0000 42.0000i −0.213198 0.213198i 0.592427 0.805624i \(-0.298170\pi\)
−0.805624 + 0.592427i \(0.798170\pi\)
\(198\) 0 0
\(199\) 209.000i 1.05025i −0.851025 0.525126i \(-0.824018\pi\)
0.851025 0.525126i \(-0.175982\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −176.363 176.363i −0.873085 0.873085i
\(203\) −162.000 + 162.000i −0.798030 + 0.798030i
\(204\) 0 0
\(205\) 0 0
\(206\) 110.227 0.535083
\(207\) 0 0
\(208\) 14.6969 14.6969i 0.0706584 0.0706584i
\(209\) 0 0
\(210\) 0 0
\(211\) −55.0000 −0.260664 −0.130332 0.991470i \(-0.541604\pi\)
−0.130332 + 0.991470i \(0.541604\pi\)
\(212\) 60.0000 + 60.0000i 0.283019 + 0.283019i
\(213\) 0 0
\(214\) 72.0000i 0.336449i
\(215\) 0 0
\(216\) 0 0
\(217\) 36.7423 + 36.7423i 0.169320 + 0.169320i
\(218\) 146.000 146.000i 0.669725 0.669725i
\(219\) 0 0
\(220\) 0 0
\(221\) −44.0908 −0.199506
\(222\) 0 0
\(223\) 235.151 235.151i 1.05449 1.05449i 0.0560615 0.998427i \(-0.482146\pi\)
0.998427 0.0560615i \(-0.0178543\pi\)
\(224\) 29.3939i 0.131223i
\(225\) 0 0
\(226\) −288.000 −1.27434
\(227\) −222.000 222.000i −0.977974 0.977974i 0.0217890 0.999763i \(-0.493064\pi\)
−0.999763 + 0.0217890i \(0.993064\pi\)
\(228\) 0 0
\(229\) 46.0000i 0.200873i −0.994943 0.100437i \(-0.967976\pi\)
0.994943 0.100437i \(-0.0320240\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −88.1816 88.1816i −0.380093 0.380093i
\(233\) 72.0000 72.0000i 0.309013 0.309013i −0.535514 0.844527i \(-0.679882\pi\)
0.844527 + 0.535514i \(0.179882\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −88.1816 −0.373651
\(237\) 0 0
\(238\) −44.0908 + 44.0908i −0.185256 + 0.185256i
\(239\) 44.0908i 0.184480i 0.995737 + 0.0922402i \(0.0294028\pi\)
−0.995737 + 0.0922402i \(0.970597\pi\)
\(240\) 0 0
\(241\) 167.000 0.692946 0.346473 0.938060i \(-0.387379\pi\)
0.346473 + 0.938060i \(0.387379\pi\)
\(242\) −121.000 121.000i −0.500000 0.500000i
\(243\) 0 0
\(244\) 46.0000i 0.188525i
\(245\) 0 0
\(246\) 0 0
\(247\) 25.7196 + 25.7196i 0.104128 + 0.104128i
\(248\) −20.0000 + 20.0000i −0.0806452 + 0.0806452i
\(249\) 0 0
\(250\) 0 0
\(251\) 220.454 0.878303 0.439152 0.898413i \(-0.355279\pi\)
0.439152 + 0.898413i \(0.355279\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 117.576i 0.462896i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 276.000 + 276.000i 1.07393 + 1.07393i 0.997040 + 0.0768904i \(0.0244992\pi\)
0.0768904 + 0.997040i \(0.475501\pi\)
\(258\) 0 0
\(259\) 189.000i 0.729730i
\(260\) 0 0
\(261\) 0 0
\(262\) −176.363 176.363i −0.673142 0.673142i
\(263\) 216.000 216.000i 0.821293 0.821293i −0.165001 0.986293i \(-0.552763\pi\)
0.986293 + 0.165001i \(0.0527626\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 51.4393 0.193381
\(267\) 0 0
\(268\) −66.1362 + 66.1362i −0.246777 + 0.246777i
\(269\) 44.0908i 0.163906i −0.996636 0.0819532i \(-0.973884\pi\)
0.996636 0.0819532i \(-0.0261158\pi\)
\(270\) 0 0
\(271\) 281.000 1.03690 0.518450 0.855108i \(-0.326509\pi\)
0.518450 + 0.855108i \(0.326509\pi\)
\(272\) −24.0000 24.0000i −0.0882353 0.0882353i
\(273\) 0 0
\(274\) 96.0000i 0.350365i
\(275\) 0 0
\(276\) 0 0
\(277\) 205.757 + 205.757i 0.742806 + 0.742806i 0.973117 0.230311i \(-0.0739745\pi\)
−0.230311 + 0.973117i \(0.573974\pi\)
\(278\) −89.0000 + 89.0000i −0.320144 + 0.320144i
\(279\) 0 0
\(280\) 0 0
\(281\) 264.545 0.941441 0.470720 0.882282i \(-0.343994\pi\)
0.470720 + 0.882282i \(0.343994\pi\)
\(282\) 0 0
\(283\) 146.969 146.969i 0.519326 0.519326i −0.398041 0.917368i \(-0.630310\pi\)
0.917368 + 0.398041i \(0.130310\pi\)
\(284\) 264.545i 0.931496i
\(285\) 0 0
\(286\) 0 0
\(287\) −162.000 162.000i −0.564460 0.564460i
\(288\) 0 0
\(289\) 217.000i 0.750865i
\(290\) 0 0
\(291\) 0 0
\(292\) −66.1362 66.1362i −0.226494 0.226494i
\(293\) −348.000 + 348.000i −1.18771 + 1.18771i −0.210015 + 0.977698i \(0.567351\pi\)
−0.977698 + 0.210015i \(0.932649\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −102.879 −0.347563
\(297\) 0 0
\(298\) −88.1816 + 88.1816i −0.295912 + 0.295912i
\(299\) 88.1816i 0.294922i
\(300\) 0 0
\(301\) −216.000 −0.717608
\(302\) 103.000 + 103.000i 0.341060 + 0.341060i
\(303\) 0 0
\(304\) 28.0000i 0.0921053i
\(305\) 0 0
\(306\) 0 0
\(307\) 88.1816 + 88.1816i 0.287237 + 0.287237i 0.835987 0.548750i \(-0.184896\pi\)
−0.548750 + 0.835987i \(0.684896\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 396.817 1.27594 0.637970 0.770061i \(-0.279774\pi\)
0.637970 + 0.770061i \(0.279774\pi\)
\(312\) 0 0
\(313\) 62.4620 62.4620i 0.199559 0.199559i −0.600252 0.799811i \(-0.704933\pi\)
0.799811 + 0.600252i \(0.204933\pi\)
\(314\) 58.7878i 0.187222i
\(315\) 0 0
\(316\) −206.000 −0.651899
\(317\) −96.0000 96.0000i −0.302839 0.302839i 0.539285 0.842124i \(-0.318695\pi\)
−0.842124 + 0.539285i \(0.818695\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −88.1816 88.1816i −0.273856 0.273856i
\(323\) 42.0000 42.0000i 0.130031 0.130031i
\(324\) 0 0
\(325\) 0 0
\(326\) 345.378 1.05944
\(327\) 0 0
\(328\) 88.1816 88.1816i 0.268846 0.268846i
\(329\) 132.272i 0.402044i
\(330\) 0 0
\(331\) −175.000 −0.528701 −0.264350 0.964427i \(-0.585158\pi\)
−0.264350 + 0.964427i \(0.585158\pi\)
\(332\) 84.0000 + 84.0000i 0.253012 + 0.253012i
\(333\) 0 0
\(334\) 204.000i 0.610778i
\(335\) 0 0
\(336\) 0 0
\(337\) 327.007 + 327.007i 0.970347 + 0.970347i 0.999573 0.0292260i \(-0.00930425\pi\)
−0.0292260 + 0.999573i \(0.509304\pi\)
\(338\) −142.000 + 142.000i −0.420118 + 0.420118i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 260.871 260.871i 0.760556 0.760556i
\(344\) 117.576i 0.341789i
\(345\) 0 0
\(346\) 384.000 1.10983
\(347\) 414.000 + 414.000i 1.19308 + 1.19308i 0.976197 + 0.216887i \(0.0695903\pi\)
0.216887 + 0.976197i \(0.430410\pi\)
\(348\) 0 0
\(349\) 167.000i 0.478510i 0.970957 + 0.239255i \(0.0769032\pi\)
−0.970957 + 0.239255i \(0.923097\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 288.000 288.000i 0.815864 0.815864i −0.169642 0.985506i \(-0.554261\pi\)
0.985506 + 0.169642i \(0.0542611\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −88.1816 −0.247701
\(357\) 0 0
\(358\) −220.454 + 220.454i −0.615794 + 0.615794i
\(359\) 617.271i 1.71942i −0.510783 0.859709i \(-0.670645\pi\)
0.510783 0.859709i \(-0.329355\pi\)
\(360\) 0 0
\(361\) 312.000 0.864266
\(362\) −47.0000 47.0000i −0.129834 0.129834i
\(363\) 0 0
\(364\) 54.0000i 0.148352i
\(365\) 0 0
\(366\) 0 0
\(367\) −209.431 209.431i −0.570658 0.570658i 0.361654 0.932312i \(-0.382212\pi\)
−0.932312 + 0.361654i \(0.882212\pi\)
\(368\) 48.0000 48.0000i 0.130435 0.130435i
\(369\) 0 0
\(370\) 0 0
\(371\) 220.454 0.594216
\(372\) 0 0
\(373\) −356.401 + 356.401i −0.955498 + 0.955498i −0.999051 0.0435531i \(-0.986132\pi\)
0.0435531 + 0.999051i \(0.486132\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 72.0000 0.191489
\(377\) −162.000 162.000i −0.429708 0.429708i
\(378\) 0 0
\(379\) 151.000i 0.398417i −0.979957 0.199208i \(-0.936163\pi\)
0.979957 0.199208i \(-0.0638371\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −132.272 132.272i −0.346263 0.346263i
\(383\) −492.000 + 492.000i −1.28460 + 1.28460i −0.346572 + 0.938023i \(0.612654\pi\)
−0.938023 + 0.346572i \(0.887346\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 242.499 0.628237
\(387\) 0 0
\(388\) −183.712 + 183.712i −0.473484 + 0.473484i
\(389\) 220.454i 0.566720i −0.959014 0.283360i \(-0.908551\pi\)
0.959014 0.283360i \(-0.0914491\pi\)
\(390\) 0 0
\(391\) −144.000 −0.368286
\(392\) 44.0000 + 44.0000i 0.112245 + 0.112245i
\(393\) 0 0
\(394\) 84.0000i 0.213198i
\(395\) 0 0
\(396\) 0 0
\(397\) 117.576 + 117.576i 0.296160 + 0.296160i 0.839508 0.543348i \(-0.182843\pi\)
−0.543348 + 0.839508i \(0.682843\pi\)
\(398\) 209.000 209.000i 0.525126 0.525126i
\(399\) 0 0
\(400\) 0 0
\(401\) 308.636 0.769665 0.384833 0.922986i \(-0.374259\pi\)
0.384833 + 0.922986i \(0.374259\pi\)
\(402\) 0 0
\(403\) −36.7423 + 36.7423i −0.0911721 + 0.0911721i
\(404\) 352.727i 0.873085i
\(405\) 0 0
\(406\) −324.000 −0.798030
\(407\) 0 0
\(408\) 0 0
\(409\) 287.000i 0.701711i 0.936430 + 0.350856i \(0.114109\pi\)
−0.936430 + 0.350856i \(0.885891\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 110.227 + 110.227i 0.267541 + 0.267541i
\(413\) −162.000 + 162.000i −0.392252 + 0.392252i
\(414\) 0 0
\(415\) 0 0
\(416\) 29.3939 0.0706584
\(417\) 0 0
\(418\) 0 0
\(419\) 573.181i 1.36797i −0.729495 0.683986i \(-0.760245\pi\)
0.729495 0.683986i \(-0.239755\pi\)
\(420\) 0 0
\(421\) −311.000 −0.738717 −0.369359 0.929287i \(-0.620423\pi\)
−0.369359 + 0.929287i \(0.620423\pi\)
\(422\) −55.0000 55.0000i −0.130332 0.130332i
\(423\) 0 0
\(424\) 120.000i 0.283019i
\(425\) 0 0
\(426\) 0 0
\(427\) 84.5074 + 84.5074i 0.197910 + 0.197910i
\(428\) −72.0000 + 72.0000i −0.168224 + 0.168224i
\(429\) 0 0
\(430\) 0 0
\(431\) 264.545 0.613793 0.306897 0.951743i \(-0.400709\pi\)
0.306897 + 0.951743i \(0.400709\pi\)
\(432\) 0 0
\(433\) −499.696 + 499.696i −1.15403 + 1.15403i −0.168296 + 0.985737i \(0.553826\pi\)
−0.985737 + 0.168296i \(0.946174\pi\)
\(434\) 73.4847i 0.169320i
\(435\) 0 0
\(436\) 292.000 0.669725
\(437\) 84.0000 + 84.0000i 0.192220 + 0.192220i
\(438\) 0 0
\(439\) 590.000i 1.34396i −0.740568 0.671982i \(-0.765443\pi\)
0.740568 0.671982i \(-0.234557\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −44.0908 44.0908i −0.0997530 0.0997530i
\(443\) 480.000 480.000i 1.08352 1.08352i 0.0873432 0.996178i \(-0.472162\pi\)
0.996178 0.0873432i \(-0.0278377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 470.302 1.05449
\(447\) 0 0
\(448\) 29.3939 29.3939i 0.0656113 0.0656113i
\(449\) 220.454i 0.490989i −0.969398 0.245495i \(-0.921050\pi\)
0.969398 0.245495i \(-0.0789503\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −288.000 288.000i −0.637168 0.637168i
\(453\) 0 0
\(454\) 444.000i 0.977974i
\(455\) 0 0
\(456\) 0 0
\(457\) 382.120 + 382.120i 0.836150 + 0.836150i 0.988350 0.152200i \(-0.0486358\pi\)
−0.152200 + 0.988350i \(0.548636\pi\)
\(458\) 46.0000 46.0000i 0.100437 0.100437i
\(459\) 0 0
\(460\) 0 0
\(461\) 749.544 1.62591 0.812954 0.582327i \(-0.197858\pi\)
0.812954 + 0.582327i \(0.197858\pi\)
\(462\) 0 0
\(463\) −25.7196 + 25.7196i −0.0555500 + 0.0555500i −0.734336 0.678786i \(-0.762506\pi\)
0.678786 + 0.734336i \(0.262506\pi\)
\(464\) 176.363i 0.380093i
\(465\) 0 0
\(466\) 144.000 0.309013
\(467\) −114.000 114.000i −0.244111 0.244111i 0.574437 0.818549i \(-0.305221\pi\)
−0.818549 + 0.574437i \(0.805221\pi\)
\(468\) 0 0
\(469\) 243.000i 0.518124i
\(470\) 0 0
\(471\) 0 0
\(472\) −88.1816 88.1816i −0.186825 0.186825i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −88.1816 −0.185256
\(477\) 0 0
\(478\) −44.0908 + 44.0908i −0.0922402 + 0.0922402i
\(479\) 132.272i 0.276143i 0.990422 + 0.138071i \(0.0440904\pi\)
−0.990422 + 0.138071i \(0.955910\pi\)
\(480\) 0 0
\(481\) −189.000 −0.392931
\(482\) 167.000 + 167.000i 0.346473 + 0.346473i
\(483\) 0 0
\(484\) 242.000i 0.500000i
\(485\) 0 0
\(486\) 0 0
\(487\) 62.4620 + 62.4620i 0.128259 + 0.128259i 0.768322 0.640063i \(-0.221092\pi\)
−0.640063 + 0.768322i \(0.721092\pi\)
\(488\) −46.0000 + 46.0000i −0.0942623 + 0.0942623i
\(489\) 0 0
\(490\) 0 0
\(491\) 88.1816 0.179596 0.0897980 0.995960i \(-0.471378\pi\)
0.0897980 + 0.995960i \(0.471378\pi\)
\(492\) 0 0
\(493\) −264.545 + 264.545i −0.536602 + 0.536602i
\(494\) 51.4393i 0.104128i
\(495\) 0 0
\(496\) −40.0000 −0.0806452
\(497\) −486.000 486.000i −0.977867 0.977867i
\(498\) 0 0
\(499\) 586.000i 1.17435i 0.809460 + 0.587174i \(0.199760\pi\)
−0.809460 + 0.587174i \(0.800240\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 220.454 + 220.454i 0.439152 + 0.439152i
\(503\) 312.000 312.000i 0.620278 0.620278i −0.325324 0.945603i \(-0.605473\pi\)
0.945603 + 0.325324i \(0.105473\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −117.576 + 117.576i −0.231448 + 0.231448i
\(509\) 264.545i 0.519735i −0.965644 0.259867i \(-0.916321\pi\)
0.965644 0.259867i \(-0.0836788\pi\)
\(510\) 0 0
\(511\) −243.000 −0.475538
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 552.000i 1.07393i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −189.000 + 189.000i −0.364865 + 0.364865i
\(519\) 0 0
\(520\) 0 0
\(521\) 617.271 1.18478 0.592391 0.805651i \(-0.298184\pi\)
0.592391 + 0.805651i \(0.298184\pi\)
\(522\) 0 0
\(523\) 297.613 297.613i 0.569050 0.569050i −0.362812 0.931862i \(-0.618183\pi\)
0.931862 + 0.362812i \(0.118183\pi\)
\(524\) 352.727i 0.673142i
\(525\) 0 0
\(526\) 432.000 0.821293
\(527\) 60.0000 + 60.0000i 0.113852 + 0.113852i
\(528\) 0 0
\(529\) 241.000i 0.455577i
\(530\) 0 0
\(531\) 0 0
\(532\) 51.4393 + 51.4393i 0.0966904 + 0.0966904i
\(533\) 162.000 162.000i 0.303940 0.303940i
\(534\) 0 0
\(535\) 0 0
\(536\) −132.272 −0.246777
\(537\) 0 0
\(538\) 44.0908 44.0908i 0.0819532 0.0819532i
\(539\) 0 0
\(540\) 0 0
\(541\) 1055.00 1.95009 0.975046 0.222002i \(-0.0712592\pi\)
0.975046 + 0.222002i \(0.0712592\pi\)
\(542\) 281.000 + 281.000i 0.518450 + 0.518450i
\(543\) 0 0
\(544\) 48.0000i 0.0882353i
\(545\) 0 0
\(546\) 0 0
\(547\) −385.795 385.795i −0.705292 0.705292i 0.260250 0.965541i \(-0.416195\pi\)
−0.965541 + 0.260250i \(0.916195\pi\)
\(548\) 96.0000 96.0000i 0.175182 0.175182i
\(549\) 0 0
\(550\) 0 0
\(551\) 308.636 0.560137
\(552\) 0 0
\(553\) −378.446 + 378.446i −0.684351 + 0.684351i
\(554\) 411.514i 0.742806i
\(555\) 0 0
\(556\) −178.000 −0.320144
\(557\) 342.000 + 342.000i 0.614004 + 0.614004i 0.943987 0.329983i \(-0.107043\pi\)
−0.329983 + 0.943987i \(0.607043\pi\)
\(558\) 0 0
\(559\) 216.000i 0.386404i
\(560\) 0 0
\(561\) 0 0
\(562\) 264.545 + 264.545i 0.470720 + 0.470720i
\(563\) −432.000 + 432.000i −0.767318 + 0.767318i −0.977634 0.210316i \(-0.932551\pi\)
0.210316 + 0.977634i \(0.432551\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 293.939 0.519326
\(567\) 0 0
\(568\) 264.545 264.545i 0.465748 0.465748i
\(569\) 220.454i 0.387441i −0.981057 0.193721i \(-0.937944\pi\)
0.981057 0.193721i \(-0.0620555\pi\)
\(570\) 0 0
\(571\) −847.000 −1.48336 −0.741681 0.670752i \(-0.765971\pi\)
−0.741681 + 0.670752i \(0.765971\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 324.000i 0.564460i
\(575\) 0 0
\(576\) 0 0
\(577\) 209.431 + 209.431i 0.362966 + 0.362966i 0.864904 0.501938i \(-0.167379\pi\)
−0.501938 + 0.864904i \(0.667379\pi\)
\(578\) 217.000 217.000i 0.375433 0.375433i
\(579\) 0 0
\(580\) 0 0
\(581\) 308.636 0.531215
\(582\) 0 0
\(583\) 0 0
\(584\) 132.272i 0.226494i
\(585\) 0 0
\(586\) −696.000 −1.18771
\(587\) −84.0000 84.0000i −0.143101 0.143101i 0.631927 0.775028i \(-0.282264\pi\)
−0.775028 + 0.631927i \(0.782264\pi\)
\(588\) 0 0
\(589\) 70.0000i 0.118846i
\(590\) 0 0
\(591\) 0 0
\(592\) −102.879 102.879i −0.173781 0.173781i
\(593\) 78.0000 78.0000i 0.131535 0.131535i −0.638274 0.769809i \(-0.720351\pi\)
0.769809 + 0.638274i \(0.220351\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −176.363 −0.295912
\(597\) 0 0
\(598\) 88.1816 88.1816i 0.147461 0.147461i
\(599\) 573.181i 0.956896i 0.878116 + 0.478448i \(0.158800\pi\)
−0.878116 + 0.478448i \(0.841200\pi\)
\(600\) 0 0
\(601\) 166.000 0.276206 0.138103 0.990418i \(-0.455899\pi\)
0.138103 + 0.990418i \(0.455899\pi\)
\(602\) −216.000 216.000i −0.358804 0.358804i
\(603\) 0 0
\(604\) 206.000i 0.341060i
\(605\) 0 0
\(606\) 0 0
\(607\) −349.052 349.052i −0.575045 0.575045i 0.358489 0.933534i \(-0.383292\pi\)
−0.933534 + 0.358489i \(0.883292\pi\)
\(608\) −28.0000 + 28.0000i −0.0460526 + 0.0460526i
\(609\) 0 0
\(610\) 0 0
\(611\) 132.272 0.216485
\(612\) 0 0
\(613\) −407.840 + 407.840i −0.665318 + 0.665318i −0.956629 0.291310i \(-0.905909\pi\)
0.291310 + 0.956629i \(0.405909\pi\)
\(614\) 176.363i 0.287237i
\(615\) 0 0
\(616\) 0 0
\(617\) 276.000 + 276.000i 0.447326 + 0.447326i 0.894465 0.447139i \(-0.147557\pi\)
−0.447139 + 0.894465i \(0.647557\pi\)
\(618\) 0 0
\(619\) 833.000i 1.34572i −0.739770 0.672859i \(-0.765066\pi\)
0.739770 0.672859i \(-0.234934\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 396.817 + 396.817i 0.637970 + 0.637970i
\(623\) −162.000 + 162.000i −0.260032 + 0.260032i
\(624\) 0 0
\(625\) 0 0
\(626\) 124.924 0.199559
\(627\) 0 0
\(628\) −58.7878 + 58.7878i −0.0936111 + 0.0936111i
\(629\) 308.636i 0.490677i
\(630\) 0 0
\(631\) 1001.00 1.58637 0.793185 0.608980i \(-0.208421\pi\)
0.793185 + 0.608980i \(0.208421\pi\)
\(632\) −206.000 206.000i −0.325949 0.325949i
\(633\) 0 0
\(634\) 192.000i 0.302839i
\(635\) 0 0
\(636\) 0 0
\(637\) 80.8332 + 80.8332i 0.126897 + 0.126897i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −881.816 −1.37569 −0.687844 0.725858i \(-0.741443\pi\)
−0.687844 + 0.725858i \(0.741443\pi\)
\(642\) 0 0
\(643\) 705.453 705.453i 1.09713 1.09713i 0.102382 0.994745i \(-0.467353\pi\)
0.994745 0.102382i \(-0.0326466\pi\)
\(644\) 176.363i 0.273856i
\(645\) 0 0
\(646\) 84.0000 0.130031
\(647\) 210.000 + 210.000i 0.324575 + 0.324575i 0.850519 0.525944i \(-0.176288\pi\)
−0.525944 + 0.850519i \(0.676288\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 345.378 + 345.378i 0.529721 + 0.529721i
\(653\) −348.000 + 348.000i −0.532925 + 0.532925i −0.921442 0.388517i \(-0.872988\pi\)
0.388517 + 0.921442i \(0.372988\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 176.363 0.268846
\(657\) 0 0
\(658\) 132.272 132.272i 0.201022 0.201022i
\(659\) 440.908i 0.669056i −0.942386 0.334528i \(-0.891423\pi\)
0.942386 0.334528i \(-0.108577\pi\)
\(660\) 0 0
\(661\) −431.000 −0.652042 −0.326021 0.945362i \(-0.605708\pi\)
−0.326021 + 0.945362i \(0.605708\pi\)
\(662\) −175.000 175.000i −0.264350 0.264350i
\(663\) 0 0
\(664\) 168.000i 0.253012i
\(665\) 0 0
\(666\) 0 0
\(667\) −529.090 529.090i −0.793238 0.793238i
\(668\) −204.000 + 204.000i −0.305389 + 0.305389i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −180.037 + 180.037i −0.267515 + 0.267515i −0.828098 0.560583i \(-0.810577\pi\)
0.560583 + 0.828098i \(0.310577\pi\)
\(674\) 654.014i 0.970347i
\(675\) 0 0
\(676\) −284.000 −0.420118
\(677\) 234.000 + 234.000i 0.345643 + 0.345643i 0.858484 0.512841i \(-0.171407\pi\)
−0.512841 + 0.858484i \(0.671407\pi\)
\(678\) 0 0
\(679\) 675.000i 0.994109i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −222.000 + 222.000i −0.325037 + 0.325037i −0.850695 0.525659i \(-0.823819\pi\)
0.525659 + 0.850695i \(0.323819\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 521.741 0.760556
\(687\) 0 0
\(688\) 117.576 117.576i 0.170895 0.170895i
\(689\) 220.454i 0.319962i
\(690\) 0 0
\(691\) −878.000 −1.27062 −0.635311 0.772256i \(-0.719128\pi\)
−0.635311 + 0.772256i \(0.719128\pi\)
\(692\) 384.000 + 384.000i 0.554913 + 0.554913i
\(693\) 0 0
\(694\) 828.000i 1.19308i
\(695\) 0 0
\(696\) 0 0
\(697\) −264.545 264.545i −0.379548 0.379548i
\(698\) −167.000 + 167.000i −0.239255 + 0.239255i
\(699\) 0 0
\(700\) 0 0
\(701\) −88.1816 −0.125794 −0.0628970 0.998020i \(-0.520034\pi\)
−0.0628970 + 0.998020i \(0.520034\pi\)
\(702\) 0 0
\(703\) 180.037 180.037i 0.256099 0.256099i
\(704\) 0 0
\(705\) 0 0
\(706\) 576.000 0.815864
\(707\) −648.000 648.000i −0.916549 0.916549i
\(708\) 0 0
\(709\) 553.000i 0.779972i −0.920821 0.389986i \(-0.872480\pi\)
0.920821 0.389986i \(-0.127520\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −88.1816 88.1816i −0.123851 0.123851i
\(713\) −120.000 + 120.000i −0.168303 + 0.168303i
\(714\) 0 0
\(715\) 0 0
\(716\) −440.908 −0.615794
\(717\) 0 0
\(718\) 617.271 617.271i 0.859709 0.859709i
\(719\) 661.362i 0.919836i 0.887961 + 0.459918i \(0.152121\pi\)
−0.887961 + 0.459918i \(0.847879\pi\)
\(720\) 0 0
\(721\) 405.000 0.561720
\(722\) 312.000 + 312.000i 0.432133 + 0.432133i
\(723\) 0 0
\(724\) 94.0000i 0.129834i
\(725\) 0 0
\(726\) 0 0
\(727\) −440.908 440.908i −0.606476 0.606476i 0.335547 0.942023i \(-0.391079\pi\)
−0.942023 + 0.335547i \(0.891079\pi\)
\(728\) 54.0000 54.0000i 0.0741758 0.0741758i
\(729\) 0 0
\(730\) 0 0
\(731\) −352.727 −0.482526
\(732\) 0 0
\(733\) −558.484 + 558.484i −0.761915 + 0.761915i −0.976668 0.214753i \(-0.931105\pi\)
0.214753 + 0.976668i \(0.431105\pi\)
\(734\) 418.863i 0.570658i
\(735\) 0 0
\(736\) 96.0000 0.130435
\(737\) 0 0
\(738\) 0 0
\(739\) 110.000i 0.148850i 0.997227 + 0.0744249i \(0.0237121\pi\)
−0.997227 + 0.0744249i \(0.976288\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 220.454 + 220.454i 0.297108 + 0.297108i
\(743\) 378.000 378.000i 0.508748 0.508748i −0.405394 0.914142i \(-0.632866\pi\)
0.914142 + 0.405394i \(0.132866\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −712.802 −0.955498
\(747\) 0 0
\(748\) 0 0
\(749\) 264.545i 0.353197i
\(750\) 0 0
\(751\) 703.000 0.936085 0.468043 0.883706i \(-0.344959\pi\)
0.468043 + 0.883706i \(0.344959\pi\)
\(752\) 72.0000 + 72.0000i 0.0957447 + 0.0957447i
\(753\) 0 0
\(754\) 324.000i 0.429708i
\(755\) 0 0
\(756\) 0 0
\(757\) −1003.07 1003.07i −1.32505 1.32505i −0.909626 0.415428i \(-0.863632\pi\)
−0.415428 0.909626i \(-0.636368\pi\)
\(758\) 151.000 151.000i 0.199208 0.199208i
\(759\) 0 0
\(760\) 0 0
\(761\) −617.271 −0.811132 −0.405566 0.914066i \(-0.632926\pi\)
−0.405566 + 0.914066i \(0.632926\pi\)
\(762\) 0 0
\(763\) 536.438 536.438i 0.703065 0.703065i
\(764\) 264.545i 0.346263i
\(765\) 0 0
\(766\) −984.000 −1.28460
\(767\) −162.000 162.000i −0.211213 0.211213i
\(768\) 0 0
\(769\) 359.000i 0.466840i −0.972376 0.233420i \(-0.925008\pi\)
0.972376 0.233420i \(-0.0749917\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 242.499 + 242.499i 0.314119 + 0.314119i
\(773\) 546.000 546.000i 0.706339 0.706339i −0.259424 0.965763i \(-0.583533\pi\)
0.965763 + 0.259424i \(0.0835329\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −367.423 −0.473484
\(777\) 0 0
\(778\) 220.454 220.454i 0.283360 0.283360i
\(779\) 308.636i 0.396195i
\(780\) 0 0
\(781\) 0 0
\(782\) −144.000 144.000i −0.184143 0.184143i
\(783\) 0 0
\(784\) 88.0000i 0.112245i
\(785\) 0 0
\(786\) 0 0
\(787\) −672.385 672.385i −0.854365 0.854365i 0.136303 0.990667i \(-0.456478\pi\)
−0.990667 + 0.136303i \(0.956478\pi\)
\(788\) 84.0000 84.0000i 0.106599 0.106599i
\(789\) 0 0
\(790\) 0 0
\(791\) −1058.18 −1.33777
\(792\) 0 0
\(793\) −84.5074 + 84.5074i −0.106567 + 0.106567i
\(794\) 235.151i 0.296160i
\(795\) 0 0
\(796\) 418.000 0.525126
\(797\) −204.000 204.000i −0.255960 0.255960i 0.567449 0.823409i \(-0.307930\pi\)
−0.823409 + 0.567449i \(0.807930\pi\)
\(798\) 0 0
\(799\) 216.000i 0.270338i
\(800\) 0 0
\(801\) 0 0
\(802\) 308.636 + 308.636i 0.384833 + 0.384833i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −73.4847 −0.0911721
\(807\) 0 0
\(808\) 352.727 352.727i 0.436543 0.436543i
\(809\) 88.1816i 0.109001i 0.998514 + 0.0545004i \(0.0173566\pi\)
−0.998514 + 0.0545004i \(0.982643\pi\)
\(810\) 0 0
\(811\) 754.000 0.929716 0.464858 0.885385i \(-0.346105\pi\)
0.464858 + 0.885385i \(0.346105\pi\)
\(812\) −324.000 324.000i −0.399015 0.399015i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 205.757 + 205.757i 0.251845 + 0.251845i
\(818\) −287.000 + 287.000i −0.350856 + 0.350856i
\(819\) 0 0
\(820\) 0 0
\(821\) −1014.09 −1.23519 −0.617594 0.786497i \(-0.711892\pi\)
−0.617594 + 0.786497i \(0.711892\pi\)
\(822\) 0 0
\(823\) 819.354 819.354i 0.995570 0.995570i −0.00441998 0.999990i \(-0.501407\pi\)
0.999990 + 0.00441998i \(0.00140693\pi\)
\(824\) 220.454i 0.267541i
\(825\) 0 0
\(826\) −324.000 −0.392252
\(827\) 402.000 + 402.000i 0.486094 + 0.486094i 0.907071 0.420977i \(-0.138313\pi\)
−0.420977 + 0.907071i \(0.638313\pi\)
\(828\) 0 0
\(829\) 335.000i 0.404101i 0.979375 + 0.202051i \(0.0647606\pi\)
−0.979375 + 0.202051i \(0.935239\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 29.3939 + 29.3939i 0.0353292 + 0.0353292i
\(833\) 132.000 132.000i 0.158463 0.158463i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 573.181 573.181i 0.683986 0.683986i
\(839\) 176.363i 0.210207i −0.994461 0.105103i \(-0.966483\pi\)
0.994461 0.105103i \(-0.0335173\pi\)
\(840\) 0 0
\(841\) −1103.00 −1.31153
\(842\) −311.000 311.000i −0.369359 0.369359i
\(843\) 0 0
\(844\) 110.000i 0.130332i
\(845\) 0 0
\(846\) 0 0
\(847\) −444.582 444.582i −0.524891 0.524891i
\(848\) −120.000 + 120.000i −0.141509 + 0.141509i
\(849\) 0 0
\(850\) 0 0
\(851\) −617.271 −0.725348
\(852\) 0 0
\(853\) −1003.07 + 1003.07i −1.17593 + 1.17593i −0.195155 + 0.980772i \(0.562521\pi\)
−0.980772 + 0.195155i \(0.937479\pi\)
\(854\) 169.015i 0.197910i
\(855\) 0 0
\(856\) −144.000 −0.168224
\(857\) 114.000 + 114.000i 0.133022 + 0.133022i 0.770483 0.637461i \(-0.220015\pi\)
−0.637461 + 0.770483i \(0.720015\pi\)
\(858\) 0 0
\(859\) 919.000i 1.06985i 0.844900 + 0.534924i \(0.179660\pi\)
−0.844900 + 0.534924i \(0.820340\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 264.545 + 264.545i 0.306897 + 0.306897i
\(863\) 102.000 102.000i 0.118192 0.118192i −0.645537 0.763729i \(-0.723366\pi\)
0.763729 + 0.645537i \(0.223366\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −999.392 −1.15403
\(867\) 0 0
\(868\) −73.4847 + 73.4847i −0.0846598 + 0.0846598i
\(869\) 0 0
\(870\) 0 0
\(871\) −243.000 −0.278990
\(872\) 292.000 + 292.000i 0.334862 + 0.334862i
\(873\) 0 0
\(874\) 168.000i 0.192220i
\(875\) 0 0
\(876\) 0 0
\(877\) 113.901 + 113.901i 0.129876 + 0.129876i 0.769057 0.639181i \(-0.220726\pi\)
−0.639181 + 0.769057i \(0.720726\pi\)
\(878\) 590.000 590.000i 0.671982 0.671982i
\(879\) 0 0
\(880\) 0 0
\(881\) −1058.18 −1.20111 −0.600556 0.799583i \(-0.705054\pi\)
−0.600556 + 0.799583i \(0.705054\pi\)
\(882\) 0 0
\(883\) 62.4620 62.4620i 0.0707384 0.0707384i −0.670852 0.741591i \(-0.734072\pi\)
0.741591 + 0.670852i \(0.234072\pi\)
\(884\) 88.1816i 0.0997530i
\(885\) 0 0
\(886\) 960.000 1.08352
\(887\) 96.0000 + 96.0000i 0.108230 + 0.108230i 0.759148 0.650918i \(-0.225616\pi\)
−0.650918 + 0.759148i \(0.725616\pi\)
\(888\) 0 0
\(889\) 432.000i 0.485939i
\(890\) 0 0
\(891\) 0 0
\(892\) 470.302 + 470.302i 0.527244 + 0.527244i
\(893\) −126.000 + 126.000i −0.141097 + 0.141097i
\(894\) 0 0
\(895\) 0 0
\(896\) 58.7878 0.0656113
\(897\) 0 0
\(898\) 220.454 220.454i 0.245495 0.245495i
\(899\) 440.908i 0.490443i
\(900\) 0 0
\(901\) 360.000 0.399556
\(902\) 0 0
\(903\) 0 0
\(904\) 576.000i 0.637168i
\(905\) 0 0
\(906\) 0 0
\(907\) −907.536 907.536i −1.00059 1.00059i −1.00000 0.000591078i \(-0.999812\pi\)
−0.000591078 1.00000i \(-0.500188\pi\)
\(908\) 444.000 444.000i 0.488987 0.488987i
\(909\) 0 0
\(910\) 0 0
\(911\) 88.1816 0.0967965 0.0483983 0.998828i \(-0.484588\pi\)
0.0483983 + 0.998828i \(0.484588\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 764.241i 0.836150i
\(915\) 0 0
\(916\) 92.0000 0.100437
\(917\) −648.000 648.000i −0.706652 0.706652i
\(918\) 0 0
\(919\) 754.000i 0.820457i −0.911983 0.410229i \(-0.865449\pi\)
0.911983 0.410229i \(-0.134551\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 749.544 + 749.544i 0.812954 + 0.812954i
\(923\) 486.000 486.000i 0.526544 0.526544i
\(924\) 0 0
\(925\) 0 0
\(926\) −51.4393 −0.0555500
\(927\) 0 0
\(928\) 176.363 176.363i 0.190047 0.190047i
\(929\) 1278.63i 1.37635i 0.725542 + 0.688177i \(0.241589\pi\)
−0.725542 + 0.688177i \(0.758411\pi\)
\(930\) 0 0
\(931\) −154.000 −0.165414
\(932\) 144.000 + 144.000i 0.154506 + 0.154506i
\(933\) 0 0
\(934\) 228.000i 0.244111i
\(935\) 0 0
\(936\) 0 0
\(937\) 1083.90 + 1083.90i 1.15678 + 1.15678i 0.985165 + 0.171611i \(0.0548973\pi\)
0.171611 + 0.985165i \(0.445103\pi\)
\(938\) −243.000 + 243.000i −0.259062 + 0.259062i
\(939\) 0 0
\(940\) 0 0
\(941\) −969.998 −1.03082 −0.515408 0.856945i \(-0.672360\pi\)
−0.515408 + 0.856945i \(0.672360\pi\)
\(942\) 0 0
\(943\) 529.090 529.090i 0.561071 0.561071i
\(944\) 176.363i 0.186825i
\(945\) 0 0
\(946\) 0 0
\(947\) 798.000 + 798.000i 0.842661 + 0.842661i 0.989204 0.146543i \(-0.0468147\pi\)
−0.146543 + 0.989204i \(0.546815\pi\)
\(948\) 0 0
\(949\) 243.000i 0.256059i
\(950\) 0 0
\(951\) 0 0
\(952\) −88.1816 88.1816i −0.0926278 0.0926278i
\(953\) −738.000 + 738.000i −0.774397 + 0.774397i −0.978872 0.204475i \(-0.934451\pi\)
0.204475 + 0.978872i \(0.434451\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −88.1816 −0.0922402
\(957\) 0 0
\(958\) −132.272 + 132.272i −0.138071 + 0.138071i
\(959\) 352.727i 0.367807i
\(960\) 0 0
\(961\) −861.000 −0.895942
\(962\) −189.000 189.000i −0.196466 0.196466i
\(963\) 0 0
\(964\) 334.000i 0.346473i
\(965\) 0 0
\(966\) 0 0
\(967\) −1201.47 1201.47i −1.24248 1.24248i −0.958970 0.283506i \(-0.908502\pi\)
−0.283506 0.958970i \(-0.591498\pi\)
\(968\) 242.000 242.000i 0.250000 0.250000i
\(969\) 0 0
\(970\) 0 0
\(971\) −749.544 −0.771930 −0.385965 0.922513i \(-0.626131\pi\)
−0.385965 + 0.922513i \(0.626131\pi\)
\(972\) 0 0
\(973\) −327.007 + 327.007i −0.336081 + 0.336081i
\(974\) 124.924i 0.128259i
\(975\) 0 0
\(976\) −92.0000 −0.0942623
\(977\) −594.000 594.000i −0.607984 0.607984i 0.334435 0.942419i \(-0.391454\pi\)
−0.942419 + 0.334435i \(0.891454\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 88.1816 + 88.1816i 0.0897980 + 0.0897980i
\(983\) −768.000 + 768.000i −0.781282 + 0.781282i −0.980047 0.198765i \(-0.936307\pi\)
0.198765 + 0.980047i \(0.436307\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −529.090 −0.536602
\(987\) 0 0
\(988\) −51.4393 + 51.4393i −0.0520641 + 0.0520641i
\(989\) 705.453i 0.713299i
\(990\) 0 0
\(991\) −7.00000 −0.00706357 −0.00353179 0.999994i \(-0.501124\pi\)
−0.00353179 + 0.999994i \(0.501124\pi\)
\(992\) −40.0000 40.0000i −0.0403226 0.0403226i
\(993\) 0 0
\(994\) 972.000i 0.977867i
\(995\) 0 0
\(996\) 0 0
\(997\) −440.908 440.908i −0.442235 0.442235i 0.450528 0.892762i \(-0.351236\pi\)
−0.892762 + 0.450528i \(0.851236\pi\)
\(998\) −586.000 + 586.000i −0.587174 + 0.587174i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.g.j.757.2 yes 4
3.2 odd 2 1350.3.g.c.757.2 yes 4
5.2 odd 4 1350.3.g.c.1243.1 yes 4
5.3 odd 4 inner 1350.3.g.j.1243.2 yes 4
5.4 even 2 1350.3.g.c.757.1 4
15.2 even 4 inner 1350.3.g.j.1243.1 yes 4
15.8 even 4 1350.3.g.c.1243.2 yes 4
15.14 odd 2 inner 1350.3.g.j.757.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.3.g.c.757.1 4 5.4 even 2
1350.3.g.c.757.2 yes 4 3.2 odd 2
1350.3.g.c.1243.1 yes 4 5.2 odd 4
1350.3.g.c.1243.2 yes 4 15.8 even 4
1350.3.g.j.757.1 yes 4 15.14 odd 2 inner
1350.3.g.j.757.2 yes 4 1.1 even 1 trivial
1350.3.g.j.1243.1 yes 4 15.2 even 4 inner
1350.3.g.j.1243.2 yes 4 5.3 odd 4 inner