Properties

Label 1350.3.g.j.1243.1
Level $1350$
Weight $3$
Character 1350.1243
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,0,-8,0,0,0,0,0,0,0,-16,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1243.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1243
Dual form 1350.3.g.j.757.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(-3.67423 + 3.67423i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(3.67423 + 3.67423i) q^{13} +7.34847i q^{14} -4.00000 q^{16} +(6.00000 - 6.00000i) q^{17} +7.00000i q^{19} +(-12.0000 - 12.0000i) q^{23} +7.34847 q^{26} +(7.34847 + 7.34847i) q^{28} +44.0908i q^{29} +10.0000 q^{31} +(-4.00000 + 4.00000i) q^{32} -12.0000i q^{34} +(-25.7196 + 25.7196i) q^{37} +(7.00000 + 7.00000i) q^{38} +44.0908 q^{41} +(29.3939 + 29.3939i) q^{43} -24.0000 q^{46} +(-18.0000 + 18.0000i) q^{47} +22.0000i q^{49} +(7.34847 - 7.34847i) q^{52} +(30.0000 + 30.0000i) q^{53} +14.6969 q^{56} +(44.0908 + 44.0908i) q^{58} +44.0908i q^{59} +23.0000 q^{61} +(10.0000 - 10.0000i) q^{62} +8.00000i q^{64} +(-33.0681 + 33.0681i) q^{67} +(-12.0000 - 12.0000i) q^{68} +132.272 q^{71} +(33.0681 + 33.0681i) q^{73} +51.4393i q^{74} +14.0000 q^{76} -103.000i q^{79} +(44.0908 - 44.0908i) q^{82} +(42.0000 + 42.0000i) q^{83} +58.7878 q^{86} +44.0908i q^{89} -27.0000 q^{91} +(-24.0000 + 24.0000i) q^{92} +36.0000i q^{94} +(-91.8559 + 91.8559i) q^{97} +(22.0000 + 22.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 16 q^{16} + 24 q^{17} - 48 q^{23} + 40 q^{31} - 16 q^{32} + 28 q^{38} - 96 q^{46} - 72 q^{47} + 120 q^{53} + 92 q^{61} + 40 q^{62} - 48 q^{68} + 56 q^{76} + 168 q^{83} - 108 q^{91}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.67423 + 3.67423i −0.524891 + 0.524891i −0.919044 0.394154i \(-0.871038\pi\)
0.394154 + 0.919044i \(0.371038\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 3.67423 + 3.67423i 0.282633 + 0.282633i 0.834158 0.551525i \(-0.185954\pi\)
−0.551525 + 0.834158i \(0.685954\pi\)
\(14\) 7.34847i 0.524891i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 6.00000 6.00000i 0.352941 0.352941i −0.508262 0.861203i \(-0.669712\pi\)
0.861203 + 0.508262i \(0.169712\pi\)
\(18\) 0 0
\(19\) 7.00000i 0.368421i 0.982887 + 0.184211i \(0.0589728\pi\)
−0.982887 + 0.184211i \(0.941027\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −12.0000 12.0000i −0.521739 0.521739i 0.396357 0.918096i \(-0.370274\pi\)
−0.918096 + 0.396357i \(0.870274\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 7.34847 0.282633
\(27\) 0 0
\(28\) 7.34847 + 7.34847i 0.262445 + 0.262445i
\(29\) 44.0908i 1.52037i 0.649705 + 0.760186i \(0.274892\pi\)
−0.649705 + 0.760186i \(0.725108\pi\)
\(30\) 0 0
\(31\) 10.0000 0.322581 0.161290 0.986907i \(-0.448434\pi\)
0.161290 + 0.986907i \(0.448434\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 12.0000i 0.352941i
\(35\) 0 0
\(36\) 0 0
\(37\) −25.7196 + 25.7196i −0.695125 + 0.695125i −0.963355 0.268230i \(-0.913561\pi\)
0.268230 + 0.963355i \(0.413561\pi\)
\(38\) 7.00000 + 7.00000i 0.184211 + 0.184211i
\(39\) 0 0
\(40\) 0 0
\(41\) 44.0908 1.07539 0.537693 0.843141i \(-0.319296\pi\)
0.537693 + 0.843141i \(0.319296\pi\)
\(42\) 0 0
\(43\) 29.3939 + 29.3939i 0.683579 + 0.683579i 0.960805 0.277226i \(-0.0894151\pi\)
−0.277226 + 0.960805i \(0.589415\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −24.0000 −0.521739
\(47\) −18.0000 + 18.0000i −0.382979 + 0.382979i −0.872174 0.489195i \(-0.837290\pi\)
0.489195 + 0.872174i \(0.337290\pi\)
\(48\) 0 0
\(49\) 22.0000i 0.448980i
\(50\) 0 0
\(51\) 0 0
\(52\) 7.34847 7.34847i 0.141317 0.141317i
\(53\) 30.0000 + 30.0000i 0.566038 + 0.566038i 0.931016 0.364978i \(-0.118924\pi\)
−0.364978 + 0.931016i \(0.618924\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 14.6969 0.262445
\(57\) 0 0
\(58\) 44.0908 + 44.0908i 0.760186 + 0.760186i
\(59\) 44.0908i 0.747302i 0.927569 + 0.373651i \(0.121894\pi\)
−0.927569 + 0.373651i \(0.878106\pi\)
\(60\) 0 0
\(61\) 23.0000 0.377049 0.188525 0.982068i \(-0.439629\pi\)
0.188525 + 0.982068i \(0.439629\pi\)
\(62\) 10.0000 10.0000i 0.161290 0.161290i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) −33.0681 + 33.0681i −0.493554 + 0.493554i −0.909424 0.415870i \(-0.863477\pi\)
0.415870 + 0.909424i \(0.363477\pi\)
\(68\) −12.0000 12.0000i −0.176471 0.176471i
\(69\) 0 0
\(70\) 0 0
\(71\) 132.272 1.86299 0.931496 0.363751i \(-0.118504\pi\)
0.931496 + 0.363751i \(0.118504\pi\)
\(72\) 0 0
\(73\) 33.0681 + 33.0681i 0.452988 + 0.452988i 0.896345 0.443357i \(-0.146213\pi\)
−0.443357 + 0.896345i \(0.646213\pi\)
\(74\) 51.4393i 0.695125i
\(75\) 0 0
\(76\) 14.0000 0.184211
\(77\) 0 0
\(78\) 0 0
\(79\) 103.000i 1.30380i −0.758306 0.651899i \(-0.773973\pi\)
0.758306 0.651899i \(-0.226027\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 44.0908 44.0908i 0.537693 0.537693i
\(83\) 42.0000 + 42.0000i 0.506024 + 0.506024i 0.913304 0.407279i \(-0.133523\pi\)
−0.407279 + 0.913304i \(0.633523\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 58.7878 0.683579
\(87\) 0 0
\(88\) 0 0
\(89\) 44.0908i 0.495402i 0.968836 + 0.247701i \(0.0796751\pi\)
−0.968836 + 0.247701i \(0.920325\pi\)
\(90\) 0 0
\(91\) −27.0000 −0.296703
\(92\) −24.0000 + 24.0000i −0.260870 + 0.260870i
\(93\) 0 0
\(94\) 36.0000i 0.382979i
\(95\) 0 0
\(96\) 0 0
\(97\) −91.8559 + 91.8559i −0.946968 + 0.946968i −0.998663 0.0516952i \(-0.983538\pi\)
0.0516952 + 0.998663i \(0.483538\pi\)
\(98\) 22.0000 + 22.0000i 0.224490 + 0.224490i
\(99\) 0 0
\(100\) 0 0
\(101\) 176.363 1.74617 0.873085 0.487567i \(-0.162116\pi\)
0.873085 + 0.487567i \(0.162116\pi\)
\(102\) 0 0
\(103\) −55.1135 55.1135i −0.535083 0.535083i 0.386998 0.922081i \(-0.373512\pi\)
−0.922081 + 0.386998i \(0.873512\pi\)
\(104\) 14.6969i 0.141317i
\(105\) 0 0
\(106\) 60.0000 0.566038
\(107\) 36.0000 36.0000i 0.336449 0.336449i −0.518580 0.855029i \(-0.673539\pi\)
0.855029 + 0.518580i \(0.173539\pi\)
\(108\) 0 0
\(109\) 146.000i 1.33945i 0.742609 + 0.669725i \(0.233588\pi\)
−0.742609 + 0.669725i \(0.766412\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14.6969 14.6969i 0.131223 0.131223i
\(113\) −144.000 144.000i −1.27434 1.27434i −0.943790 0.330547i \(-0.892767\pi\)
−0.330547 0.943790i \(-0.607233\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 88.1816 0.760186
\(117\) 0 0
\(118\) 44.0908 + 44.0908i 0.373651 + 0.373651i
\(119\) 44.0908i 0.370511i
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 23.0000 23.0000i 0.188525 0.188525i
\(123\) 0 0
\(124\) 20.0000i 0.161290i
\(125\) 0 0
\(126\) 0 0
\(127\) −58.7878 + 58.7878i −0.462896 + 0.462896i −0.899603 0.436708i \(-0.856144\pi\)
0.436708 + 0.899603i \(0.356144\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 176.363 1.34628 0.673142 0.739513i \(-0.264944\pi\)
0.673142 + 0.739513i \(0.264944\pi\)
\(132\) 0 0
\(133\) −25.7196 25.7196i −0.193381 0.193381i
\(134\) 66.1362i 0.493554i
\(135\) 0 0
\(136\) −24.0000 −0.176471
\(137\) −48.0000 + 48.0000i −0.350365 + 0.350365i −0.860245 0.509880i \(-0.829690\pi\)
0.509880 + 0.860245i \(0.329690\pi\)
\(138\) 0 0
\(139\) 89.0000i 0.640288i −0.947369 0.320144i \(-0.896269\pi\)
0.947369 0.320144i \(-0.103731\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 132.272 132.272i 0.931496 0.931496i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 66.1362 0.452988
\(147\) 0 0
\(148\) 51.4393 + 51.4393i 0.347563 + 0.347563i
\(149\) 88.1816i 0.591823i 0.955215 + 0.295912i \(0.0956234\pi\)
−0.955215 + 0.295912i \(0.904377\pi\)
\(150\) 0 0
\(151\) 103.000 0.682119 0.341060 0.940042i \(-0.389214\pi\)
0.341060 + 0.940042i \(0.389214\pi\)
\(152\) 14.0000 14.0000i 0.0921053 0.0921053i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −29.3939 + 29.3939i −0.187222 + 0.187222i −0.794494 0.607272i \(-0.792264\pi\)
0.607272 + 0.794494i \(0.292264\pi\)
\(158\) −103.000 103.000i −0.651899 0.651899i
\(159\) 0 0
\(160\) 0 0
\(161\) 88.1816 0.547712
\(162\) 0 0
\(163\) −172.689 172.689i −1.05944 1.05944i −0.998118 0.0613240i \(-0.980468\pi\)
−0.0613240 0.998118i \(-0.519532\pi\)
\(164\) 88.1816i 0.537693i
\(165\) 0 0
\(166\) 84.0000 0.506024
\(167\) 102.000 102.000i 0.610778 0.610778i −0.332370 0.943149i \(-0.607848\pi\)
0.943149 + 0.332370i \(0.107848\pi\)
\(168\) 0 0
\(169\) 142.000i 0.840237i
\(170\) 0 0
\(171\) 0 0
\(172\) 58.7878 58.7878i 0.341789 0.341789i
\(173\) 192.000 + 192.000i 1.10983 + 1.10983i 0.993173 + 0.116654i \(0.0372168\pi\)
0.116654 + 0.993173i \(0.462783\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 44.0908 + 44.0908i 0.247701 + 0.247701i
\(179\) 220.454i 1.23159i 0.787908 + 0.615794i \(0.211164\pi\)
−0.787908 + 0.615794i \(0.788836\pi\)
\(180\) 0 0
\(181\) −47.0000 −0.259669 −0.129834 0.991536i \(-0.541445\pi\)
−0.129834 + 0.991536i \(0.541445\pi\)
\(182\) −27.0000 + 27.0000i −0.148352 + 0.148352i
\(183\) 0 0
\(184\) 48.0000i 0.260870i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 36.0000 + 36.0000i 0.191489 + 0.191489i
\(189\) 0 0
\(190\) 0 0
\(191\) 132.272 0.692526 0.346263 0.938138i \(-0.387451\pi\)
0.346263 + 0.938138i \(0.387451\pi\)
\(192\) 0 0
\(193\) −121.250 121.250i −0.628237 0.628237i 0.319387 0.947624i \(-0.396523\pi\)
−0.947624 + 0.319387i \(0.896523\pi\)
\(194\) 183.712i 0.946968i
\(195\) 0 0
\(196\) 44.0000 0.224490
\(197\) −42.0000 + 42.0000i −0.213198 + 0.213198i −0.805624 0.592427i \(-0.798170\pi\)
0.592427 + 0.805624i \(0.298170\pi\)
\(198\) 0 0
\(199\) 209.000i 1.05025i 0.851025 + 0.525126i \(0.175982\pi\)
−0.851025 + 0.525126i \(0.824018\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 176.363 176.363i 0.873085 0.873085i
\(203\) −162.000 162.000i −0.798030 0.798030i
\(204\) 0 0
\(205\) 0 0
\(206\) −110.227 −0.535083
\(207\) 0 0
\(208\) −14.6969 14.6969i −0.0706584 0.0706584i
\(209\) 0 0
\(210\) 0 0
\(211\) −55.0000 −0.260664 −0.130332 0.991470i \(-0.541604\pi\)
−0.130332 + 0.991470i \(0.541604\pi\)
\(212\) 60.0000 60.0000i 0.283019 0.283019i
\(213\) 0 0
\(214\) 72.0000i 0.336449i
\(215\) 0 0
\(216\) 0 0
\(217\) −36.7423 + 36.7423i −0.169320 + 0.169320i
\(218\) 146.000 + 146.000i 0.669725 + 0.669725i
\(219\) 0 0
\(220\) 0 0
\(221\) 44.0908 0.199506
\(222\) 0 0
\(223\) −235.151 235.151i −1.05449 1.05449i −0.998427 0.0560615i \(-0.982146\pi\)
−0.0560615 0.998427i \(-0.517854\pi\)
\(224\) 29.3939i 0.131223i
\(225\) 0 0
\(226\) −288.000 −1.27434
\(227\) −222.000 + 222.000i −0.977974 + 0.977974i −0.999763 0.0217890i \(-0.993064\pi\)
0.0217890 + 0.999763i \(0.493064\pi\)
\(228\) 0 0
\(229\) 46.0000i 0.200873i 0.994943 + 0.100437i \(0.0320240\pi\)
−0.994943 + 0.100437i \(0.967976\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 88.1816 88.1816i 0.380093 0.380093i
\(233\) 72.0000 + 72.0000i 0.309013 + 0.309013i 0.844527 0.535514i \(-0.179882\pi\)
−0.535514 + 0.844527i \(0.679882\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 88.1816 0.373651
\(237\) 0 0
\(238\) 44.0908 + 44.0908i 0.185256 + 0.185256i
\(239\) 44.0908i 0.184480i 0.995737 + 0.0922402i \(0.0294028\pi\)
−0.995737 + 0.0922402i \(0.970597\pi\)
\(240\) 0 0
\(241\) 167.000 0.692946 0.346473 0.938060i \(-0.387379\pi\)
0.346473 + 0.938060i \(0.387379\pi\)
\(242\) −121.000 + 121.000i −0.500000 + 0.500000i
\(243\) 0 0
\(244\) 46.0000i 0.188525i
\(245\) 0 0
\(246\) 0 0
\(247\) −25.7196 + 25.7196i −0.104128 + 0.104128i
\(248\) −20.0000 20.0000i −0.0806452 0.0806452i
\(249\) 0 0
\(250\) 0 0
\(251\) −220.454 −0.878303 −0.439152 0.898413i \(-0.644721\pi\)
−0.439152 + 0.898413i \(0.644721\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 117.576i 0.462896i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 276.000 276.000i 1.07393 1.07393i 0.0768904 0.997040i \(-0.475501\pi\)
0.997040 0.0768904i \(-0.0244992\pi\)
\(258\) 0 0
\(259\) 189.000i 0.729730i
\(260\) 0 0
\(261\) 0 0
\(262\) 176.363 176.363i 0.673142 0.673142i
\(263\) 216.000 + 216.000i 0.821293 + 0.821293i 0.986293 0.165001i \(-0.0527626\pi\)
−0.165001 + 0.986293i \(0.552763\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −51.4393 −0.193381
\(267\) 0 0
\(268\) 66.1362 + 66.1362i 0.246777 + 0.246777i
\(269\) 44.0908i 0.163906i −0.996636 0.0819532i \(-0.973884\pi\)
0.996636 0.0819532i \(-0.0261158\pi\)
\(270\) 0 0
\(271\) 281.000 1.03690 0.518450 0.855108i \(-0.326509\pi\)
0.518450 + 0.855108i \(0.326509\pi\)
\(272\) −24.0000 + 24.0000i −0.0882353 + 0.0882353i
\(273\) 0 0
\(274\) 96.0000i 0.350365i
\(275\) 0 0
\(276\) 0 0
\(277\) −205.757 + 205.757i −0.742806 + 0.742806i −0.973117 0.230311i \(-0.926026\pi\)
0.230311 + 0.973117i \(0.426026\pi\)
\(278\) −89.0000 89.0000i −0.320144 0.320144i
\(279\) 0 0
\(280\) 0 0
\(281\) −264.545 −0.941441 −0.470720 0.882282i \(-0.656006\pi\)
−0.470720 + 0.882282i \(0.656006\pi\)
\(282\) 0 0
\(283\) −146.969 146.969i −0.519326 0.519326i 0.398041 0.917368i \(-0.369690\pi\)
−0.917368 + 0.398041i \(0.869690\pi\)
\(284\) 264.545i 0.931496i
\(285\) 0 0
\(286\) 0 0
\(287\) −162.000 + 162.000i −0.564460 + 0.564460i
\(288\) 0 0
\(289\) 217.000i 0.750865i
\(290\) 0 0
\(291\) 0 0
\(292\) 66.1362 66.1362i 0.226494 0.226494i
\(293\) −348.000 348.000i −1.18771 1.18771i −0.977698 0.210015i \(-0.932649\pi\)
−0.210015 0.977698i \(-0.567351\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 102.879 0.347563
\(297\) 0 0
\(298\) 88.1816 + 88.1816i 0.295912 + 0.295912i
\(299\) 88.1816i 0.294922i
\(300\) 0 0
\(301\) −216.000 −0.717608
\(302\) 103.000 103.000i 0.341060 0.341060i
\(303\) 0 0
\(304\) 28.0000i 0.0921053i
\(305\) 0 0
\(306\) 0 0
\(307\) −88.1816 + 88.1816i −0.287237 + 0.287237i −0.835987 0.548750i \(-0.815104\pi\)
0.548750 + 0.835987i \(0.315104\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −396.817 −1.27594 −0.637970 0.770061i \(-0.720226\pi\)
−0.637970 + 0.770061i \(0.720226\pi\)
\(312\) 0 0
\(313\) −62.4620 62.4620i −0.199559 0.199559i 0.600252 0.799811i \(-0.295067\pi\)
−0.799811 + 0.600252i \(0.795067\pi\)
\(314\) 58.7878i 0.187222i
\(315\) 0 0
\(316\) −206.000 −0.651899
\(317\) −96.0000 + 96.0000i −0.302839 + 0.302839i −0.842124 0.539285i \(-0.818695\pi\)
0.539285 + 0.842124i \(0.318695\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 88.1816 88.1816i 0.273856 0.273856i
\(323\) 42.0000 + 42.0000i 0.130031 + 0.130031i
\(324\) 0 0
\(325\) 0 0
\(326\) −345.378 −1.05944
\(327\) 0 0
\(328\) −88.1816 88.1816i −0.268846 0.268846i
\(329\) 132.272i 0.402044i
\(330\) 0 0
\(331\) −175.000 −0.528701 −0.264350 0.964427i \(-0.585158\pi\)
−0.264350 + 0.964427i \(0.585158\pi\)
\(332\) 84.0000 84.0000i 0.253012 0.253012i
\(333\) 0 0
\(334\) 204.000i 0.610778i
\(335\) 0 0
\(336\) 0 0
\(337\) −327.007 + 327.007i −0.970347 + 0.970347i −0.999573 0.0292260i \(-0.990696\pi\)
0.0292260 + 0.999573i \(0.490696\pi\)
\(338\) −142.000 142.000i −0.420118 0.420118i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −260.871 260.871i −0.760556 0.760556i
\(344\) 117.576i 0.341789i
\(345\) 0 0
\(346\) 384.000 1.10983
\(347\) 414.000 414.000i 1.19308 1.19308i 0.216887 0.976197i \(-0.430410\pi\)
0.976197 0.216887i \(-0.0695903\pi\)
\(348\) 0 0
\(349\) 167.000i 0.478510i −0.970957 0.239255i \(-0.923097\pi\)
0.970957 0.239255i \(-0.0769032\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 288.000 + 288.000i 0.815864 + 0.815864i 0.985506 0.169642i \(-0.0542611\pi\)
−0.169642 + 0.985506i \(0.554261\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 88.1816 0.247701
\(357\) 0 0
\(358\) 220.454 + 220.454i 0.615794 + 0.615794i
\(359\) 617.271i 1.71942i −0.510783 0.859709i \(-0.670645\pi\)
0.510783 0.859709i \(-0.329355\pi\)
\(360\) 0 0
\(361\) 312.000 0.864266
\(362\) −47.0000 + 47.0000i −0.129834 + 0.129834i
\(363\) 0 0
\(364\) 54.0000i 0.148352i
\(365\) 0 0
\(366\) 0 0
\(367\) 209.431 209.431i 0.570658 0.570658i −0.361654 0.932312i \(-0.617788\pi\)
0.932312 + 0.361654i \(0.117788\pi\)
\(368\) 48.0000 + 48.0000i 0.130435 + 0.130435i
\(369\) 0 0
\(370\) 0 0
\(371\) −220.454 −0.594216
\(372\) 0 0
\(373\) 356.401 + 356.401i 0.955498 + 0.955498i 0.999051 0.0435531i \(-0.0138678\pi\)
−0.0435531 + 0.999051i \(0.513868\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 72.0000 0.191489
\(377\) −162.000 + 162.000i −0.429708 + 0.429708i
\(378\) 0 0
\(379\) 151.000i 0.398417i 0.979957 + 0.199208i \(0.0638371\pi\)
−0.979957 + 0.199208i \(0.936163\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 132.272 132.272i 0.346263 0.346263i
\(383\) −492.000 492.000i −1.28460 1.28460i −0.938023 0.346572i \(-0.887346\pi\)
−0.346572 0.938023i \(-0.612654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −242.499 −0.628237
\(387\) 0 0
\(388\) 183.712 + 183.712i 0.473484 + 0.473484i
\(389\) 220.454i 0.566720i −0.959014 0.283360i \(-0.908551\pi\)
0.959014 0.283360i \(-0.0914491\pi\)
\(390\) 0 0
\(391\) −144.000 −0.368286
\(392\) 44.0000 44.0000i 0.112245 0.112245i
\(393\) 0 0
\(394\) 84.0000i 0.213198i
\(395\) 0 0
\(396\) 0 0
\(397\) −117.576 + 117.576i −0.296160 + 0.296160i −0.839508 0.543348i \(-0.817157\pi\)
0.543348 + 0.839508i \(0.317157\pi\)
\(398\) 209.000 + 209.000i 0.525126 + 0.525126i
\(399\) 0 0
\(400\) 0 0
\(401\) −308.636 −0.769665 −0.384833 0.922986i \(-0.625741\pi\)
−0.384833 + 0.922986i \(0.625741\pi\)
\(402\) 0 0
\(403\) 36.7423 + 36.7423i 0.0911721 + 0.0911721i
\(404\) 352.727i 0.873085i
\(405\) 0 0
\(406\) −324.000 −0.798030
\(407\) 0 0
\(408\) 0 0
\(409\) 287.000i 0.701711i −0.936430 0.350856i \(-0.885891\pi\)
0.936430 0.350856i \(-0.114109\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −110.227 + 110.227i −0.267541 + 0.267541i
\(413\) −162.000 162.000i −0.392252 0.392252i
\(414\) 0 0
\(415\) 0 0
\(416\) −29.3939 −0.0706584
\(417\) 0 0
\(418\) 0 0
\(419\) 573.181i 1.36797i −0.729495 0.683986i \(-0.760245\pi\)
0.729495 0.683986i \(-0.239755\pi\)
\(420\) 0 0
\(421\) −311.000 −0.738717 −0.369359 0.929287i \(-0.620423\pi\)
−0.369359 + 0.929287i \(0.620423\pi\)
\(422\) −55.0000 + 55.0000i −0.130332 + 0.130332i
\(423\) 0 0
\(424\) 120.000i 0.283019i
\(425\) 0 0
\(426\) 0 0
\(427\) −84.5074 + 84.5074i −0.197910 + 0.197910i
\(428\) −72.0000 72.0000i −0.168224 0.168224i
\(429\) 0 0
\(430\) 0 0
\(431\) −264.545 −0.613793 −0.306897 0.951743i \(-0.599291\pi\)
−0.306897 + 0.951743i \(0.599291\pi\)
\(432\) 0 0
\(433\) 499.696 + 499.696i 1.15403 + 1.15403i 0.985737 + 0.168296i \(0.0538263\pi\)
0.168296 + 0.985737i \(0.446174\pi\)
\(434\) 73.4847i 0.169320i
\(435\) 0 0
\(436\) 292.000 0.669725
\(437\) 84.0000 84.0000i 0.192220 0.192220i
\(438\) 0 0
\(439\) 590.000i 1.34396i 0.740568 + 0.671982i \(0.234557\pi\)
−0.740568 + 0.671982i \(0.765443\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 44.0908 44.0908i 0.0997530 0.0997530i
\(443\) 480.000 + 480.000i 1.08352 + 1.08352i 0.996178 + 0.0873432i \(0.0278377\pi\)
0.0873432 + 0.996178i \(0.472162\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −470.302 −1.05449
\(447\) 0 0
\(448\) −29.3939 29.3939i −0.0656113 0.0656113i
\(449\) 220.454i 0.490989i −0.969398 0.245495i \(-0.921050\pi\)
0.969398 0.245495i \(-0.0789503\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −288.000 + 288.000i −0.637168 + 0.637168i
\(453\) 0 0
\(454\) 444.000i 0.977974i
\(455\) 0 0
\(456\) 0 0
\(457\) −382.120 + 382.120i −0.836150 + 0.836150i −0.988350 0.152200i \(-0.951364\pi\)
0.152200 + 0.988350i \(0.451364\pi\)
\(458\) 46.0000 + 46.0000i 0.100437 + 0.100437i
\(459\) 0 0
\(460\) 0 0
\(461\) −749.544 −1.62591 −0.812954 0.582327i \(-0.802142\pi\)
−0.812954 + 0.582327i \(0.802142\pi\)
\(462\) 0 0
\(463\) 25.7196 + 25.7196i 0.0555500 + 0.0555500i 0.734336 0.678786i \(-0.237494\pi\)
−0.678786 + 0.734336i \(0.737494\pi\)
\(464\) 176.363i 0.380093i
\(465\) 0 0
\(466\) 144.000 0.309013
\(467\) −114.000 + 114.000i −0.244111 + 0.244111i −0.818549 0.574437i \(-0.805221\pi\)
0.574437 + 0.818549i \(0.305221\pi\)
\(468\) 0 0
\(469\) 243.000i 0.518124i
\(470\) 0 0
\(471\) 0 0
\(472\) 88.1816 88.1816i 0.186825 0.186825i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 88.1816 0.185256
\(477\) 0 0
\(478\) 44.0908 + 44.0908i 0.0922402 + 0.0922402i
\(479\) 132.272i 0.276143i 0.990422 + 0.138071i \(0.0440904\pi\)
−0.990422 + 0.138071i \(0.955910\pi\)
\(480\) 0 0
\(481\) −189.000 −0.392931
\(482\) 167.000 167.000i 0.346473 0.346473i
\(483\) 0 0
\(484\) 242.000i 0.500000i
\(485\) 0 0
\(486\) 0 0
\(487\) −62.4620 + 62.4620i −0.128259 + 0.128259i −0.768322 0.640063i \(-0.778908\pi\)
0.640063 + 0.768322i \(0.278908\pi\)
\(488\) −46.0000 46.0000i −0.0942623 0.0942623i
\(489\) 0 0
\(490\) 0 0
\(491\) −88.1816 −0.179596 −0.0897980 0.995960i \(-0.528622\pi\)
−0.0897980 + 0.995960i \(0.528622\pi\)
\(492\) 0 0
\(493\) 264.545 + 264.545i 0.536602 + 0.536602i
\(494\) 51.4393i 0.104128i
\(495\) 0 0
\(496\) −40.0000 −0.0806452
\(497\) −486.000 + 486.000i −0.977867 + 0.977867i
\(498\) 0 0
\(499\) 586.000i 1.17435i −0.809460 0.587174i \(-0.800240\pi\)
0.809460 0.587174i \(-0.199760\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −220.454 + 220.454i −0.439152 + 0.439152i
\(503\) 312.000 + 312.000i 0.620278 + 0.620278i 0.945603 0.325324i \(-0.105473\pi\)
−0.325324 + 0.945603i \(0.605473\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 117.576 + 117.576i 0.231448 + 0.231448i
\(509\) 264.545i 0.519735i −0.965644 0.259867i \(-0.916321\pi\)
0.965644 0.259867i \(-0.0836788\pi\)
\(510\) 0 0
\(511\) −243.000 −0.475538
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 552.000i 1.07393i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −189.000 189.000i −0.364865 0.364865i
\(519\) 0 0
\(520\) 0 0
\(521\) −617.271 −1.18478 −0.592391 0.805651i \(-0.701816\pi\)
−0.592391 + 0.805651i \(0.701816\pi\)
\(522\) 0 0
\(523\) −297.613 297.613i −0.569050 0.569050i 0.362812 0.931862i \(-0.381817\pi\)
−0.931862 + 0.362812i \(0.881817\pi\)
\(524\) 352.727i 0.673142i
\(525\) 0 0
\(526\) 432.000 0.821293
\(527\) 60.0000 60.0000i 0.113852 0.113852i
\(528\) 0 0
\(529\) 241.000i 0.455577i
\(530\) 0 0
\(531\) 0 0
\(532\) −51.4393 + 51.4393i −0.0966904 + 0.0966904i
\(533\) 162.000 + 162.000i 0.303940 + 0.303940i
\(534\) 0 0
\(535\) 0 0
\(536\) 132.272 0.246777
\(537\) 0 0
\(538\) −44.0908 44.0908i −0.0819532 0.0819532i
\(539\) 0 0
\(540\) 0 0
\(541\) 1055.00 1.95009 0.975046 0.222002i \(-0.0712592\pi\)
0.975046 + 0.222002i \(0.0712592\pi\)
\(542\) 281.000 281.000i 0.518450 0.518450i
\(543\) 0 0
\(544\) 48.0000i 0.0882353i
\(545\) 0 0
\(546\) 0 0
\(547\) 385.795 385.795i 0.705292 0.705292i −0.260250 0.965541i \(-0.583805\pi\)
0.965541 + 0.260250i \(0.0838048\pi\)
\(548\) 96.0000 + 96.0000i 0.175182 + 0.175182i
\(549\) 0 0
\(550\) 0 0
\(551\) −308.636 −0.560137
\(552\) 0 0
\(553\) 378.446 + 378.446i 0.684351 + 0.684351i
\(554\) 411.514i 0.742806i
\(555\) 0 0
\(556\) −178.000 −0.320144
\(557\) 342.000 342.000i 0.614004 0.614004i −0.329983 0.943987i \(-0.607043\pi\)
0.943987 + 0.329983i \(0.107043\pi\)
\(558\) 0 0
\(559\) 216.000i 0.386404i
\(560\) 0 0
\(561\) 0 0
\(562\) −264.545 + 264.545i −0.470720 + 0.470720i
\(563\) −432.000 432.000i −0.767318 0.767318i 0.210316 0.977634i \(-0.432551\pi\)
−0.977634 + 0.210316i \(0.932551\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −293.939 −0.519326
\(567\) 0 0
\(568\) −264.545 264.545i −0.465748 0.465748i
\(569\) 220.454i 0.387441i −0.981057 0.193721i \(-0.937944\pi\)
0.981057 0.193721i \(-0.0620555\pi\)
\(570\) 0 0
\(571\) −847.000 −1.48336 −0.741681 0.670752i \(-0.765971\pi\)
−0.741681 + 0.670752i \(0.765971\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 324.000i 0.564460i
\(575\) 0 0
\(576\) 0 0
\(577\) −209.431 + 209.431i −0.362966 + 0.362966i −0.864904 0.501938i \(-0.832621\pi\)
0.501938 + 0.864904i \(0.332621\pi\)
\(578\) 217.000 + 217.000i 0.375433 + 0.375433i
\(579\) 0 0
\(580\) 0 0
\(581\) −308.636 −0.531215
\(582\) 0 0
\(583\) 0 0
\(584\) 132.272i 0.226494i
\(585\) 0 0
\(586\) −696.000 −1.18771
\(587\) −84.0000 + 84.0000i −0.143101 + 0.143101i −0.775028 0.631927i \(-0.782264\pi\)
0.631927 + 0.775028i \(0.282264\pi\)
\(588\) 0 0
\(589\) 70.0000i 0.118846i
\(590\) 0 0
\(591\) 0 0
\(592\) 102.879 102.879i 0.173781 0.173781i
\(593\) 78.0000 + 78.0000i 0.131535 + 0.131535i 0.769809 0.638274i \(-0.220351\pi\)
−0.638274 + 0.769809i \(0.720351\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 176.363 0.295912
\(597\) 0 0
\(598\) −88.1816 88.1816i −0.147461 0.147461i
\(599\) 573.181i 0.956896i 0.878116 + 0.478448i \(0.158800\pi\)
−0.878116 + 0.478448i \(0.841200\pi\)
\(600\) 0 0
\(601\) 166.000 0.276206 0.138103 0.990418i \(-0.455899\pi\)
0.138103 + 0.990418i \(0.455899\pi\)
\(602\) −216.000 + 216.000i −0.358804 + 0.358804i
\(603\) 0 0
\(604\) 206.000i 0.341060i
\(605\) 0 0
\(606\) 0 0
\(607\) 349.052 349.052i 0.575045 0.575045i −0.358489 0.933534i \(-0.616708\pi\)
0.933534 + 0.358489i \(0.116708\pi\)
\(608\) −28.0000 28.0000i −0.0460526 0.0460526i
\(609\) 0 0
\(610\) 0 0
\(611\) −132.272 −0.216485
\(612\) 0 0
\(613\) 407.840 + 407.840i 0.665318 + 0.665318i 0.956629 0.291310i \(-0.0940912\pi\)
−0.291310 + 0.956629i \(0.594091\pi\)
\(614\) 176.363i 0.287237i
\(615\) 0 0
\(616\) 0 0
\(617\) 276.000 276.000i 0.447326 0.447326i −0.447139 0.894465i \(-0.647557\pi\)
0.894465 + 0.447139i \(0.147557\pi\)
\(618\) 0 0
\(619\) 833.000i 1.34572i 0.739770 + 0.672859i \(0.234934\pi\)
−0.739770 + 0.672859i \(0.765066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −396.817 + 396.817i −0.637970 + 0.637970i
\(623\) −162.000 162.000i −0.260032 0.260032i
\(624\) 0 0
\(625\) 0 0
\(626\) −124.924 −0.199559
\(627\) 0 0
\(628\) 58.7878 + 58.7878i 0.0936111 + 0.0936111i
\(629\) 308.636i 0.490677i
\(630\) 0 0
\(631\) 1001.00 1.58637 0.793185 0.608980i \(-0.208421\pi\)
0.793185 + 0.608980i \(0.208421\pi\)
\(632\) −206.000 + 206.000i −0.325949 + 0.325949i
\(633\) 0 0
\(634\) 192.000i 0.302839i
\(635\) 0 0
\(636\) 0 0
\(637\) −80.8332 + 80.8332i −0.126897 + 0.126897i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 881.816 1.37569 0.687844 0.725858i \(-0.258557\pi\)
0.687844 + 0.725858i \(0.258557\pi\)
\(642\) 0 0
\(643\) −705.453 705.453i −1.09713 1.09713i −0.994745 0.102382i \(-0.967353\pi\)
−0.102382 0.994745i \(-0.532647\pi\)
\(644\) 176.363i 0.273856i
\(645\) 0 0
\(646\) 84.0000 0.130031
\(647\) 210.000 210.000i 0.324575 0.324575i −0.525944 0.850519i \(-0.676288\pi\)
0.850519 + 0.525944i \(0.176288\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −345.378 + 345.378i −0.529721 + 0.529721i
\(653\) −348.000 348.000i −0.532925 0.532925i 0.388517 0.921442i \(-0.372988\pi\)
−0.921442 + 0.388517i \(0.872988\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −176.363 −0.268846
\(657\) 0 0
\(658\) −132.272 132.272i −0.201022 0.201022i
\(659\) 440.908i 0.669056i −0.942386 0.334528i \(-0.891423\pi\)
0.942386 0.334528i \(-0.108577\pi\)
\(660\) 0 0
\(661\) −431.000 −0.652042 −0.326021 0.945362i \(-0.605708\pi\)
−0.326021 + 0.945362i \(0.605708\pi\)
\(662\) −175.000 + 175.000i −0.264350 + 0.264350i
\(663\) 0 0
\(664\) 168.000i 0.253012i
\(665\) 0 0
\(666\) 0 0
\(667\) 529.090 529.090i 0.793238 0.793238i
\(668\) −204.000 204.000i −0.305389 0.305389i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 180.037 + 180.037i 0.267515 + 0.267515i 0.828098 0.560583i \(-0.189423\pi\)
−0.560583 + 0.828098i \(0.689423\pi\)
\(674\) 654.014i 0.970347i
\(675\) 0 0
\(676\) −284.000 −0.420118
\(677\) 234.000 234.000i 0.345643 0.345643i −0.512841 0.858484i \(-0.671407\pi\)
0.858484 + 0.512841i \(0.171407\pi\)
\(678\) 0 0
\(679\) 675.000i 0.994109i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −222.000 222.000i −0.325037 0.325037i 0.525659 0.850695i \(-0.323819\pi\)
−0.850695 + 0.525659i \(0.823819\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −521.741 −0.760556
\(687\) 0 0
\(688\) −117.576 117.576i −0.170895 0.170895i
\(689\) 220.454i 0.319962i
\(690\) 0 0
\(691\) −878.000 −1.27062 −0.635311 0.772256i \(-0.719128\pi\)
−0.635311 + 0.772256i \(0.719128\pi\)
\(692\) 384.000 384.000i 0.554913 0.554913i
\(693\) 0 0
\(694\) 828.000i 1.19308i
\(695\) 0 0
\(696\) 0 0
\(697\) 264.545 264.545i 0.379548 0.379548i
\(698\) −167.000 167.000i −0.239255 0.239255i
\(699\) 0 0
\(700\) 0 0
\(701\) 88.1816 0.125794 0.0628970 0.998020i \(-0.479966\pi\)
0.0628970 + 0.998020i \(0.479966\pi\)
\(702\) 0 0
\(703\) −180.037 180.037i −0.256099 0.256099i
\(704\) 0 0
\(705\) 0 0
\(706\) 576.000 0.815864
\(707\) −648.000 + 648.000i −0.916549 + 0.916549i
\(708\) 0 0
\(709\) 553.000i 0.779972i 0.920821 + 0.389986i \(0.127520\pi\)
−0.920821 + 0.389986i \(0.872480\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 88.1816 88.1816i 0.123851 0.123851i
\(713\) −120.000 120.000i −0.168303 0.168303i
\(714\) 0 0
\(715\) 0 0
\(716\) 440.908 0.615794
\(717\) 0 0
\(718\) −617.271 617.271i −0.859709 0.859709i
\(719\) 661.362i 0.919836i 0.887961 + 0.459918i \(0.152121\pi\)
−0.887961 + 0.459918i \(0.847879\pi\)
\(720\) 0 0
\(721\) 405.000 0.561720
\(722\) 312.000 312.000i 0.432133 0.432133i
\(723\) 0 0
\(724\) 94.0000i 0.129834i
\(725\) 0 0
\(726\) 0 0
\(727\) 440.908 440.908i 0.606476 0.606476i −0.335547 0.942023i \(-0.608921\pi\)
0.942023 + 0.335547i \(0.108921\pi\)
\(728\) 54.0000 + 54.0000i 0.0741758 + 0.0741758i
\(729\) 0 0
\(730\) 0 0
\(731\) 352.727 0.482526
\(732\) 0 0
\(733\) 558.484 + 558.484i 0.761915 + 0.761915i 0.976668 0.214753i \(-0.0688948\pi\)
−0.214753 + 0.976668i \(0.568895\pi\)
\(734\) 418.863i 0.570658i
\(735\) 0 0
\(736\) 96.0000 0.130435
\(737\) 0 0
\(738\) 0 0
\(739\) 110.000i 0.148850i −0.997227 0.0744249i \(-0.976288\pi\)
0.997227 0.0744249i \(-0.0237121\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −220.454 + 220.454i −0.297108 + 0.297108i
\(743\) 378.000 + 378.000i 0.508748 + 0.508748i 0.914142 0.405394i \(-0.132866\pi\)
−0.405394 + 0.914142i \(0.632866\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 712.802 0.955498
\(747\) 0 0
\(748\) 0 0
\(749\) 264.545i 0.353197i
\(750\) 0 0
\(751\) 703.000 0.936085 0.468043 0.883706i \(-0.344959\pi\)
0.468043 + 0.883706i \(0.344959\pi\)
\(752\) 72.0000 72.0000i 0.0957447 0.0957447i
\(753\) 0 0
\(754\) 324.000i 0.429708i
\(755\) 0 0
\(756\) 0 0
\(757\) 1003.07 1003.07i 1.32505 1.32505i 0.415428 0.909626i \(-0.363632\pi\)
0.909626 0.415428i \(-0.136368\pi\)
\(758\) 151.000 + 151.000i 0.199208 + 0.199208i
\(759\) 0 0
\(760\) 0 0
\(761\) 617.271 0.811132 0.405566 0.914066i \(-0.367074\pi\)
0.405566 + 0.914066i \(0.367074\pi\)
\(762\) 0 0
\(763\) −536.438 536.438i −0.703065 0.703065i
\(764\) 264.545i 0.346263i
\(765\) 0 0
\(766\) −984.000 −1.28460
\(767\) −162.000 + 162.000i −0.211213 + 0.211213i
\(768\) 0 0
\(769\) 359.000i 0.466840i 0.972376 + 0.233420i \(0.0749917\pi\)
−0.972376 + 0.233420i \(0.925008\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −242.499 + 242.499i −0.314119 + 0.314119i
\(773\) 546.000 + 546.000i 0.706339 + 0.706339i 0.965763 0.259424i \(-0.0835329\pi\)
−0.259424 + 0.965763i \(0.583533\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 367.423 0.473484
\(777\) 0 0
\(778\) −220.454 220.454i −0.283360 0.283360i
\(779\) 308.636i 0.396195i
\(780\) 0 0
\(781\) 0 0
\(782\) −144.000 + 144.000i −0.184143 + 0.184143i
\(783\) 0 0
\(784\) 88.0000i 0.112245i
\(785\) 0 0
\(786\) 0 0
\(787\) 672.385 672.385i 0.854365 0.854365i −0.136303 0.990667i \(-0.543522\pi\)
0.990667 + 0.136303i \(0.0435220\pi\)
\(788\) 84.0000 + 84.0000i 0.106599 + 0.106599i
\(789\) 0 0
\(790\) 0 0
\(791\) 1058.18 1.33777
\(792\) 0 0
\(793\) 84.5074 + 84.5074i 0.106567 + 0.106567i
\(794\) 235.151i 0.296160i
\(795\) 0 0
\(796\) 418.000 0.525126
\(797\) −204.000 + 204.000i −0.255960 + 0.255960i −0.823409 0.567449i \(-0.807930\pi\)
0.567449 + 0.823409i \(0.307930\pi\)
\(798\) 0 0
\(799\) 216.000i 0.270338i
\(800\) 0 0
\(801\) 0 0
\(802\) −308.636 + 308.636i −0.384833 + 0.384833i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 73.4847 0.0911721
\(807\) 0 0
\(808\) −352.727 352.727i −0.436543 0.436543i
\(809\) 88.1816i 0.109001i 0.998514 + 0.0545004i \(0.0173566\pi\)
−0.998514 + 0.0545004i \(0.982643\pi\)
\(810\) 0 0
\(811\) 754.000 0.929716 0.464858 0.885385i \(-0.346105\pi\)
0.464858 + 0.885385i \(0.346105\pi\)
\(812\) −324.000 + 324.000i −0.399015 + 0.399015i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −205.757 + 205.757i −0.251845 + 0.251845i
\(818\) −287.000 287.000i −0.350856 0.350856i
\(819\) 0 0
\(820\) 0 0
\(821\) 1014.09 1.23519 0.617594 0.786497i \(-0.288108\pi\)
0.617594 + 0.786497i \(0.288108\pi\)
\(822\) 0 0
\(823\) −819.354 819.354i −0.995570 0.995570i 0.00441998 0.999990i \(-0.498593\pi\)
−0.999990 + 0.00441998i \(0.998593\pi\)
\(824\) 220.454i 0.267541i
\(825\) 0 0
\(826\) −324.000 −0.392252
\(827\) 402.000 402.000i 0.486094 0.486094i −0.420977 0.907071i \(-0.638313\pi\)
0.907071 + 0.420977i \(0.138313\pi\)
\(828\) 0 0
\(829\) 335.000i 0.404101i −0.979375 0.202051i \(-0.935239\pi\)
0.979375 0.202051i \(-0.0647606\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −29.3939 + 29.3939i −0.0353292 + 0.0353292i
\(833\) 132.000 + 132.000i 0.158463 + 0.158463i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −573.181 573.181i −0.683986 0.683986i
\(839\) 176.363i 0.210207i −0.994461 0.105103i \(-0.966483\pi\)
0.994461 0.105103i \(-0.0335173\pi\)
\(840\) 0 0
\(841\) −1103.00 −1.31153
\(842\) −311.000 + 311.000i −0.369359 + 0.369359i
\(843\) 0 0
\(844\) 110.000i 0.130332i
\(845\) 0 0
\(846\) 0 0
\(847\) 444.582 444.582i 0.524891 0.524891i
\(848\) −120.000 120.000i −0.141509 0.141509i
\(849\) 0 0
\(850\) 0 0
\(851\) 617.271 0.725348
\(852\) 0 0
\(853\) 1003.07 + 1003.07i 1.17593 + 1.17593i 0.980772 + 0.195155i \(0.0625210\pi\)
0.195155 + 0.980772i \(0.437479\pi\)
\(854\) 169.015i 0.197910i
\(855\) 0 0
\(856\) −144.000 −0.168224
\(857\) 114.000 114.000i 0.133022 0.133022i −0.637461 0.770483i \(-0.720015\pi\)
0.770483 + 0.637461i \(0.220015\pi\)
\(858\) 0 0
\(859\) 919.000i 1.06985i −0.844900 0.534924i \(-0.820340\pi\)
0.844900 0.534924i \(-0.179660\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −264.545 + 264.545i −0.306897 + 0.306897i
\(863\) 102.000 + 102.000i 0.118192 + 0.118192i 0.763729 0.645537i \(-0.223366\pi\)
−0.645537 + 0.763729i \(0.723366\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 999.392 1.15403
\(867\) 0 0
\(868\) 73.4847 + 73.4847i 0.0846598 + 0.0846598i
\(869\) 0 0
\(870\) 0 0
\(871\) −243.000 −0.278990
\(872\) 292.000 292.000i 0.334862 0.334862i
\(873\) 0 0
\(874\) 168.000i 0.192220i
\(875\) 0 0
\(876\) 0 0
\(877\) −113.901 + 113.901i −0.129876 + 0.129876i −0.769057 0.639181i \(-0.779274\pi\)
0.639181 + 0.769057i \(0.279274\pi\)
\(878\) 590.000 + 590.000i 0.671982 + 0.671982i
\(879\) 0 0
\(880\) 0 0
\(881\) 1058.18 1.20111 0.600556 0.799583i \(-0.294946\pi\)
0.600556 + 0.799583i \(0.294946\pi\)
\(882\) 0 0
\(883\) −62.4620 62.4620i −0.0707384 0.0707384i 0.670852 0.741591i \(-0.265928\pi\)
−0.741591 + 0.670852i \(0.765928\pi\)
\(884\) 88.1816i 0.0997530i
\(885\) 0 0
\(886\) 960.000 1.08352
\(887\) 96.0000 96.0000i 0.108230 0.108230i −0.650918 0.759148i \(-0.725616\pi\)
0.759148 + 0.650918i \(0.225616\pi\)
\(888\) 0 0
\(889\) 432.000i 0.485939i
\(890\) 0 0
\(891\) 0 0
\(892\) −470.302 + 470.302i −0.527244 + 0.527244i
\(893\) −126.000 126.000i −0.141097 0.141097i
\(894\) 0 0
\(895\) 0 0
\(896\) −58.7878 −0.0656113
\(897\) 0 0
\(898\) −220.454 220.454i −0.245495 0.245495i
\(899\) 440.908i 0.490443i
\(900\) 0 0
\(901\) 360.000 0.399556
\(902\) 0 0
\(903\) 0 0
\(904\) 576.000i 0.637168i
\(905\) 0 0
\(906\) 0 0
\(907\) 907.536 907.536i 1.00059 1.00059i 0.000591078 1.00000i \(-0.499812\pi\)
1.00000 0.000591078i \(-0.000188146\pi\)
\(908\) 444.000 + 444.000i 0.488987 + 0.488987i
\(909\) 0 0
\(910\) 0 0
\(911\) −88.1816 −0.0967965 −0.0483983 0.998828i \(-0.515412\pi\)
−0.0483983 + 0.998828i \(0.515412\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 764.241i 0.836150i
\(915\) 0 0
\(916\) 92.0000 0.100437
\(917\) −648.000 + 648.000i −0.706652 + 0.706652i
\(918\) 0 0
\(919\) 754.000i 0.820457i 0.911983 + 0.410229i \(0.134551\pi\)
−0.911983 + 0.410229i \(0.865449\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −749.544 + 749.544i −0.812954 + 0.812954i
\(923\) 486.000 + 486.000i 0.526544 + 0.526544i
\(924\) 0 0
\(925\) 0 0
\(926\) 51.4393 0.0555500
\(927\) 0 0
\(928\) −176.363 176.363i −0.190047 0.190047i
\(929\) 1278.63i 1.37635i 0.725542 + 0.688177i \(0.241589\pi\)
−0.725542 + 0.688177i \(0.758411\pi\)
\(930\) 0 0
\(931\) −154.000 −0.165414
\(932\) 144.000 144.000i 0.154506 0.154506i
\(933\) 0 0
\(934\) 228.000i 0.244111i
\(935\) 0 0
\(936\) 0 0
\(937\) −1083.90 + 1083.90i −1.15678 + 1.15678i −0.171611 + 0.985165i \(0.554897\pi\)
−0.985165 + 0.171611i \(0.945103\pi\)
\(938\) −243.000 243.000i −0.259062 0.259062i
\(939\) 0 0
\(940\) 0 0
\(941\) 969.998 1.03082 0.515408 0.856945i \(-0.327640\pi\)
0.515408 + 0.856945i \(0.327640\pi\)
\(942\) 0 0
\(943\) −529.090 529.090i −0.561071 0.561071i
\(944\) 176.363i 0.186825i
\(945\) 0 0
\(946\) 0 0
\(947\) 798.000 798.000i 0.842661 0.842661i −0.146543 0.989204i \(-0.546815\pi\)
0.989204 + 0.146543i \(0.0468147\pi\)
\(948\) 0 0
\(949\) 243.000i 0.256059i
\(950\) 0 0
\(951\) 0 0
\(952\) 88.1816 88.1816i 0.0926278 0.0926278i
\(953\) −738.000 738.000i −0.774397 0.774397i 0.204475 0.978872i \(-0.434451\pi\)
−0.978872 + 0.204475i \(0.934451\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 88.1816 0.0922402
\(957\) 0 0
\(958\) 132.272 + 132.272i 0.138071 + 0.138071i
\(959\) 352.727i 0.367807i
\(960\) 0 0
\(961\) −861.000 −0.895942
\(962\) −189.000 + 189.000i −0.196466 + 0.196466i
\(963\) 0 0
\(964\) 334.000i 0.346473i
\(965\) 0 0
\(966\) 0 0
\(967\) 1201.47 1201.47i 1.24248 1.24248i 0.283506 0.958970i \(-0.408502\pi\)
0.958970 0.283506i \(-0.0914976\pi\)
\(968\) 242.000 + 242.000i 0.250000 + 0.250000i
\(969\) 0 0
\(970\) 0 0
\(971\) 749.544 0.771930 0.385965 0.922513i \(-0.373869\pi\)
0.385965 + 0.922513i \(0.373869\pi\)
\(972\) 0 0
\(973\) 327.007 + 327.007i 0.336081 + 0.336081i
\(974\) 124.924i 0.128259i
\(975\) 0 0
\(976\) −92.0000 −0.0942623
\(977\) −594.000 + 594.000i −0.607984 + 0.607984i −0.942419 0.334435i \(-0.891454\pi\)
0.334435 + 0.942419i \(0.391454\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −88.1816 + 88.1816i −0.0897980 + 0.0897980i
\(983\) −768.000 768.000i −0.781282 0.781282i 0.198765 0.980047i \(-0.436307\pi\)
−0.980047 + 0.198765i \(0.936307\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 529.090 0.536602
\(987\) 0 0
\(988\) 51.4393 + 51.4393i 0.0520641 + 0.0520641i
\(989\) 705.453i 0.713299i
\(990\) 0 0
\(991\) −7.00000 −0.00706357 −0.00353179 0.999994i \(-0.501124\pi\)
−0.00353179 + 0.999994i \(0.501124\pi\)
\(992\) −40.0000 + 40.0000i −0.0403226 + 0.0403226i
\(993\) 0 0
\(994\) 972.000i 0.977867i
\(995\) 0 0
\(996\) 0 0
\(997\) 440.908 440.908i 0.442235 0.442235i −0.450528 0.892762i \(-0.648764\pi\)
0.892762 + 0.450528i \(0.148764\pi\)
\(998\) −586.000 586.000i −0.587174 0.587174i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.g.j.1243.1 yes 4
3.2 odd 2 1350.3.g.c.1243.1 yes 4
5.2 odd 4 inner 1350.3.g.j.757.1 yes 4
5.3 odd 4 1350.3.g.c.757.2 yes 4
5.4 even 2 1350.3.g.c.1243.2 yes 4
15.2 even 4 1350.3.g.c.757.1 4
15.8 even 4 inner 1350.3.g.j.757.2 yes 4
15.14 odd 2 inner 1350.3.g.j.1243.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.3.g.c.757.1 4 15.2 even 4
1350.3.g.c.757.2 yes 4 5.3 odd 4
1350.3.g.c.1243.1 yes 4 3.2 odd 2
1350.3.g.c.1243.2 yes 4 5.4 even 2
1350.3.g.j.757.1 yes 4 5.2 odd 4 inner
1350.3.g.j.757.2 yes 4 15.8 even 4 inner
1350.3.g.j.1243.1 yes 4 1.1 even 1 trivial
1350.3.g.j.1243.2 yes 4 15.14 odd 2 inner