Properties

Label 1350.2.f.b.107.1
Level $1350$
Weight $2$
Character 1350.107
Analytic conductor $10.780$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,2,Mod(107,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,-24,0,-8,0,0,0,0,0,0,0,0,0,0,0,0,-24, 0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1350.107
Dual form 1350.2.f.b.593.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.896575 + 0.896575i) q^{7} +(0.707107 + 0.707107i) q^{8} -3.00000i q^{11} +(2.12132 - 2.12132i) q^{13} -1.26795 q^{14} -1.00000 q^{16} +(-1.55291 + 1.55291i) q^{17} -6.19615i q^{19} +(2.12132 + 2.12132i) q^{22} +(-2.12132 - 2.12132i) q^{23} +3.00000i q^{26} +(0.896575 - 0.896575i) q^{28} -8.19615 q^{29} -2.00000 q^{31} +(0.707107 - 0.707107i) q^{32} -2.19615i q^{34} +(7.02030 + 7.02030i) q^{37} +(4.38134 + 4.38134i) q^{38} -6.00000i q^{41} +(7.58871 - 7.58871i) q^{43} -3.00000 q^{44} +3.00000 q^{46} +(-6.36396 + 6.36396i) q^{47} -5.39230i q^{49} +(-2.12132 - 2.12132i) q^{52} +(-1.55291 - 1.55291i) q^{53} +1.26795i q^{56} +(5.79555 - 5.79555i) q^{58} +13.3923 q^{59} -9.19615 q^{61} +(1.41421 - 1.41421i) q^{62} +1.00000i q^{64} +(-1.55291 - 1.55291i) q^{67} +(1.55291 + 1.55291i) q^{68} -0.803848i q^{71} +(6.03579 - 6.03579i) q^{73} -9.92820 q^{74} -6.19615 q^{76} +(2.68973 - 2.68973i) q^{77} -10.1962i q^{79} +(4.24264 + 4.24264i) q^{82} +(-3.10583 - 3.10583i) q^{83} +10.7321i q^{86} +(2.12132 - 2.12132i) q^{88} +8.19615 q^{89} +3.80385 q^{91} +(-2.12132 + 2.12132i) q^{92} -9.00000i q^{94} +(-1.88108 - 1.88108i) q^{97} +(3.81294 + 3.81294i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{14} - 8 q^{16} - 24 q^{29} - 16 q^{31} - 24 q^{44} + 24 q^{46} + 24 q^{59} - 32 q^{61} - 24 q^{74} - 8 q^{76} + 24 q^{89} + 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.896575 + 0.896575i 0.338874 + 0.338874i 0.855943 0.517070i \(-0.172977\pi\)
−0.517070 + 0.855943i \(0.672977\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000i 0.904534i −0.891883 0.452267i \(-0.850615\pi\)
0.891883 0.452267i \(-0.149385\pi\)
\(12\) 0 0
\(13\) 2.12132 2.12132i 0.588348 0.588348i −0.348836 0.937184i \(-0.613423\pi\)
0.937184 + 0.348836i \(0.113423\pi\)
\(14\) −1.26795 −0.338874
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.55291 + 1.55291i −0.376637 + 0.376637i −0.869887 0.493250i \(-0.835809\pi\)
0.493250 + 0.869887i \(0.335809\pi\)
\(18\) 0 0
\(19\) 6.19615i 1.42149i −0.703447 0.710747i \(-0.748357\pi\)
0.703447 0.710747i \(-0.251643\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.12132 + 2.12132i 0.452267 + 0.452267i
\(23\) −2.12132 2.12132i −0.442326 0.442326i 0.450467 0.892793i \(-0.351257\pi\)
−0.892793 + 0.450467i \(0.851257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.00000i 0.588348i
\(27\) 0 0
\(28\) 0.896575 0.896575i 0.169437 0.169437i
\(29\) −8.19615 −1.52199 −0.760994 0.648759i \(-0.775288\pi\)
−0.760994 + 0.648759i \(0.775288\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 2.19615i 0.376637i
\(35\) 0 0
\(36\) 0 0
\(37\) 7.02030 + 7.02030i 1.15413 + 1.15413i 0.985716 + 0.168414i \(0.0538645\pi\)
0.168414 + 0.985716i \(0.446136\pi\)
\(38\) 4.38134 + 4.38134i 0.710747 + 0.710747i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000i 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) 7.58871 7.58871i 1.15727 1.15727i 0.172206 0.985061i \(-0.444911\pi\)
0.985061 0.172206i \(-0.0550894\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) −6.36396 + 6.36396i −0.928279 + 0.928279i −0.997595 0.0693157i \(-0.977918\pi\)
0.0693157 + 0.997595i \(0.477918\pi\)
\(48\) 0 0
\(49\) 5.39230i 0.770329i
\(50\) 0 0
\(51\) 0 0
\(52\) −2.12132 2.12132i −0.294174 0.294174i
\(53\) −1.55291 1.55291i −0.213309 0.213309i 0.592362 0.805672i \(-0.298195\pi\)
−0.805672 + 0.592362i \(0.798195\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.26795i 0.169437i
\(57\) 0 0
\(58\) 5.79555 5.79555i 0.760994 0.760994i
\(59\) 13.3923 1.74353 0.871765 0.489925i \(-0.162976\pi\)
0.871765 + 0.489925i \(0.162976\pi\)
\(60\) 0 0
\(61\) −9.19615 −1.17745 −0.588723 0.808335i \(-0.700369\pi\)
−0.588723 + 0.808335i \(0.700369\pi\)
\(62\) 1.41421 1.41421i 0.179605 0.179605i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.55291 1.55291i −0.189719 0.189719i 0.605856 0.795574i \(-0.292831\pi\)
−0.795574 + 0.605856i \(0.792831\pi\)
\(68\) 1.55291 + 1.55291i 0.188319 + 0.188319i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.803848i 0.0953992i −0.998862 0.0476996i \(-0.984811\pi\)
0.998862 0.0476996i \(-0.0151890\pi\)
\(72\) 0 0
\(73\) 6.03579 6.03579i 0.706436 0.706436i −0.259348 0.965784i \(-0.583508\pi\)
0.965784 + 0.259348i \(0.0835076\pi\)
\(74\) −9.92820 −1.15413
\(75\) 0 0
\(76\) −6.19615 −0.710747
\(77\) 2.68973 2.68973i 0.306523 0.306523i
\(78\) 0 0
\(79\) 10.1962i 1.14716i −0.819151 0.573578i \(-0.805555\pi\)
0.819151 0.573578i \(-0.194445\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.24264 + 4.24264i 0.468521 + 0.468521i
\(83\) −3.10583 3.10583i −0.340909 0.340909i 0.515800 0.856709i \(-0.327495\pi\)
−0.856709 + 0.515800i \(0.827495\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.7321i 1.15727i
\(87\) 0 0
\(88\) 2.12132 2.12132i 0.226134 0.226134i
\(89\) 8.19615 0.868790 0.434395 0.900722i \(-0.356962\pi\)
0.434395 + 0.900722i \(0.356962\pi\)
\(90\) 0 0
\(91\) 3.80385 0.398752
\(92\) −2.12132 + 2.12132i −0.221163 + 0.221163i
\(93\) 0 0
\(94\) 9.00000i 0.928279i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.88108 1.88108i −0.190995 0.190995i 0.605131 0.796126i \(-0.293121\pi\)
−0.796126 + 0.605131i \(0.793121\pi\)
\(98\) 3.81294 + 3.81294i 0.385165 + 0.385165i
\(99\) 0 0
\(100\) 0 0
\(101\) 18.5885i 1.84962i −0.380429 0.924810i \(-0.624224\pi\)
0.380429 0.924810i \(-0.375776\pi\)
\(102\) 0 0
\(103\) −0.656339 + 0.656339i −0.0646710 + 0.0646710i −0.738703 0.674032i \(-0.764561\pi\)
0.674032 + 0.738703i \(0.264561\pi\)
\(104\) 3.00000 0.294174
\(105\) 0 0
\(106\) 2.19615 0.213309
\(107\) 11.0227 11.0227i 1.06561 1.06561i 0.0679138 0.997691i \(-0.478366\pi\)
0.997691 0.0679138i \(-0.0216343\pi\)
\(108\) 0 0
\(109\) 8.00000i 0.766261i −0.923694 0.383131i \(-0.874846\pi\)
0.923694 0.383131i \(-0.125154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.896575 0.896575i −0.0847184 0.0847184i
\(113\) −7.34847 7.34847i −0.691286 0.691286i 0.271229 0.962515i \(-0.412570\pi\)
−0.962515 + 0.271229i \(0.912570\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.19615i 0.760994i
\(117\) 0 0
\(118\) −9.46979 + 9.46979i −0.871765 + 0.871765i
\(119\) −2.78461 −0.255265
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 6.50266 6.50266i 0.588723 0.588723i
\(123\) 0 0
\(124\) 2.00000i 0.179605i
\(125\) 0 0
\(126\) 0 0
\(127\) 7.34847 + 7.34847i 0.652071 + 0.652071i 0.953491 0.301420i \(-0.0974607\pi\)
−0.301420 + 0.953491i \(0.597461\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.3923i 1.17009i 0.811000 + 0.585046i \(0.198923\pi\)
−0.811000 + 0.585046i \(0.801077\pi\)
\(132\) 0 0
\(133\) 5.55532 5.55532i 0.481707 0.481707i
\(134\) 2.19615 0.189719
\(135\) 0 0
\(136\) −2.19615 −0.188319
\(137\) −14.2808 + 14.2808i −1.22009 + 1.22009i −0.252496 + 0.967598i \(0.581252\pi\)
−0.967598 + 0.252496i \(0.918748\pi\)
\(138\) 0 0
\(139\) 16.1962i 1.37374i 0.726780 + 0.686870i \(0.241016\pi\)
−0.726780 + 0.686870i \(0.758984\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.568406 + 0.568406i 0.0476996 + 0.0476996i
\(143\) −6.36396 6.36396i −0.532181 0.532181i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.53590i 0.706436i
\(147\) 0 0
\(148\) 7.02030 7.02030i 0.577065 0.577065i
\(149\) 10.3923 0.851371 0.425685 0.904871i \(-0.360033\pi\)
0.425685 + 0.904871i \(0.360033\pi\)
\(150\) 0 0
\(151\) 0.196152 0.0159627 0.00798133 0.999968i \(-0.497459\pi\)
0.00798133 + 0.999968i \(0.497459\pi\)
\(152\) 4.38134 4.38134i 0.355374 0.355374i
\(153\) 0 0
\(154\) 3.80385i 0.306523i
\(155\) 0 0
\(156\) 0 0
\(157\) −4.89898 4.89898i −0.390981 0.390981i 0.484056 0.875037i \(-0.339163\pi\)
−0.875037 + 0.484056i \(0.839163\pi\)
\(158\) 7.20977 + 7.20977i 0.573578 + 0.573578i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.80385i 0.299785i
\(162\) 0 0
\(163\) −1.13681 + 1.13681i −0.0890420 + 0.0890420i −0.750225 0.661183i \(-0.770055\pi\)
0.661183 + 0.750225i \(0.270055\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 4.39230 0.340909
\(167\) 17.9551 17.9551i 1.38941 1.38941i 0.562838 0.826567i \(-0.309710\pi\)
0.826567 0.562838i \(-0.190290\pi\)
\(168\) 0 0
\(169\) 4.00000i 0.307692i
\(170\) 0 0
\(171\) 0 0
\(172\) −7.58871 7.58871i −0.578633 0.578633i
\(173\) 5.79555 + 5.79555i 0.440628 + 0.440628i 0.892223 0.451595i \(-0.149145\pi\)
−0.451595 + 0.892223i \(0.649145\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000i 0.226134i
\(177\) 0 0
\(178\) −5.79555 + 5.79555i −0.434395 + 0.434395i
\(179\) 25.3923 1.89791 0.948955 0.315412i \(-0.102143\pi\)
0.948955 + 0.315412i \(0.102143\pi\)
\(180\) 0 0
\(181\) 13.5885 1.01002 0.505011 0.863113i \(-0.331488\pi\)
0.505011 + 0.863113i \(0.331488\pi\)
\(182\) −2.68973 + 2.68973i −0.199376 + 0.199376i
\(183\) 0 0
\(184\) 3.00000i 0.221163i
\(185\) 0 0
\(186\) 0 0
\(187\) 4.65874 + 4.65874i 0.340681 + 0.340681i
\(188\) 6.36396 + 6.36396i 0.464140 + 0.464140i
\(189\) 0 0
\(190\) 0 0
\(191\) 4.39230i 0.317816i −0.987293 0.158908i \(-0.949203\pi\)
0.987293 0.158908i \(-0.0507973\pi\)
\(192\) 0 0
\(193\) −18.2832 + 18.2832i −1.31606 + 1.31606i −0.399187 + 0.916870i \(0.630708\pi\)
−0.916870 + 0.399187i \(0.869292\pi\)
\(194\) 2.66025 0.190995
\(195\) 0 0
\(196\) −5.39230 −0.385165
\(197\) −3.10583 + 3.10583i −0.221281 + 0.221281i −0.809038 0.587757i \(-0.800011\pi\)
0.587757 + 0.809038i \(0.300011\pi\)
\(198\) 0 0
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 13.1440 + 13.1440i 0.924810 + 0.924810i
\(203\) −7.34847 7.34847i −0.515761 0.515761i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.928203i 0.0646710i
\(207\) 0 0
\(208\) −2.12132 + 2.12132i −0.147087 + 0.147087i
\(209\) −18.5885 −1.28579
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −1.55291 + 1.55291i −0.106655 + 0.106655i
\(213\) 0 0
\(214\) 15.5885i 1.06561i
\(215\) 0 0
\(216\) 0 0
\(217\) −1.79315 1.79315i −0.121727 0.121727i
\(218\) 5.65685 + 5.65685i 0.383131 + 0.383131i
\(219\) 0 0
\(220\) 0 0
\(221\) 6.58846i 0.443188i
\(222\) 0 0
\(223\) −14.9372 + 14.9372i −1.00027 + 1.00027i −0.000267267 1.00000i \(0.500085\pi\)
−1.00000 0.000267267i \(0.999915\pi\)
\(224\) 1.26795 0.0847184
\(225\) 0 0
\(226\) 10.3923 0.691286
\(227\) −4.81105 + 4.81105i −0.319320 + 0.319320i −0.848506 0.529186i \(-0.822497\pi\)
0.529186 + 0.848506i \(0.322497\pi\)
\(228\) 0 0
\(229\) 17.5885i 1.16228i 0.813804 + 0.581139i \(0.197393\pi\)
−0.813804 + 0.581139i \(0.802607\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.79555 5.79555i −0.380497 0.380497i
\(233\) −10.0382 10.0382i −0.657624 0.657624i 0.297193 0.954817i \(-0.403949\pi\)
−0.954817 + 0.297193i \(0.903949\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 13.3923i 0.871765i
\(237\) 0 0
\(238\) 1.96902 1.96902i 0.127632 0.127632i
\(239\) 12.8038 0.828212 0.414106 0.910229i \(-0.364094\pi\)
0.414106 + 0.910229i \(0.364094\pi\)
\(240\) 0 0
\(241\) −1.00000 −0.0644157 −0.0322078 0.999481i \(-0.510254\pi\)
−0.0322078 + 0.999481i \(0.510254\pi\)
\(242\) −1.41421 + 1.41421i −0.0909091 + 0.0909091i
\(243\) 0 0
\(244\) 9.19615i 0.588723i
\(245\) 0 0
\(246\) 0 0
\(247\) −13.1440 13.1440i −0.836334 0.836334i
\(248\) −1.41421 1.41421i −0.0898027 0.0898027i
\(249\) 0 0
\(250\) 0 0
\(251\) 1.39230i 0.0878815i −0.999034 0.0439408i \(-0.986009\pi\)
0.999034 0.0439408i \(-0.0139913\pi\)
\(252\) 0 0
\(253\) −6.36396 + 6.36396i −0.400099 + 0.400099i
\(254\) −10.3923 −0.652071
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.55291 + 1.55291i −0.0968681 + 0.0968681i −0.753880 0.657012i \(-0.771820\pi\)
0.657012 + 0.753880i \(0.271820\pi\)
\(258\) 0 0
\(259\) 12.5885i 0.782209i
\(260\) 0 0
\(261\) 0 0
\(262\) −9.46979 9.46979i −0.585046 0.585046i
\(263\) −6.36396 6.36396i −0.392419 0.392419i 0.483130 0.875549i \(-0.339500\pi\)
−0.875549 + 0.483130i \(0.839500\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 7.85641i 0.481707i
\(267\) 0 0
\(268\) −1.55291 + 1.55291i −0.0948593 + 0.0948593i
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −20.3923 −1.23874 −0.619372 0.785098i \(-0.712613\pi\)
−0.619372 + 0.785098i \(0.712613\pi\)
\(272\) 1.55291 1.55291i 0.0941593 0.0941593i
\(273\) 0 0
\(274\) 20.1962i 1.22009i
\(275\) 0 0
\(276\) 0 0
\(277\) −15.1774 15.1774i −0.911922 0.911922i 0.0845011 0.996423i \(-0.473070\pi\)
−0.996423 + 0.0845011i \(0.973070\pi\)
\(278\) −11.4524 11.4524i −0.686870 0.686870i
\(279\) 0 0
\(280\) 0 0
\(281\) 21.8038i 1.30071i −0.759631 0.650354i \(-0.774620\pi\)
0.759631 0.650354i \(-0.225380\pi\)
\(282\) 0 0
\(283\) −7.58871 + 7.58871i −0.451102 + 0.451102i −0.895720 0.444618i \(-0.853339\pi\)
0.444618 + 0.895720i \(0.353339\pi\)
\(284\) −0.803848 −0.0476996
\(285\) 0 0
\(286\) 9.00000 0.532181
\(287\) 5.37945 5.37945i 0.317539 0.317539i
\(288\) 0 0
\(289\) 12.1769i 0.716289i
\(290\) 0 0
\(291\) 0 0
\(292\) −6.03579 6.03579i −0.353218 0.353218i
\(293\) 20.4925 + 20.4925i 1.19718 + 1.19718i 0.975006 + 0.222178i \(0.0713167\pi\)
0.222178 + 0.975006i \(0.428683\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.92820i 0.577065i
\(297\) 0 0
\(298\) −7.34847 + 7.34847i −0.425685 + 0.425685i
\(299\) −9.00000 −0.520483
\(300\) 0 0
\(301\) 13.6077 0.784335
\(302\) −0.138701 + 0.138701i −0.00798133 + 0.00798133i
\(303\) 0 0
\(304\) 6.19615i 0.355374i
\(305\) 0 0
\(306\) 0 0
\(307\) −12.2474 12.2474i −0.698999 0.698999i 0.265196 0.964195i \(-0.414563\pi\)
−0.964195 + 0.265196i \(0.914563\pi\)
\(308\) −2.68973 2.68973i −0.153261 0.153261i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.803848i 0.0455820i 0.999740 + 0.0227910i \(0.00725523\pi\)
−0.999740 + 0.0227910i \(0.992745\pi\)
\(312\) 0 0
\(313\) −1.13681 + 1.13681i −0.0642564 + 0.0642564i −0.738505 0.674248i \(-0.764468\pi\)
0.674248 + 0.738505i \(0.264468\pi\)
\(314\) 6.92820 0.390981
\(315\) 0 0
\(316\) −10.1962 −0.573578
\(317\) −18.5235 + 18.5235i −1.04038 + 1.04038i −0.0412325 + 0.999150i \(0.513128\pi\)
−0.999150 + 0.0412325i \(0.986872\pi\)
\(318\) 0 0
\(319\) 24.5885i 1.37669i
\(320\) 0 0
\(321\) 0 0
\(322\) 2.68973 + 2.68973i 0.149893 + 0.149893i
\(323\) 9.62209 + 9.62209i 0.535388 + 0.535388i
\(324\) 0 0
\(325\) 0 0
\(326\) 1.60770i 0.0890420i
\(327\) 0 0
\(328\) 4.24264 4.24264i 0.234261 0.234261i
\(329\) −11.4115 −0.629139
\(330\) 0 0
\(331\) 34.7846 1.91194 0.955968 0.293472i \(-0.0948109\pi\)
0.955968 + 0.293472i \(0.0948109\pi\)
\(332\) −3.10583 + 3.10583i −0.170454 + 0.170454i
\(333\) 0 0
\(334\) 25.3923i 1.38941i
\(335\) 0 0
\(336\) 0 0
\(337\) −1.13681 1.13681i −0.0619261 0.0619261i 0.675465 0.737392i \(-0.263943\pi\)
−0.737392 + 0.675465i \(0.763943\pi\)
\(338\) −2.82843 2.82843i −0.153846 0.153846i
\(339\) 0 0
\(340\) 0 0
\(341\) 6.00000i 0.324918i
\(342\) 0 0
\(343\) 11.1106 11.1106i 0.599918 0.599918i
\(344\) 10.7321 0.578633
\(345\) 0 0
\(346\) −8.19615 −0.440628
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 14.3923i 0.770402i −0.922833 0.385201i \(-0.874132\pi\)
0.922833 0.385201i \(-0.125868\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.12132 2.12132i −0.113067 0.113067i
\(353\) 2.68973 + 2.68973i 0.143160 + 0.143160i 0.775054 0.631895i \(-0.217722\pi\)
−0.631895 + 0.775054i \(0.717722\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.19615i 0.434395i
\(357\) 0 0
\(358\) −17.9551 + 17.9551i −0.948955 + 0.948955i
\(359\) 11.1962 0.590910 0.295455 0.955357i \(-0.404529\pi\)
0.295455 + 0.955357i \(0.404529\pi\)
\(360\) 0 0
\(361\) −19.3923 −1.02065
\(362\) −9.60849 + 9.60849i −0.505011 + 0.505011i
\(363\) 0 0
\(364\) 3.80385i 0.199376i
\(365\) 0 0
\(366\) 0 0
\(367\) 6.21166 + 6.21166i 0.324246 + 0.324246i 0.850393 0.526147i \(-0.176364\pi\)
−0.526147 + 0.850393i \(0.676364\pi\)
\(368\) 2.12132 + 2.12132i 0.110581 + 0.110581i
\(369\) 0 0
\(370\) 0 0
\(371\) 2.78461i 0.144570i
\(372\) 0 0
\(373\) −23.8386 + 23.8386i −1.23431 + 1.23431i −0.272023 + 0.962291i \(0.587693\pi\)
−0.962291 + 0.272023i \(0.912307\pi\)
\(374\) −6.58846 −0.340681
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) −17.3867 + 17.3867i −0.895459 + 0.895459i
\(378\) 0 0
\(379\) 2.00000i 0.102733i 0.998680 + 0.0513665i \(0.0163577\pi\)
−0.998680 + 0.0513665i \(0.983642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.10583 + 3.10583i 0.158908 + 0.158908i
\(383\) 2.12132 + 2.12132i 0.108394 + 0.108394i 0.759224 0.650830i \(-0.225579\pi\)
−0.650830 + 0.759224i \(0.725579\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 25.8564i 1.31606i
\(387\) 0 0
\(388\) −1.88108 + 1.88108i −0.0954976 + 0.0954976i
\(389\) −32.1962 −1.63241 −0.816205 0.577763i \(-0.803926\pi\)
−0.816205 + 0.577763i \(0.803926\pi\)
\(390\) 0 0
\(391\) 6.58846 0.333193
\(392\) 3.81294 3.81294i 0.192582 0.192582i
\(393\) 0 0
\(394\) 4.39230i 0.221281i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.46498 1.46498i −0.0735253 0.0735253i 0.669388 0.742913i \(-0.266556\pi\)
−0.742913 + 0.669388i \(0.766556\pi\)
\(398\) 1.41421 + 1.41421i 0.0708881 + 0.0708881i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.80385i 0.189955i −0.995479 0.0949775i \(-0.969722\pi\)
0.995479 0.0949775i \(-0.0302779\pi\)
\(402\) 0 0
\(403\) −4.24264 + 4.24264i −0.211341 + 0.211341i
\(404\) −18.5885 −0.924810
\(405\) 0 0
\(406\) 10.3923 0.515761
\(407\) 21.0609 21.0609i 1.04395 1.04395i
\(408\) 0 0
\(409\) 23.0000i 1.13728i 0.822588 + 0.568638i \(0.192530\pi\)
−0.822588 + 0.568638i \(0.807470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.656339 + 0.656339i 0.0323355 + 0.0323355i
\(413\) 12.0072 + 12.0072i 0.590836 + 0.590836i
\(414\) 0 0
\(415\) 0 0
\(416\) 3.00000i 0.147087i
\(417\) 0 0
\(418\) 13.1440 13.1440i 0.642895 0.642895i
\(419\) 10.3923 0.507697 0.253849 0.967244i \(-0.418303\pi\)
0.253849 + 0.967244i \(0.418303\pi\)
\(420\) 0 0
\(421\) −19.1962 −0.935563 −0.467782 0.883844i \(-0.654947\pi\)
−0.467782 + 0.883844i \(0.654947\pi\)
\(422\) 2.82843 2.82843i 0.137686 0.137686i
\(423\) 0 0
\(424\) 2.19615i 0.106655i
\(425\) 0 0
\(426\) 0 0
\(427\) −8.24504 8.24504i −0.399006 0.399006i
\(428\) −11.0227 11.0227i −0.532803 0.532803i
\(429\) 0 0
\(430\) 0 0
\(431\) 27.5885i 1.32889i 0.747338 + 0.664445i \(0.231332\pi\)
−0.747338 + 0.664445i \(0.768668\pi\)
\(432\) 0 0
\(433\) 13.4722 13.4722i 0.647432 0.647432i −0.304939 0.952372i \(-0.598636\pi\)
0.952372 + 0.304939i \(0.0986362\pi\)
\(434\) 2.53590 0.121727
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) −13.1440 + 13.1440i −0.628764 + 0.628764i
\(438\) 0 0
\(439\) 10.5885i 0.505359i 0.967550 + 0.252680i \(0.0813119\pi\)
−0.967550 + 0.252680i \(0.918688\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.65874 4.65874i −0.221594 0.221594i
\(443\) 19.5080 + 19.5080i 0.926852 + 0.926852i 0.997501 0.0706489i \(-0.0225070\pi\)
−0.0706489 + 0.997501i \(0.522507\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 21.1244i 1.00027i
\(447\) 0 0
\(448\) −0.896575 + 0.896575i −0.0423592 + 0.0423592i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) −7.34847 + 7.34847i −0.345643 + 0.345643i
\(453\) 0 0
\(454\) 6.80385i 0.319320i
\(455\) 0 0
\(456\) 0 0
\(457\) 16.4022 + 16.4022i 0.767261 + 0.767261i 0.977623 0.210363i \(-0.0674645\pi\)
−0.210363 + 0.977623i \(0.567465\pi\)
\(458\) −12.4369 12.4369i −0.581139 0.581139i
\(459\) 0 0
\(460\) 0 0
\(461\) 32.7846i 1.52693i 0.645848 + 0.763466i \(0.276504\pi\)
−0.645848 + 0.763466i \(0.723496\pi\)
\(462\) 0 0
\(463\) −11.3509 + 11.3509i −0.527520 + 0.527520i −0.919832 0.392312i \(-0.871675\pi\)
0.392312 + 0.919832i \(0.371675\pi\)
\(464\) 8.19615 0.380497
\(465\) 0 0
\(466\) 14.1962 0.657624
\(467\) 9.88589 9.88589i 0.457465 0.457465i −0.440358 0.897822i \(-0.645148\pi\)
0.897822 + 0.440358i \(0.145148\pi\)
\(468\) 0 0
\(469\) 2.78461i 0.128581i
\(470\) 0 0
\(471\) 0 0
\(472\) 9.46979 + 9.46979i 0.435882 + 0.435882i
\(473\) −22.7661 22.7661i −1.04679 1.04679i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.78461i 0.127632i
\(477\) 0 0
\(478\) −9.05369 + 9.05369i −0.414106 + 0.414106i
\(479\) 22.3923 1.02313 0.511565 0.859244i \(-0.329066\pi\)
0.511565 + 0.859244i \(0.329066\pi\)
\(480\) 0 0
\(481\) 29.7846 1.35806
\(482\) 0.707107 0.707107i 0.0322078 0.0322078i
\(483\) 0 0
\(484\) 2.00000i 0.0909091i
\(485\) 0 0
\(486\) 0 0
\(487\) −8.90138 8.90138i −0.403360 0.403360i 0.476055 0.879415i \(-0.342066\pi\)
−0.879415 + 0.476055i \(0.842066\pi\)
\(488\) −6.50266 6.50266i −0.294362 0.294362i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.60770i 0.0725543i 0.999342 + 0.0362771i \(0.0115499\pi\)
−0.999342 + 0.0362771i \(0.988450\pi\)
\(492\) 0 0
\(493\) 12.7279 12.7279i 0.573237 0.573237i
\(494\) 18.5885 0.836334
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0.720710 0.720710i 0.0323283 0.0323283i
\(498\) 0 0
\(499\) 33.1769i 1.48520i −0.669734 0.742601i \(-0.733592\pi\)
0.669734 0.742601i \(-0.266408\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.984508 + 0.984508i 0.0439408 + 0.0439408i
\(503\) −1.13681 1.13681i −0.0506879 0.0506879i 0.681308 0.731996i \(-0.261411\pi\)
−0.731996 + 0.681308i \(0.761411\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000i 0.400099i
\(507\) 0 0
\(508\) 7.34847 7.34847i 0.326036 0.326036i
\(509\) −38.7846 −1.71910 −0.859549 0.511054i \(-0.829255\pi\)
−0.859549 + 0.511054i \(0.829255\pi\)
\(510\) 0 0
\(511\) 10.8231 0.478785
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 2.19615i 0.0968681i
\(515\) 0 0
\(516\) 0 0
\(517\) 19.0919 + 19.0919i 0.839660 + 0.839660i
\(518\) −8.90138 8.90138i −0.391104 0.391104i
\(519\) 0 0
\(520\) 0 0
\(521\) 32.1962i 1.41054i −0.708939 0.705270i \(-0.750826\pi\)
0.708939 0.705270i \(-0.249174\pi\)
\(522\) 0 0
\(523\) 3.58630 3.58630i 0.156818 0.156818i −0.624337 0.781155i \(-0.714631\pi\)
0.781155 + 0.624337i \(0.214631\pi\)
\(524\) 13.3923 0.585046
\(525\) 0 0
\(526\) 9.00000 0.392419
\(527\) 3.10583 3.10583i 0.135292 0.135292i
\(528\) 0 0
\(529\) 14.0000i 0.608696i
\(530\) 0 0
\(531\) 0 0
\(532\) −5.55532 5.55532i −0.240854 0.240854i
\(533\) −12.7279 12.7279i −0.551308 0.551308i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.19615i 0.0948593i
\(537\) 0 0
\(538\) 16.9706 16.9706i 0.731653 0.731653i
\(539\) −16.1769 −0.696789
\(540\) 0 0
\(541\) 15.9808 0.687067 0.343533 0.939140i \(-0.388376\pi\)
0.343533 + 0.939140i \(0.388376\pi\)
\(542\) 14.4195 14.4195i 0.619372 0.619372i
\(543\) 0 0
\(544\) 2.19615i 0.0941593i
\(545\) 0 0
\(546\) 0 0
\(547\) 26.7685 + 26.7685i 1.14454 + 1.14454i 0.987610 + 0.156930i \(0.0501596\pi\)
0.156930 + 0.987610i \(0.449840\pi\)
\(548\) 14.2808 + 14.2808i 0.610047 + 0.610047i
\(549\) 0 0
\(550\) 0 0
\(551\) 50.7846i 2.16350i
\(552\) 0 0
\(553\) 9.14162 9.14162i 0.388741 0.388741i
\(554\) 21.4641 0.911922
\(555\) 0 0
\(556\) 16.1962 0.686870
\(557\) 12.0072 12.0072i 0.508762 0.508762i −0.405384 0.914146i \(-0.632862\pi\)
0.914146 + 0.405384i \(0.132862\pi\)
\(558\) 0 0
\(559\) 32.1962i 1.36175i
\(560\) 0 0
\(561\) 0 0
\(562\) 15.4176 + 15.4176i 0.650354 + 0.650354i
\(563\) 16.4022 + 16.4022i 0.691268 + 0.691268i 0.962511 0.271243i \(-0.0874345\pi\)
−0.271243 + 0.962511i \(0.587435\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 10.7321i 0.451102i
\(567\) 0 0
\(568\) 0.568406 0.568406i 0.0238498 0.0238498i
\(569\) 22.3923 0.938734 0.469367 0.883003i \(-0.344482\pi\)
0.469367 + 0.883003i \(0.344482\pi\)
\(570\) 0 0
\(571\) −18.7846 −0.786111 −0.393056 0.919515i \(-0.628582\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(572\) −6.36396 + 6.36396i −0.266091 + 0.266091i
\(573\) 0 0
\(574\) 7.60770i 0.317539i
\(575\) 0 0
\(576\) 0 0
\(577\) −1.88108 1.88108i −0.0783105 0.0783105i 0.666867 0.745177i \(-0.267635\pi\)
−0.745177 + 0.666867i \(0.767635\pi\)
\(578\) −8.61038 8.61038i −0.358145 0.358145i
\(579\) 0 0
\(580\) 0 0
\(581\) 5.56922i 0.231050i
\(582\) 0 0
\(583\) −4.65874 + 4.65874i −0.192945 + 0.192945i
\(584\) 8.53590 0.353218
\(585\) 0 0
\(586\) −28.9808 −1.19718
\(587\) 15.8338 15.8338i 0.653529 0.653529i −0.300312 0.953841i \(-0.597091\pi\)
0.953841 + 0.300312i \(0.0970908\pi\)
\(588\) 0 0
\(589\) 12.3923i 0.510616i
\(590\) 0 0
\(591\) 0 0
\(592\) −7.02030 7.02030i −0.288533 0.288533i
\(593\) 31.6675 + 31.6675i 1.30043 + 1.30043i 0.928102 + 0.372327i \(0.121440\pi\)
0.372327 + 0.928102i \(0.378560\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.3923i 0.425685i
\(597\) 0 0
\(598\) 6.36396 6.36396i 0.260242 0.260242i
\(599\) 13.6077 0.555995 0.277998 0.960582i \(-0.410329\pi\)
0.277998 + 0.960582i \(0.410329\pi\)
\(600\) 0 0
\(601\) −23.0000 −0.938190 −0.469095 0.883148i \(-0.655420\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) −9.62209 + 9.62209i −0.392167 + 0.392167i
\(603\) 0 0
\(604\) 0.196152i 0.00798133i
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0406 14.0406i −0.569890 0.569890i 0.362207 0.932098i \(-0.382023\pi\)
−0.932098 + 0.362207i \(0.882023\pi\)
\(608\) −4.38134 4.38134i −0.177687 0.177687i
\(609\) 0 0
\(610\) 0 0
\(611\) 27.0000i 1.09230i
\(612\) 0 0
\(613\) 13.0561 13.0561i 0.527331 0.527331i −0.392445 0.919776i \(-0.628371\pi\)
0.919776 + 0.392445i \(0.128371\pi\)
\(614\) 17.3205 0.698999
\(615\) 0 0
\(616\) 3.80385 0.153261
\(617\) −4.24264 + 4.24264i −0.170802 + 0.170802i −0.787332 0.616530i \(-0.788538\pi\)
0.616530 + 0.787332i \(0.288538\pi\)
\(618\) 0 0
\(619\) 42.3923i 1.70389i −0.523631 0.851945i \(-0.675423\pi\)
0.523631 0.851945i \(-0.324577\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.568406 0.568406i −0.0227910 0.0227910i
\(623\) 7.34847 + 7.34847i 0.294410 + 0.294410i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.60770i 0.0642564i
\(627\) 0 0
\(628\) −4.89898 + 4.89898i −0.195491 + 0.195491i
\(629\) −21.8038 −0.869376
\(630\) 0 0
\(631\) 8.58846 0.341901 0.170951 0.985280i \(-0.445316\pi\)
0.170951 + 0.985280i \(0.445316\pi\)
\(632\) 7.20977 7.20977i 0.286789 0.286789i
\(633\) 0 0
\(634\) 26.1962i 1.04038i
\(635\) 0 0
\(636\) 0 0
\(637\) −11.4388 11.4388i −0.453222 0.453222i
\(638\) −17.3867 17.3867i −0.688345 0.688345i
\(639\) 0 0
\(640\) 0 0
\(641\) 12.5885i 0.497214i −0.968604 0.248607i \(-0.920027\pi\)
0.968604 0.248607i \(-0.0799728\pi\)
\(642\) 0 0
\(643\) 12.7279 12.7279i 0.501940 0.501940i −0.410100 0.912040i \(-0.634506\pi\)
0.912040 + 0.410100i \(0.134506\pi\)
\(644\) −3.80385 −0.149893
\(645\) 0 0
\(646\) −13.6077 −0.535388
\(647\) 5.22715 5.22715i 0.205500 0.205500i −0.596851 0.802352i \(-0.703582\pi\)
0.802352 + 0.596851i \(0.203582\pi\)
\(648\) 0 0
\(649\) 40.1769i 1.57708i
\(650\) 0 0
\(651\) 0 0
\(652\) 1.13681 + 1.13681i 0.0445210 + 0.0445210i
\(653\) 20.4925 + 20.4925i 0.801933 + 0.801933i 0.983398 0.181464i \(-0.0580837\pi\)
−0.181464 + 0.983398i \(0.558084\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000i 0.234261i
\(657\) 0 0
\(658\) 8.06918 8.06918i 0.314569 0.314569i
\(659\) 38.7846 1.51083 0.755417 0.655244i \(-0.227434\pi\)
0.755417 + 0.655244i \(0.227434\pi\)
\(660\) 0 0
\(661\) −38.3731 −1.49254 −0.746270 0.665644i \(-0.768157\pi\)
−0.746270 + 0.665644i \(0.768157\pi\)
\(662\) −24.5964 + 24.5964i −0.955968 + 0.955968i
\(663\) 0 0
\(664\) 4.39230i 0.170454i
\(665\) 0 0
\(666\) 0 0
\(667\) 17.3867 + 17.3867i 0.673214 + 0.673214i
\(668\) −17.9551 17.9551i −0.694703 0.694703i
\(669\) 0 0
\(670\) 0 0
\(671\) 27.5885i 1.06504i
\(672\) 0 0
\(673\) 24.4070 24.4070i 0.940819 0.940819i −0.0575247 0.998344i \(-0.518321\pi\)
0.998344 + 0.0575247i \(0.0183208\pi\)
\(674\) 1.60770 0.0619261
\(675\) 0 0
\(676\) 4.00000 0.153846
\(677\) 18.1074 18.1074i 0.695923 0.695923i −0.267606 0.963529i \(-0.586232\pi\)
0.963529 + 0.267606i \(0.0862324\pi\)
\(678\) 0 0
\(679\) 3.37307i 0.129446i
\(680\) 0 0
\(681\) 0 0
\(682\) −4.24264 4.24264i −0.162459 0.162459i
\(683\) −27.9933 27.9933i −1.07113 1.07113i −0.997268 0.0738643i \(-0.976467\pi\)
−0.0738643 0.997268i \(-0.523533\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 15.7128i 0.599918i
\(687\) 0 0
\(688\) −7.58871 + 7.58871i −0.289317 + 0.289317i
\(689\) −6.58846 −0.251000
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 5.79555 5.79555i 0.220314 0.220314i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.31749 + 9.31749i 0.352925 + 0.352925i
\(698\) 10.1769 + 10.1769i 0.385201 + 0.385201i
\(699\) 0 0
\(700\) 0 0
\(701\) 30.5885i 1.15531i 0.816281 + 0.577655i \(0.196032\pi\)
−0.816281 + 0.577655i \(0.803968\pi\)
\(702\) 0 0
\(703\) 43.4988 43.4988i 1.64059 1.64059i
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −3.80385 −0.143160
\(707\) 16.6660 16.6660i 0.626788 0.626788i
\(708\) 0 0
\(709\) 26.8038i 1.00664i 0.864100 + 0.503320i \(0.167888\pi\)
−0.864100 + 0.503320i \(0.832112\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.79555 + 5.79555i 0.217198 + 0.217198i
\(713\) 4.24264 + 4.24264i 0.158888 + 0.158888i
\(714\) 0 0
\(715\) 0 0
\(716\) 25.3923i 0.948955i
\(717\) 0 0
\(718\) −7.91688 + 7.91688i −0.295455 + 0.295455i
\(719\) −0.803848 −0.0299785 −0.0149892 0.999888i \(-0.504771\pi\)
−0.0149892 + 0.999888i \(0.504771\pi\)
\(720\) 0 0
\(721\) −1.17691 −0.0438306
\(722\) 13.7124 13.7124i 0.510324 0.510324i
\(723\) 0 0
\(724\) 13.5885i 0.505011i
\(725\) 0 0
\(726\) 0 0
\(727\) 29.8744 + 29.8744i 1.10798 + 1.10798i 0.993416 + 0.114562i \(0.0365465\pi\)
0.114562 + 0.993416i \(0.463453\pi\)
\(728\) 2.68973 + 2.68973i 0.0996879 + 0.0996879i
\(729\) 0 0
\(730\) 0 0
\(731\) 23.5692i 0.871739i
\(732\) 0 0
\(733\) 4.39494 4.39494i 0.162331 0.162331i −0.621268 0.783599i \(-0.713382\pi\)
0.783599 + 0.621268i \(0.213382\pi\)
\(734\) −8.78461 −0.324246
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) −4.65874 + 4.65874i −0.171607 + 0.171607i
\(738\) 0 0
\(739\) 44.5885i 1.64021i 0.572211 + 0.820106i \(0.306086\pi\)
−0.572211 + 0.820106i \(0.693914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.96902 + 1.96902i 0.0722849 + 0.0722849i
\(743\) −11.7434 11.7434i −0.430824 0.430824i 0.458085 0.888909i \(-0.348536\pi\)
−0.888909 + 0.458085i \(0.848536\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 33.7128i 1.23431i
\(747\) 0 0
\(748\) 4.65874 4.65874i 0.170341 0.170341i
\(749\) 19.7654 0.722211
\(750\) 0 0
\(751\) 8.39230 0.306240 0.153120 0.988208i \(-0.451068\pi\)
0.153120 + 0.988208i \(0.451068\pi\)
\(752\) 6.36396 6.36396i 0.232070 0.232070i
\(753\) 0 0
\(754\) 24.5885i 0.895459i
\(755\) 0 0
\(756\) 0 0
\(757\) 19.2677 + 19.2677i 0.700298 + 0.700298i 0.964474 0.264176i \(-0.0851000\pi\)
−0.264176 + 0.964474i \(0.585100\pi\)
\(758\) −1.41421 1.41421i −0.0513665 0.0513665i
\(759\) 0 0
\(760\) 0 0
\(761\) 22.3923i 0.811720i −0.913935 0.405860i \(-0.866972\pi\)
0.913935 0.405860i \(-0.133028\pi\)
\(762\) 0 0
\(763\) 7.17260 7.17260i 0.259666 0.259666i
\(764\) −4.39230 −0.158908
\(765\) 0 0
\(766\) −3.00000 −0.108394
\(767\) 28.4094 28.4094i 1.02580 1.02580i
\(768\) 0 0
\(769\) 45.1769i 1.62912i −0.580078 0.814561i \(-0.696978\pi\)
0.580078 0.814561i \(-0.303022\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 18.2832 + 18.2832i 0.658028 + 0.658028i
\(773\) 6.93237 + 6.93237i 0.249340 + 0.249340i 0.820700 0.571360i \(-0.193584\pi\)
−0.571360 + 0.820700i \(0.693584\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.66025i 0.0954976i
\(777\) 0 0
\(778\) 22.7661 22.7661i 0.816205 0.816205i
\(779\) −37.1769 −1.33200
\(780\) 0 0
\(781\) −2.41154 −0.0862918
\(782\) −4.65874 + 4.65874i −0.166596 + 0.166596i
\(783\) 0 0
\(784\) 5.39230i 0.192582i
\(785\) 0 0
\(786\) 0 0
\(787\) −16.4901 16.4901i −0.587808 0.587808i 0.349229 0.937037i \(-0.386443\pi\)
−0.937037 + 0.349229i \(0.886443\pi\)
\(788\) 3.10583 + 3.10583i 0.110641 + 0.110641i
\(789\) 0 0
\(790\) 0 0
\(791\) 13.1769i 0.468517i
\(792\) 0 0
\(793\) −19.5080 + 19.5080i −0.692749 + 0.692749i
\(794\) 2.07180 0.0735253
\(795\) 0 0
\(796\) −2.00000 −0.0708881
\(797\) −38.5999 + 38.5999i −1.36728 + 1.36728i −0.502979 + 0.864299i \(0.667763\pi\)
−0.864299 + 0.502979i \(0.832237\pi\)
\(798\) 0 0
\(799\) 19.7654i 0.699249i
\(800\) 0 0
\(801\) 0 0
\(802\) 2.68973 + 2.68973i 0.0949775 + 0.0949775i
\(803\) −18.1074 18.1074i −0.638995 0.638995i
\(804\) 0 0
\(805\) 0 0
\(806\) 6.00000i 0.211341i
\(807\) 0 0
\(808\) 13.1440 13.1440i 0.462405 0.462405i
\(809\) −10.9808 −0.386063 −0.193032 0.981193i \(-0.561832\pi\)
−0.193032 + 0.981193i \(0.561832\pi\)
\(810\) 0 0
\(811\) −32.5885 −1.14434 −0.572168 0.820137i \(-0.693897\pi\)
−0.572168 + 0.820137i \(0.693897\pi\)
\(812\) −7.34847 + 7.34847i −0.257881 + 0.257881i
\(813\) 0 0
\(814\) 29.7846i 1.04395i
\(815\) 0 0
\(816\) 0 0
\(817\) −47.0208 47.0208i −1.64505 1.64505i
\(818\) −16.2635 16.2635i −0.568638 0.568638i
\(819\) 0 0
\(820\) 0 0
\(821\) 50.7846i 1.77240i 0.463308 + 0.886198i \(0.346663\pi\)
−0.463308 + 0.886198i \(0.653337\pi\)
\(822\) 0 0
\(823\) 30.9468 30.9468i 1.07874 1.07874i 0.0821144 0.996623i \(-0.473833\pi\)
0.996623 0.0821144i \(-0.0261673\pi\)
\(824\) −0.928203 −0.0323355
\(825\) 0 0
\(826\) −16.9808 −0.590836
\(827\) −35.3417 + 35.3417i −1.22895 + 1.22895i −0.264592 + 0.964360i \(0.585237\pi\)
−0.964360 + 0.264592i \(0.914763\pi\)
\(828\) 0 0
\(829\) 35.9808i 1.24966i −0.780759 0.624832i \(-0.785168\pi\)
0.780759 0.624832i \(-0.214832\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.12132 + 2.12132i 0.0735436 + 0.0735436i
\(833\) 8.37379 + 8.37379i 0.290135 + 0.290135i
\(834\) 0 0
\(835\) 0 0
\(836\) 18.5885i 0.642895i
\(837\) 0 0
\(838\) −7.34847 + 7.34847i −0.253849 + 0.253849i
\(839\) 19.9808 0.689813 0.344906 0.938637i \(-0.387911\pi\)
0.344906 + 0.938637i \(0.387911\pi\)
\(840\) 0 0
\(841\) 38.1769 1.31645
\(842\) 13.5737 13.5737i 0.467782 0.467782i
\(843\) 0 0
\(844\) 4.00000i 0.137686i
\(845\) 0 0
\(846\) 0 0
\(847\) 1.79315 + 1.79315i 0.0616134 + 0.0616134i
\(848\) 1.55291 + 1.55291i 0.0533273 + 0.0533273i
\(849\) 0 0
\(850\) 0 0
\(851\) 29.7846i 1.02100i
\(852\) 0 0
\(853\) 9.46979 9.46979i 0.324239 0.324239i −0.526151 0.850391i \(-0.676366\pi\)
0.850391 + 0.526151i \(0.176366\pi\)
\(854\) 11.6603 0.399006
\(855\) 0 0
\(856\) 15.5885 0.532803
\(857\) 8.48528 8.48528i 0.289852 0.289852i −0.547170 0.837022i \(-0.684295\pi\)
0.837022 + 0.547170i \(0.184295\pi\)
\(858\) 0 0
\(859\) 14.9808i 0.511137i 0.966791 + 0.255569i \(0.0822626\pi\)
−0.966791 + 0.255569i \(0.917737\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −19.5080 19.5080i −0.664445 0.664445i
\(863\) 21.2132 + 21.2132i 0.722106 + 0.722106i 0.969034 0.246928i \(-0.0794211\pi\)
−0.246928 + 0.969034i \(0.579421\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 19.0526i 0.647432i
\(867\) 0 0
\(868\) −1.79315 + 1.79315i −0.0608635 + 0.0608635i
\(869\) −30.5885 −1.03764
\(870\) 0 0
\(871\) −6.58846 −0.223241
\(872\) 5.65685 5.65685i 0.191565 0.191565i
\(873\) 0 0
\(874\) 18.5885i 0.628764i
\(875\) 0 0
\(876\) 0 0
\(877\) 22.6782 + 22.6782i 0.765788 + 0.765788i 0.977362 0.211574i \(-0.0678590\pi\)
−0.211574 + 0.977362i \(0.567859\pi\)
\(878\) −7.48717 7.48717i −0.252680 0.252680i
\(879\) 0 0
\(880\) 0 0
\(881\) 53.5692i 1.80479i −0.430907 0.902396i \(-0.641806\pi\)
0.430907 0.902396i \(-0.358194\pi\)
\(882\) 0 0
\(883\) −21.1488 + 21.1488i −0.711715 + 0.711715i −0.966894 0.255179i \(-0.917866\pi\)
0.255179 + 0.966894i \(0.417866\pi\)
\(884\) 6.58846 0.221594
\(885\) 0 0
\(886\) −27.5885 −0.926852
\(887\) −15.9861 + 15.9861i −0.536759 + 0.536759i −0.922576 0.385816i \(-0.873920\pi\)
0.385816 + 0.922576i \(0.373920\pi\)
\(888\) 0 0
\(889\) 13.1769i 0.441940i
\(890\) 0 0
\(891\) 0 0
\(892\) 14.9372 + 14.9372i 0.500134 + 0.500134i
\(893\) 39.4321 + 39.4321i 1.31954 + 1.31954i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.26795i 0.0423592i
\(897\) 0 0
\(898\) 4.24264 4.24264i 0.141579 0.141579i
\(899\) 16.3923 0.546714
\(900\) 0 0
\(901\) 4.82309 0.160680
\(902\) 12.7279 12.7279i 0.423793 0.423793i
\(903\) 0 0
\(904\) 10.3923i 0.345643i
\(905\) 0 0
\(906\) 0 0
\(907\) 5.31508 + 5.31508i 0.176484 + 0.176484i 0.789821 0.613337i \(-0.210173\pi\)
−0.613337 + 0.789821i \(0.710173\pi\)
\(908\) 4.81105 + 4.81105i 0.159660 + 0.159660i
\(909\) 0 0
\(910\) 0 0
\(911\) 47.1962i 1.56368i −0.623480 0.781839i \(-0.714282\pi\)
0.623480 0.781839i \(-0.285718\pi\)
\(912\) 0 0
\(913\) −9.31749 + 9.31749i −0.308364 + 0.308364i
\(914\) −23.1962 −0.767261
\(915\) 0 0
\(916\) 17.5885 0.581139
\(917\) −12.0072 + 12.0072i −0.396513 + 0.396513i
\(918\) 0 0
\(919\) 3.41154i 0.112536i −0.998416 0.0562682i \(-0.982080\pi\)
0.998416 0.0562682i \(-0.0179202\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −23.1822 23.1822i −0.763466 0.763466i
\(923\) −1.70522 1.70522i −0.0561279 0.0561279i
\(924\) 0 0
\(925\) 0 0
\(926\) 16.0526i 0.527520i
\(927\) 0 0
\(928\) −5.79555 + 5.79555i −0.190248 + 0.190248i
\(929\) 19.1769 0.629174 0.314587 0.949229i \(-0.398134\pi\)
0.314587 + 0.949229i \(0.398134\pi\)
\(930\) 0 0
\(931\) −33.4115 −1.09502
\(932\) −10.0382 + 10.0382i −0.328812 + 0.328812i
\(933\) 0 0
\(934\) 13.9808i 0.457465i
\(935\) 0 0
\(936\) 0 0
\(937\) 34.6854 + 34.6854i 1.13312 + 1.13312i 0.989655 + 0.143468i \(0.0458253\pi\)
0.143468 + 0.989655i \(0.454175\pi\)
\(938\) 1.96902 + 1.96902i 0.0642907 + 0.0642907i
\(939\) 0 0
\(940\) 0 0
\(941\) 27.3731i 0.892336i 0.894949 + 0.446168i \(0.147212\pi\)
−0.894949 + 0.446168i \(0.852788\pi\)
\(942\) 0 0
\(943\) −12.7279 + 12.7279i −0.414478 + 0.414478i
\(944\) −13.3923 −0.435882
\(945\) 0 0
\(946\) 32.1962 1.04679
\(947\) 13.8647 13.8647i 0.450543 0.450543i −0.444991 0.895535i \(-0.646793\pi\)
0.895535 + 0.444991i \(0.146793\pi\)
\(948\) 0 0
\(949\) 25.6077i 0.831261i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.96902 1.96902i −0.0638162 0.0638162i
\(953\) −34.7733 34.7733i −1.12642 1.12642i −0.990755 0.135664i \(-0.956683\pi\)
−0.135664 0.990755i \(-0.543317\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12.8038i 0.414106i
\(957\) 0 0
\(958\) −15.8338 + 15.8338i −0.511565 + 0.511565i
\(959\) −25.6077 −0.826916
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −21.0609 + 21.0609i −0.679031 + 0.679031i
\(963\) 0 0
\(964\) 1.00000i 0.0322078i
\(965\) 0 0
\(966\) 0 0
\(967\) 4.06678 + 4.06678i 0.130779 + 0.130779i 0.769466 0.638688i \(-0.220522\pi\)
−0.638688 + 0.769466i \(0.720522\pi\)
\(968\) 1.41421 + 1.41421i 0.0454545 + 0.0454545i
\(969\) 0 0
\(970\) 0 0
\(971\) 17.7846i 0.570735i 0.958418 + 0.285368i \(0.0921157\pi\)
−0.958418 + 0.285368i \(0.907884\pi\)
\(972\) 0 0
\(973\) −14.5211 + 14.5211i −0.465524 + 0.465524i
\(974\) 12.5885 0.403360
\(975\) 0 0
\(976\) 9.19615 0.294362
\(977\) −9.31749 + 9.31749i −0.298093 + 0.298093i −0.840266 0.542174i \(-0.817601\pi\)
0.542174 + 0.840266i \(0.317601\pi\)
\(978\) 0 0
\(979\) 24.5885i 0.785851i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.13681 1.13681i −0.0362771 0.0362771i
\(983\) −18.7873 18.7873i −0.599221 0.599221i 0.340884 0.940105i \(-0.389274\pi\)
−0.940105 + 0.340884i \(0.889274\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 18.0000i 0.573237i
\(987\) 0 0
\(988\) −13.1440 + 13.1440i −0.418167 + 0.418167i
\(989\) −32.1962 −1.02378
\(990\) 0 0
\(991\) 49.5692 1.57462 0.787309 0.616559i \(-0.211474\pi\)
0.787309 + 0.616559i \(0.211474\pi\)
\(992\) −1.41421 + 1.41421i −0.0449013 + 0.0449013i
\(993\) 0 0
\(994\) 1.01924i 0.0323283i
\(995\) 0 0
\(996\) 0 0
\(997\) −19.0919 19.0919i −0.604646 0.604646i 0.336896 0.941542i \(-0.390623\pi\)
−0.941542 + 0.336896i \(0.890623\pi\)
\(998\) 23.4596 + 23.4596i 0.742601 + 0.742601i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.f.b.107.1 8
3.2 odd 2 1350.2.f.e.107.3 yes 8
5.2 odd 4 1350.2.f.e.593.2 yes 8
5.3 odd 4 1350.2.f.e.593.3 yes 8
5.4 even 2 inner 1350.2.f.b.107.4 yes 8
15.2 even 4 inner 1350.2.f.b.593.4 yes 8
15.8 even 4 inner 1350.2.f.b.593.1 yes 8
15.14 odd 2 1350.2.f.e.107.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.2.f.b.107.1 8 1.1 even 1 trivial
1350.2.f.b.107.4 yes 8 5.4 even 2 inner
1350.2.f.b.593.1 yes 8 15.8 even 4 inner
1350.2.f.b.593.4 yes 8 15.2 even 4 inner
1350.2.f.e.107.2 yes 8 15.14 odd 2
1350.2.f.e.107.3 yes 8 3.2 odd 2
1350.2.f.e.593.2 yes 8 5.2 odd 4
1350.2.f.e.593.3 yes 8 5.3 odd 4