Properties

Label 135.4.b.c.109.2
Level $135$
Weight $4$
Character 135.109
Analytic conductor $7.965$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,4,Mod(109,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 135.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.96525785077\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 255x^{8} + 1289x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{18}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.2
Root \(0.930240 + 0.930240i\) of defining polynomial
Character \(\chi\) \(=\) 135.109
Dual form 135.4.b.c.109.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.92742i q^{2} -16.2795 q^{4} +(7.57192 - 8.22594i) q^{5} -34.7816i q^{7} +40.7965i q^{8} +(-40.5327 - 37.3100i) q^{10} +12.4586 q^{11} +37.1137i q^{13} -171.384 q^{14} +70.7858 q^{16} +102.680i q^{17} -63.7858 q^{19} +(-123.267 + 133.914i) q^{20} -61.3890i q^{22} -100.592i q^{23} +(-10.3321 - 124.572i) q^{25} +182.875 q^{26} +566.227i q^{28} +138.980 q^{29} +24.8911 q^{31} -22.4195i q^{32} +505.947 q^{34} +(-286.111 - 263.363i) q^{35} -186.668i q^{37} +314.300i q^{38} +(335.590 + 308.908i) q^{40} +255.169 q^{41} -108.471i q^{43} -202.820 q^{44} -495.659 q^{46} -223.781i q^{47} -866.760 q^{49} +(-613.820 + 50.9107i) q^{50} -604.192i q^{52} +40.5151i q^{53} +(94.3358 - 102.484i) q^{55} +1418.97 q^{56} -684.812i q^{58} +131.550 q^{59} -336.171 q^{61} -122.649i q^{62} +455.817 q^{64} +(305.295 + 281.022i) q^{65} -17.8284i q^{67} -1671.58i q^{68} +(-1297.70 + 1409.79i) q^{70} +992.473 q^{71} -769.455i q^{73} -919.792 q^{74} +1038.40 q^{76} -433.331i q^{77} +252.252 q^{79} +(535.985 - 582.280i) q^{80} -1257.33i q^{82} -234.606i q^{83} +(844.639 + 777.484i) q^{85} -534.484 q^{86} +508.269i q^{88} +405.641 q^{89} +1290.87 q^{91} +1637.58i q^{92} -1102.67 q^{94} +(-482.981 + 524.698i) q^{95} +1067.80i q^{97} +4270.89i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 60 q^{4} - 36 q^{10} + 84 q^{16} - 348 q^{25} + 252 q^{31} + 1068 q^{34} + 1320 q^{40} - 1668 q^{46} - 2868 q^{49} + 684 q^{55} + 792 q^{61} + 2268 q^{64} - 5652 q^{70} + 1824 q^{76} + 2196 q^{79}+ \cdots - 5148 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.92742i 1.74211i −0.491188 0.871053i \(-0.663437\pi\)
0.491188 0.871053i \(-0.336563\pi\)
\(3\) 0 0
\(4\) −16.2795 −2.03494
\(5\) 7.57192 8.22594i 0.677253 0.735750i
\(6\) 0 0
\(7\) 34.7816i 1.87803i −0.343876 0.939015i \(-0.611740\pi\)
0.343876 0.939015i \(-0.388260\pi\)
\(8\) 40.7965i 1.80297i
\(9\) 0 0
\(10\) −40.5327 37.3100i −1.28176 1.17985i
\(11\) 12.4586 0.341493 0.170746 0.985315i \(-0.445382\pi\)
0.170746 + 0.985315i \(0.445382\pi\)
\(12\) 0 0
\(13\) 37.1137i 0.791807i 0.918292 + 0.395904i \(0.129569\pi\)
−0.918292 + 0.395904i \(0.870431\pi\)
\(14\) −171.384 −3.27173
\(15\) 0 0
\(16\) 70.7858 1.10603
\(17\) 102.680i 1.46491i 0.680813 + 0.732457i \(0.261627\pi\)
−0.680813 + 0.732457i \(0.738373\pi\)
\(18\) 0 0
\(19\) −63.7858 −0.770183 −0.385092 0.922878i \(-0.625830\pi\)
−0.385092 + 0.922878i \(0.625830\pi\)
\(20\) −123.267 + 133.914i −1.37817 + 1.49720i
\(21\) 0 0
\(22\) 61.3890i 0.594917i
\(23\) 100.592i 0.911951i −0.889992 0.455975i \(-0.849291\pi\)
0.889992 0.455975i \(-0.150709\pi\)
\(24\) 0 0
\(25\) −10.3321 124.572i −0.0826569 0.996578i
\(26\) 182.875 1.37941
\(27\) 0 0
\(28\) 566.227i 3.82167i
\(29\) 138.980 0.889927 0.444964 0.895549i \(-0.353217\pi\)
0.444964 + 0.895549i \(0.353217\pi\)
\(30\) 0 0
\(31\) 24.8911 0.144212 0.0721060 0.997397i \(-0.477028\pi\)
0.0721060 + 0.997397i \(0.477028\pi\)
\(32\) 22.4195i 0.123851i
\(33\) 0 0
\(34\) 505.947 2.55204
\(35\) −286.111 263.363i −1.38176 1.27190i
\(36\) 0 0
\(37\) 186.668i 0.829406i −0.909957 0.414703i \(-0.863886\pi\)
0.909957 0.414703i \(-0.136114\pi\)
\(38\) 314.300i 1.34174i
\(39\) 0 0
\(40\) 335.590 + 308.908i 1.32654 + 1.22107i
\(41\) 255.169 0.971970 0.485985 0.873967i \(-0.338461\pi\)
0.485985 + 0.873967i \(0.338461\pi\)
\(42\) 0 0
\(43\) 108.471i 0.384691i −0.981327 0.192345i \(-0.938391\pi\)
0.981327 0.192345i \(-0.0616094\pi\)
\(44\) −202.820 −0.694916
\(45\) 0 0
\(46\) −495.659 −1.58872
\(47\) 223.781i 0.694508i −0.937771 0.347254i \(-0.887114\pi\)
0.937771 0.347254i \(-0.112886\pi\)
\(48\) 0 0
\(49\) −866.760 −2.52700
\(50\) −613.820 + 50.9107i −1.73615 + 0.143997i
\(51\) 0 0
\(52\) 604.192i 1.61128i
\(53\) 40.5151i 0.105003i 0.998621 + 0.0525017i \(0.0167195\pi\)
−0.998621 + 0.0525017i \(0.983280\pi\)
\(54\) 0 0
\(55\) 94.3358 102.484i 0.231277 0.251253i
\(56\) 1418.97 3.38603
\(57\) 0 0
\(58\) 684.812i 1.55035i
\(59\) 131.550 0.290278 0.145139 0.989411i \(-0.453637\pi\)
0.145139 + 0.989411i \(0.453637\pi\)
\(60\) 0 0
\(61\) −336.171 −0.705610 −0.352805 0.935697i \(-0.614772\pi\)
−0.352805 + 0.935697i \(0.614772\pi\)
\(62\) 122.649i 0.251233i
\(63\) 0 0
\(64\) 455.817 0.890267
\(65\) 305.295 + 281.022i 0.582572 + 0.536254i
\(66\) 0 0
\(67\) 17.8284i 0.0325087i −0.999868 0.0162543i \(-0.994826\pi\)
0.999868 0.0162543i \(-0.00517414\pi\)
\(68\) 1671.58i 2.98101i
\(69\) 0 0
\(70\) −1297.70 + 1409.79i −2.21579 + 2.40718i
\(71\) 992.473 1.65894 0.829471 0.558549i \(-0.188642\pi\)
0.829471 + 0.558549i \(0.188642\pi\)
\(72\) 0 0
\(73\) 769.455i 1.23367i −0.787092 0.616835i \(-0.788415\pi\)
0.787092 0.616835i \(-0.211585\pi\)
\(74\) −919.792 −1.44491
\(75\) 0 0
\(76\) 1038.40 1.56727
\(77\) 433.331i 0.641334i
\(78\) 0 0
\(79\) 252.252 0.359248 0.179624 0.983735i \(-0.442512\pi\)
0.179624 + 0.983735i \(0.442512\pi\)
\(80\) 535.985 582.280i 0.749061 0.813761i
\(81\) 0 0
\(82\) 1257.33i 1.69328i
\(83\) 234.606i 0.310258i −0.987894 0.155129i \(-0.950421\pi\)
0.987894 0.155129i \(-0.0495793\pi\)
\(84\) 0 0
\(85\) 844.639 + 777.484i 1.07781 + 0.992117i
\(86\) −534.484 −0.670173
\(87\) 0 0
\(88\) 508.269i 0.615701i
\(89\) 405.641 0.483121 0.241561 0.970386i \(-0.422341\pi\)
0.241561 + 0.970386i \(0.422341\pi\)
\(90\) 0 0
\(91\) 1290.87 1.48704
\(92\) 1637.58i 1.85576i
\(93\) 0 0
\(94\) −1102.67 −1.20991
\(95\) −482.981 + 524.698i −0.521609 + 0.566662i
\(96\) 0 0
\(97\) 1067.80i 1.11772i 0.829262 + 0.558860i \(0.188761\pi\)
−0.829262 + 0.558860i \(0.811239\pi\)
\(98\) 4270.89i 4.40230i
\(99\) 0 0
\(100\) 168.201 + 2027.97i 0.168201 + 2.02797i
\(101\) −1460.41 −1.43877 −0.719386 0.694611i \(-0.755577\pi\)
−0.719386 + 0.694611i \(0.755577\pi\)
\(102\) 0 0
\(103\) 1503.55i 1.43834i 0.694835 + 0.719170i \(0.255478\pi\)
−0.694835 + 0.719170i \(0.744522\pi\)
\(104\) −1514.11 −1.42760
\(105\) 0 0
\(106\) 199.635 0.182927
\(107\) 1862.54i 1.68279i −0.540418 0.841396i \(-0.681734\pi\)
0.540418 0.841396i \(-0.318266\pi\)
\(108\) 0 0
\(109\) 1489.05 1.30848 0.654242 0.756286i \(-0.272988\pi\)
0.654242 + 0.756286i \(0.272988\pi\)
\(110\) −504.982 464.832i −0.437710 0.402909i
\(111\) 0 0
\(112\) 2462.05i 2.07716i
\(113\) 936.618i 0.779731i −0.920872 0.389865i \(-0.872522\pi\)
0.920872 0.389865i \(-0.127478\pi\)
\(114\) 0 0
\(115\) −827.463 761.674i −0.670968 0.617621i
\(116\) −2262.52 −1.81094
\(117\) 0 0
\(118\) 648.205i 0.505696i
\(119\) 3571.37 2.75115
\(120\) 0 0
\(121\) −1175.78 −0.883383
\(122\) 1656.45i 1.22925i
\(123\) 0 0
\(124\) −405.214 −0.293462
\(125\) −1102.96 858.260i −0.789212 0.614121i
\(126\) 0 0
\(127\) 285.249i 0.199305i −0.995022 0.0996525i \(-0.968227\pi\)
0.995022 0.0996525i \(-0.0317731\pi\)
\(128\) 2425.36i 1.67479i
\(129\) 0 0
\(130\) 1384.71 1504.32i 0.934211 1.01490i
\(131\) −697.411 −0.465138 −0.232569 0.972580i \(-0.574713\pi\)
−0.232569 + 0.972580i \(0.574713\pi\)
\(132\) 0 0
\(133\) 2218.57i 1.44643i
\(134\) −87.8479 −0.0566336
\(135\) 0 0
\(136\) −4188.99 −2.64120
\(137\) 1557.87i 0.971514i 0.874094 + 0.485757i \(0.161456\pi\)
−0.874094 + 0.485757i \(0.838544\pi\)
\(138\) 0 0
\(139\) 315.325 0.192414 0.0962068 0.995361i \(-0.469329\pi\)
0.0962068 + 0.995361i \(0.469329\pi\)
\(140\) 4657.75 + 4287.42i 2.81180 + 2.58824i
\(141\) 0 0
\(142\) 4890.34i 2.89006i
\(143\) 462.386i 0.270396i
\(144\) 0 0
\(145\) 1052.34 1143.24i 0.602706 0.654764i
\(146\) −3791.43 −2.14919
\(147\) 0 0
\(148\) 3038.86i 1.68779i
\(149\) 1983.67 1.09066 0.545331 0.838221i \(-0.316404\pi\)
0.545331 + 0.838221i \(0.316404\pi\)
\(150\) 0 0
\(151\) 1057.25 0.569787 0.284894 0.958559i \(-0.408042\pi\)
0.284894 + 0.958559i \(0.408042\pi\)
\(152\) 2602.24i 1.38862i
\(153\) 0 0
\(154\) −2135.21 −1.11727
\(155\) 188.473 204.753i 0.0976680 0.106104i
\(156\) 0 0
\(157\) 2171.68i 1.10394i −0.833862 0.551972i \(-0.813875\pi\)
0.833862 0.551972i \(-0.186125\pi\)
\(158\) 1242.95i 0.625848i
\(159\) 0 0
\(160\) −184.421 169.758i −0.0911235 0.0838786i
\(161\) −3498.75 −1.71267
\(162\) 0 0
\(163\) 1219.04i 0.585781i 0.956146 + 0.292890i \(0.0946171\pi\)
−0.956146 + 0.292890i \(0.905383\pi\)
\(164\) −4154.03 −1.97790
\(165\) 0 0
\(166\) −1156.01 −0.540502
\(167\) 3577.08i 1.65750i 0.559619 + 0.828750i \(0.310948\pi\)
−0.559619 + 0.828750i \(0.689052\pi\)
\(168\) 0 0
\(169\) 819.572 0.373041
\(170\) 3830.99 4161.89i 1.72837 1.87766i
\(171\) 0 0
\(172\) 1765.86i 0.782822i
\(173\) 2372.95i 1.04284i 0.853299 + 0.521422i \(0.174598\pi\)
−0.853299 + 0.521422i \(0.825402\pi\)
\(174\) 0 0
\(175\) −4332.82 + 359.367i −1.87160 + 0.155232i
\(176\) 881.895 0.377701
\(177\) 0 0
\(178\) 1998.76i 0.841649i
\(179\) 774.792 0.323524 0.161762 0.986830i \(-0.448282\pi\)
0.161762 + 0.986830i \(0.448282\pi\)
\(180\) 0 0
\(181\) −1250.05 −0.513344 −0.256672 0.966499i \(-0.582626\pi\)
−0.256672 + 0.966499i \(0.582626\pi\)
\(182\) 6360.68i 2.59058i
\(183\) 0 0
\(184\) 4103.80 1.64422
\(185\) −1535.52 1413.43i −0.610235 0.561717i
\(186\) 0 0
\(187\) 1279.25i 0.500258i
\(188\) 3643.05i 1.41328i
\(189\) 0 0
\(190\) 2585.41 + 2379.85i 0.987186 + 0.908698i
\(191\) 2141.03 0.811097 0.405548 0.914074i \(-0.367081\pi\)
0.405548 + 0.914074i \(0.367081\pi\)
\(192\) 0 0
\(193\) 1829.86i 0.682466i 0.939979 + 0.341233i \(0.110844\pi\)
−0.939979 + 0.341233i \(0.889156\pi\)
\(194\) 5261.51 1.94719
\(195\) 0 0
\(196\) 14110.4 5.14228
\(197\) 1142.23i 0.413099i 0.978436 + 0.206550i \(0.0662235\pi\)
−0.978436 + 0.206550i \(0.933777\pi\)
\(198\) 0 0
\(199\) −284.078 −0.101195 −0.0505973 0.998719i \(-0.516113\pi\)
−0.0505973 + 0.998719i \(0.516113\pi\)
\(200\) 5082.12 421.514i 1.79680 0.149028i
\(201\) 0 0
\(202\) 7196.04i 2.50649i
\(203\) 4833.94i 1.67131i
\(204\) 0 0
\(205\) 1932.12 2099.01i 0.658270 0.715127i
\(206\) 7408.61 2.50574
\(207\) 0 0
\(208\) 2627.13i 0.875762i
\(209\) −794.685 −0.263012
\(210\) 0 0
\(211\) 813.075 0.265281 0.132641 0.991164i \(-0.457654\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(212\) 659.566i 0.213675i
\(213\) 0 0
\(214\) −9177.54 −2.93160
\(215\) −892.278 821.336i −0.283036 0.260533i
\(216\) 0 0
\(217\) 865.752i 0.270834i
\(218\) 7337.16i 2.27952i
\(219\) 0 0
\(220\) −1535.74 + 1668.39i −0.470634 + 0.511285i
\(221\) −3810.83 −1.15993
\(222\) 0 0
\(223\) 4936.43i 1.48237i −0.671303 0.741183i \(-0.734265\pi\)
0.671303 0.741183i \(-0.265735\pi\)
\(224\) −779.785 −0.232596
\(225\) 0 0
\(226\) −4615.11 −1.35837
\(227\) 3589.88i 1.04964i −0.851213 0.524820i \(-0.824133\pi\)
0.851213 0.524820i \(-0.175867\pi\)
\(228\) 0 0
\(229\) 3869.82 1.11670 0.558352 0.829604i \(-0.311434\pi\)
0.558352 + 0.829604i \(0.311434\pi\)
\(230\) −3753.09 + 4077.26i −1.07596 + 1.16890i
\(231\) 0 0
\(232\) 5669.89i 1.60451i
\(233\) 2983.29i 0.838805i 0.907800 + 0.419403i \(0.137760\pi\)
−0.907800 + 0.419403i \(0.862240\pi\)
\(234\) 0 0
\(235\) −1840.81 1694.46i −0.510985 0.470358i
\(236\) −2141.57 −0.590698
\(237\) 0 0
\(238\) 17597.7i 4.79280i
\(239\) 2627.57 0.711145 0.355572 0.934649i \(-0.384286\pi\)
0.355572 + 0.934649i \(0.384286\pi\)
\(240\) 0 0
\(241\) −4236.43 −1.13233 −0.566167 0.824291i \(-0.691574\pi\)
−0.566167 + 0.824291i \(0.691574\pi\)
\(242\) 5793.58i 1.53895i
\(243\) 0 0
\(244\) 5472.68 1.43587
\(245\) −6563.04 + 7129.92i −1.71142 + 1.85924i
\(246\) 0 0
\(247\) 2367.33i 0.609836i
\(248\) 1015.47i 0.260010i
\(249\) 0 0
\(250\) −4229.01 + 5434.74i −1.06986 + 1.37489i
\(251\) −6298.35 −1.58386 −0.791929 0.610614i \(-0.790923\pi\)
−0.791929 + 0.610614i \(0.790923\pi\)
\(252\) 0 0
\(253\) 1253.24i 0.311425i
\(254\) −1405.54 −0.347211
\(255\) 0 0
\(256\) −8304.22 −2.02740
\(257\) 3034.13i 0.736434i 0.929740 + 0.368217i \(0.120032\pi\)
−0.929740 + 0.368217i \(0.879968\pi\)
\(258\) 0 0
\(259\) −6492.61 −1.55765
\(260\) −4970.05 4574.89i −1.18550 1.09124i
\(261\) 0 0
\(262\) 3436.44i 0.810320i
\(263\) 5212.09i 1.22202i 0.791623 + 0.611010i \(0.209237\pi\)
−0.791623 + 0.611010i \(0.790763\pi\)
\(264\) 0 0
\(265\) 333.275 + 306.777i 0.0772563 + 0.0711139i
\(266\) 10931.9 2.51983
\(267\) 0 0
\(268\) 290.237i 0.0661531i
\(269\) 1851.11 0.419571 0.209785 0.977747i \(-0.432724\pi\)
0.209785 + 0.977747i \(0.432724\pi\)
\(270\) 0 0
\(271\) 922.751 0.206838 0.103419 0.994638i \(-0.467022\pi\)
0.103419 + 0.994638i \(0.467022\pi\)
\(272\) 7268.29i 1.62024i
\(273\) 0 0
\(274\) 7676.26 1.69248
\(275\) −128.724 1552.00i −0.0282267 0.340324i
\(276\) 0 0
\(277\) 1932.26i 0.419126i −0.977795 0.209563i \(-0.932796\pi\)
0.977795 0.209563i \(-0.0672042\pi\)
\(278\) 1553.74i 0.335205i
\(279\) 0 0
\(280\) 10744.3 11672.4i 2.29320 2.49127i
\(281\) 7020.02 1.49032 0.745159 0.666887i \(-0.232374\pi\)
0.745159 + 0.666887i \(0.232374\pi\)
\(282\) 0 0
\(283\) 1497.15i 0.314475i 0.987561 + 0.157237i \(0.0502588\pi\)
−0.987561 + 0.157237i \(0.949741\pi\)
\(284\) −16157.0 −3.37584
\(285\) 0 0
\(286\) 2278.37 0.471059
\(287\) 8875.21i 1.82539i
\(288\) 0 0
\(289\) −5630.17 −1.14597
\(290\) −5633.22 5185.34i −1.14067 1.04998i
\(291\) 0 0
\(292\) 12526.3i 2.51044i
\(293\) 7003.84i 1.39648i 0.715863 + 0.698240i \(0.246033\pi\)
−0.715863 + 0.698240i \(0.753967\pi\)
\(294\) 0 0
\(295\) 996.089 1082.13i 0.196592 0.213572i
\(296\) 7615.40 1.49539
\(297\) 0 0
\(298\) 9774.38i 1.90005i
\(299\) 3733.34 0.722089
\(300\) 0 0
\(301\) −3772.80 −0.722461
\(302\) 5209.52i 0.992630i
\(303\) 0 0
\(304\) −4515.14 −0.851845
\(305\) −2545.46 + 2765.32i −0.477877 + 0.519153i
\(306\) 0 0
\(307\) 1297.09i 0.241137i −0.992705 0.120568i \(-0.961528\pi\)
0.992705 0.120568i \(-0.0384717\pi\)
\(308\) 7054.41i 1.30507i
\(309\) 0 0
\(310\) −1008.90 928.687i −0.184844 0.170148i
\(311\) 3073.25 0.560348 0.280174 0.959949i \(-0.409608\pi\)
0.280174 + 0.959949i \(0.409608\pi\)
\(312\) 0 0
\(313\) 8290.40i 1.49713i 0.663062 + 0.748564i \(0.269256\pi\)
−0.663062 + 0.748564i \(0.730744\pi\)
\(314\) −10700.8 −1.92319
\(315\) 0 0
\(316\) −4106.53 −0.731046
\(317\) 2882.26i 0.510675i 0.966852 + 0.255338i \(0.0821866\pi\)
−0.966852 + 0.255338i \(0.917813\pi\)
\(318\) 0 0
\(319\) 1731.50 0.303904
\(320\) 3451.41 3749.52i 0.602936 0.655014i
\(321\) 0 0
\(322\) 17239.8i 2.98366i
\(323\) 6549.53i 1.12825i
\(324\) 0 0
\(325\) 4623.34 383.463i 0.789098 0.0654483i
\(326\) 6006.71 1.02049
\(327\) 0 0
\(328\) 10410.0i 1.75243i
\(329\) −7783.48 −1.30431
\(330\) 0 0
\(331\) 9505.77 1.57850 0.789251 0.614071i \(-0.210469\pi\)
0.789251 + 0.614071i \(0.210469\pi\)
\(332\) 3819.27i 0.631355i
\(333\) 0 0
\(334\) 17625.8 2.88754
\(335\) −146.655 134.995i −0.0239183 0.0220166i
\(336\) 0 0
\(337\) 5929.45i 0.958451i −0.877692 0.479225i \(-0.840918\pi\)
0.877692 0.479225i \(-0.159082\pi\)
\(338\) 4038.38i 0.649878i
\(339\) 0 0
\(340\) −13750.3 12657.0i −2.19328 2.01890i
\(341\) 310.109 0.0492473
\(342\) 0 0
\(343\) 18217.2i 2.86775i
\(344\) 4425.25 0.693586
\(345\) 0 0
\(346\) 11692.5 1.81675
\(347\) 4199.08i 0.649621i 0.945779 + 0.324811i \(0.105301\pi\)
−0.945779 + 0.324811i \(0.894699\pi\)
\(348\) 0 0
\(349\) 4490.59 0.688756 0.344378 0.938831i \(-0.388090\pi\)
0.344378 + 0.938831i \(0.388090\pi\)
\(350\) 1770.75 + 21349.7i 0.270431 + 3.26053i
\(351\) 0 0
\(352\) 279.316i 0.0422943i
\(353\) 3992.72i 0.602014i −0.953622 0.301007i \(-0.902677\pi\)
0.953622 0.301007i \(-0.0973227\pi\)
\(354\) 0 0
\(355\) 7514.93 8164.02i 1.12352 1.22057i
\(356\) −6603.62 −0.983121
\(357\) 0 0
\(358\) 3817.73i 0.563613i
\(359\) 1630.18 0.239659 0.119830 0.992794i \(-0.461765\pi\)
0.119830 + 0.992794i \(0.461765\pi\)
\(360\) 0 0
\(361\) −2790.37 −0.406818
\(362\) 6159.51i 0.894301i
\(363\) 0 0
\(364\) −21014.8 −3.02603
\(365\) −6329.49 5826.25i −0.907673 0.835507i
\(366\) 0 0
\(367\) 1402.36i 0.199462i 0.995014 + 0.0997312i \(0.0317983\pi\)
−0.995014 + 0.0997312i \(0.968202\pi\)
\(368\) 7120.48i 1.00864i
\(369\) 0 0
\(370\) −6964.59 + 7566.15i −0.978572 + 1.06310i
\(371\) 1409.18 0.197200
\(372\) 0 0
\(373\) 4988.43i 0.692469i 0.938148 + 0.346235i \(0.112540\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(374\) 6303.41 0.871502
\(375\) 0 0
\(376\) 9129.51 1.25218
\(377\) 5158.05i 0.704651i
\(378\) 0 0
\(379\) −9475.33 −1.28421 −0.642104 0.766617i \(-0.721938\pi\)
−0.642104 + 0.766617i \(0.721938\pi\)
\(380\) 7862.69 8541.82i 1.06144 1.15312i
\(381\) 0 0
\(382\) 10549.8i 1.41302i
\(383\) 7172.68i 0.956937i −0.878105 0.478469i \(-0.841192\pi\)
0.878105 0.478469i \(-0.158808\pi\)
\(384\) 0 0
\(385\) −3564.56 3281.15i −0.471861 0.434345i
\(386\) 9016.47 1.18893
\(387\) 0 0
\(388\) 17383.3i 2.27449i
\(389\) 64.9700 0.00846815 0.00423407 0.999991i \(-0.498652\pi\)
0.00423407 + 0.999991i \(0.498652\pi\)
\(390\) 0 0
\(391\) 10328.8 1.33593
\(392\) 35360.8i 4.55610i
\(393\) 0 0
\(394\) 5628.25 0.719663
\(395\) 1910.03 2075.01i 0.243302 0.264317i
\(396\) 0 0
\(397\) 9638.18i 1.21845i 0.792996 + 0.609227i \(0.208520\pi\)
−0.792996 + 0.609227i \(0.791480\pi\)
\(398\) 1399.77i 0.176292i
\(399\) 0 0
\(400\) −731.367 8817.95i −0.0914209 1.10224i
\(401\) −7130.33 −0.887959 −0.443979 0.896037i \(-0.646434\pi\)
−0.443979 + 0.896037i \(0.646434\pi\)
\(402\) 0 0
\(403\) 923.801i 0.114188i
\(404\) 23774.7 2.92781
\(405\) 0 0
\(406\) −23818.9 −2.91160
\(407\) 2325.63i 0.283236i
\(408\) 0 0
\(409\) 950.932 0.114965 0.0574824 0.998347i \(-0.481693\pi\)
0.0574824 + 0.998347i \(0.481693\pi\)
\(410\) −10342.7 9520.38i −1.24583 1.14678i
\(411\) 0 0
\(412\) 24477.0i 2.92693i
\(413\) 4575.54i 0.545151i
\(414\) 0 0
\(415\) −1929.86 1776.42i −0.228272 0.210123i
\(416\) 832.069 0.0980662
\(417\) 0 0
\(418\) 3915.75i 0.458195i
\(419\) 16381.7 1.91002 0.955008 0.296579i \(-0.0958457\pi\)
0.955008 + 0.296579i \(0.0958457\pi\)
\(420\) 0 0
\(421\) −408.506 −0.0472907 −0.0236453 0.999720i \(-0.507527\pi\)
−0.0236453 + 0.999720i \(0.507527\pi\)
\(422\) 4006.36i 0.462148i
\(423\) 0 0
\(424\) −1652.88 −0.189318
\(425\) 12791.1 1060.90i 1.45990 0.121085i
\(426\) 0 0
\(427\) 11692.6i 1.32516i
\(428\) 30321.3i 3.42438i
\(429\) 0 0
\(430\) −4047.07 + 4396.63i −0.453876 + 0.493080i
\(431\) 8202.47 0.916703 0.458352 0.888771i \(-0.348440\pi\)
0.458352 + 0.888771i \(0.348440\pi\)
\(432\) 0 0
\(433\) 1435.71i 0.159343i 0.996821 + 0.0796716i \(0.0253872\pi\)
−0.996821 + 0.0796716i \(0.974613\pi\)
\(434\) −4265.93 −0.471823
\(435\) 0 0
\(436\) −24240.9 −2.66268
\(437\) 6416.34i 0.702369i
\(438\) 0 0
\(439\) 13629.3 1.48176 0.740880 0.671637i \(-0.234409\pi\)
0.740880 + 0.671637i \(0.234409\pi\)
\(440\) 4180.99 + 3848.57i 0.453002 + 0.416985i
\(441\) 0 0
\(442\) 18777.6i 2.02072i
\(443\) 8832.42i 0.947271i 0.880721 + 0.473636i \(0.157059\pi\)
−0.880721 + 0.473636i \(0.842941\pi\)
\(444\) 0 0
\(445\) 3071.48 3336.77i 0.327195 0.355457i
\(446\) −24323.9 −2.58244
\(447\) 0 0
\(448\) 15854.0i 1.67195i
\(449\) −11128.7 −1.16970 −0.584848 0.811143i \(-0.698846\pi\)
−0.584848 + 0.811143i \(0.698846\pi\)
\(450\) 0 0
\(451\) 3179.06 0.331921
\(452\) 15247.7i 1.58670i
\(453\) 0 0
\(454\) −17688.8 −1.82859
\(455\) 9774.40 10618.7i 1.00710 1.09409i
\(456\) 0 0
\(457\) 16984.0i 1.73846i −0.494405 0.869231i \(-0.664614\pi\)
0.494405 0.869231i \(-0.335386\pi\)
\(458\) 19068.3i 1.94542i
\(459\) 0 0
\(460\) 13470.7 + 12399.7i 1.36538 + 1.25682i
\(461\) −15698.3 −1.58600 −0.792999 0.609223i \(-0.791481\pi\)
−0.792999 + 0.609223i \(0.791481\pi\)
\(462\) 0 0
\(463\) 7996.32i 0.802636i −0.915939 0.401318i \(-0.868552\pi\)
0.915939 0.401318i \(-0.131448\pi\)
\(464\) 9837.80 0.984285
\(465\) 0 0
\(466\) 14699.9 1.46129
\(467\) 6347.66i 0.628982i 0.949260 + 0.314491i \(0.101834\pi\)
−0.949260 + 0.314491i \(0.898166\pi\)
\(468\) 0 0
\(469\) −620.099 −0.0610523
\(470\) −8349.30 + 9070.46i −0.819413 + 0.890190i
\(471\) 0 0
\(472\) 5366.80i 0.523363i
\(473\) 1351.40i 0.131369i
\(474\) 0 0
\(475\) 659.042 + 7945.95i 0.0636609 + 0.767547i
\(476\) −58140.1 −5.59842
\(477\) 0 0
\(478\) 12947.2i 1.23889i
\(479\) −5794.01 −0.552683 −0.276341 0.961060i \(-0.589122\pi\)
−0.276341 + 0.961060i \(0.589122\pi\)
\(480\) 0 0
\(481\) 6927.94 0.656729
\(482\) 20874.7i 1.97265i
\(483\) 0 0
\(484\) 19141.1 1.79763
\(485\) 8783.68 + 8085.31i 0.822363 + 0.756980i
\(486\) 0 0
\(487\) 10363.7i 0.964323i −0.876082 0.482162i \(-0.839852\pi\)
0.876082 0.482162i \(-0.160148\pi\)
\(488\) 13714.6i 1.27219i
\(489\) 0 0
\(490\) 35132.1 + 32338.9i 3.23899 + 2.98147i
\(491\) 21420.5 1.96882 0.984412 0.175878i \(-0.0562766\pi\)
0.984412 + 0.175878i \(0.0562766\pi\)
\(492\) 0 0
\(493\) 14270.4i 1.30367i
\(494\) −11664.8 −1.06240
\(495\) 0 0
\(496\) 1761.94 0.159503
\(497\) 34519.8i 3.11554i
\(498\) 0 0
\(499\) −1661.78 −0.149081 −0.0745404 0.997218i \(-0.523749\pi\)
−0.0745404 + 0.997218i \(0.523749\pi\)
\(500\) 17955.6 + 13972.0i 1.60600 + 1.24970i
\(501\) 0 0
\(502\) 31034.6i 2.75925i
\(503\) 13256.5i 1.17510i −0.809187 0.587551i \(-0.800092\pi\)
0.809187 0.587551i \(-0.199908\pi\)
\(504\) 0 0
\(505\) −11058.1 + 12013.2i −0.974412 + 1.05858i
\(506\) −6175.23 −0.542535
\(507\) 0 0
\(508\) 4643.70i 0.405573i
\(509\) −13818.0 −1.20329 −0.601643 0.798765i \(-0.705487\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(510\) 0 0
\(511\) −26762.9 −2.31687
\(512\) 21515.6i 1.85715i
\(513\) 0 0
\(514\) 14950.4 1.28295
\(515\) 12368.1 + 11384.7i 1.05826 + 0.974120i
\(516\) 0 0
\(517\) 2788.01i 0.237170i
\(518\) 31991.8i 2.71359i
\(519\) 0 0
\(520\) −11464.7 + 12455.0i −0.966849 + 1.05036i
\(521\) 11817.3 0.993718 0.496859 0.867831i \(-0.334487\pi\)
0.496859 + 0.867831i \(0.334487\pi\)
\(522\) 0 0
\(523\) 3358.57i 0.280803i −0.990095 0.140401i \(-0.955161\pi\)
0.990095 0.140401i \(-0.0448393\pi\)
\(524\) 11353.5 0.946526
\(525\) 0 0
\(526\) 25682.2 2.12889
\(527\) 2555.81i 0.211258i
\(528\) 0 0
\(529\) 2048.27 0.168346
\(530\) 1511.62 1642.19i 0.123888 0.134589i
\(531\) 0 0
\(532\) 36117.3i 2.94339i
\(533\) 9470.29i 0.769613i
\(534\) 0 0
\(535\) −15321.2 14103.0i −1.23812 1.13968i
\(536\) 727.335 0.0586121
\(537\) 0 0
\(538\) 9121.23i 0.730937i
\(539\) −10798.7 −0.862952
\(540\) 0 0
\(541\) −1111.42 −0.0883243 −0.0441622 0.999024i \(-0.514062\pi\)
−0.0441622 + 0.999024i \(0.514062\pi\)
\(542\) 4546.78i 0.360334i
\(543\) 0 0
\(544\) 2302.03 0.181431
\(545\) 11274.9 12248.8i 0.886174 0.962717i
\(546\) 0 0
\(547\) 4216.48i 0.329586i 0.986328 + 0.164793i \(0.0526956\pi\)
−0.986328 + 0.164793i \(0.947304\pi\)
\(548\) 25361.2i 1.97697i
\(549\) 0 0
\(550\) −7647.36 + 634.277i −0.592881 + 0.0491740i
\(551\) −8864.94 −0.685407
\(552\) 0 0
\(553\) 8773.73i 0.674678i
\(554\) −9521.04 −0.730163
\(555\) 0 0
\(556\) −5133.33 −0.391549
\(557\) 1403.06i 0.106732i 0.998575 + 0.0533658i \(0.0169949\pi\)
−0.998575 + 0.0533658i \(0.983005\pi\)
\(558\) 0 0
\(559\) 4025.77 0.304601
\(560\) −20252.6 18642.4i −1.52827 1.40676i
\(561\) 0 0
\(562\) 34590.6i 2.59629i
\(563\) 5088.40i 0.380907i 0.981696 + 0.190453i \(0.0609958\pi\)
−0.981696 + 0.190453i \(0.939004\pi\)
\(564\) 0 0
\(565\) −7704.56 7091.99i −0.573687 0.528075i
\(566\) 7377.10 0.547849
\(567\) 0 0
\(568\) 40489.5i 2.99102i
\(569\) 8310.91 0.612323 0.306161 0.951980i \(-0.400955\pi\)
0.306161 + 0.951980i \(0.400955\pi\)
\(570\) 0 0
\(571\) −24264.2 −1.77833 −0.889166 0.457585i \(-0.848714\pi\)
−0.889166 + 0.457585i \(0.848714\pi\)
\(572\) 7527.41i 0.550239i
\(573\) 0 0
\(574\) −43731.9 −3.18002
\(575\) −12531.0 + 1039.33i −0.908830 + 0.0753790i
\(576\) 0 0
\(577\) 2740.03i 0.197693i −0.995103 0.0988464i \(-0.968485\pi\)
0.995103 0.0988464i \(-0.0315153\pi\)
\(578\) 27742.2i 1.99641i
\(579\) 0 0
\(580\) −17131.6 + 18611.3i −1.22647 + 1.33240i
\(581\) −8159.99 −0.582674
\(582\) 0 0
\(583\) 504.763i 0.0358579i
\(584\) 31391.1 2.22427
\(585\) 0 0
\(586\) 34510.9 2.43282
\(587\) 23433.9i 1.64773i −0.566784 0.823867i \(-0.691812\pi\)
0.566784 0.823867i \(-0.308188\pi\)
\(588\) 0 0
\(589\) −1587.70 −0.111070
\(590\) −5332.09 4908.15i −0.372066 0.342484i
\(591\) 0 0
\(592\) 13213.4i 0.917347i
\(593\) 18399.2i 1.27414i 0.770807 + 0.637068i \(0.219853\pi\)
−0.770807 + 0.637068i \(0.780147\pi\)
\(594\) 0 0
\(595\) 27042.1 29377.9i 1.86323 2.02416i
\(596\) −32293.1 −2.21943
\(597\) 0 0
\(598\) 18395.7i 1.25796i
\(599\) −20464.1 −1.39589 −0.697946 0.716151i \(-0.745902\pi\)
−0.697946 + 0.716151i \(0.745902\pi\)
\(600\) 0 0
\(601\) 20627.9 1.40005 0.700023 0.714120i \(-0.253173\pi\)
0.700023 + 0.714120i \(0.253173\pi\)
\(602\) 18590.2i 1.25860i
\(603\) 0 0
\(604\) −17211.5 −1.15948
\(605\) −8902.93 + 9671.91i −0.598274 + 0.649949i
\(606\) 0 0
\(607\) 4733.11i 0.316492i 0.987400 + 0.158246i \(0.0505840\pi\)
−0.987400 + 0.158246i \(0.949416\pi\)
\(608\) 1430.04i 0.0953881i
\(609\) 0 0
\(610\) 13625.9 + 12542.5i 0.904420 + 0.832512i
\(611\) 8305.36 0.549917
\(612\) 0 0
\(613\) 13741.6i 0.905414i −0.891659 0.452707i \(-0.850458\pi\)
0.891659 0.452707i \(-0.149542\pi\)
\(614\) −6391.32 −0.420086
\(615\) 0 0
\(616\) 17678.4 1.15631
\(617\) 18762.1i 1.22420i 0.790780 + 0.612100i \(0.209675\pi\)
−0.790780 + 0.612100i \(0.790325\pi\)
\(618\) 0 0
\(619\) −8550.03 −0.555177 −0.277589 0.960700i \(-0.589535\pi\)
−0.277589 + 0.960700i \(0.589535\pi\)
\(620\) −3068.25 + 3333.27i −0.198748 + 0.215915i
\(621\) 0 0
\(622\) 15143.2i 0.976186i
\(623\) 14108.8i 0.907317i
\(624\) 0 0
\(625\) −15411.5 + 2574.19i −0.986336 + 0.164748i
\(626\) 40850.3 2.60816
\(627\) 0 0
\(628\) 35353.9i 2.24646i
\(629\) 19167.0 1.21501
\(630\) 0 0
\(631\) −11772.7 −0.742730 −0.371365 0.928487i \(-0.621110\pi\)
−0.371365 + 0.928487i \(0.621110\pi\)
\(632\) 10291.0i 0.647713i
\(633\) 0 0
\(634\) 14202.1 0.889651
\(635\) −2346.44 2159.88i −0.146639 0.134980i
\(636\) 0 0
\(637\) 32168.7i 2.00090i
\(638\) 8531.82i 0.529433i
\(639\) 0 0
\(640\) −19950.8 18364.6i −1.23223 1.13426i
\(641\) 13219.7 0.814585 0.407292 0.913298i \(-0.366473\pi\)
0.407292 + 0.913298i \(0.366473\pi\)
\(642\) 0 0
\(643\) 29569.6i 1.81355i 0.421617 + 0.906774i \(0.361463\pi\)
−0.421617 + 0.906774i \(0.638537\pi\)
\(644\) 56957.8 3.48518
\(645\) 0 0
\(646\) −32272.3 −1.96554
\(647\) 16887.3i 1.02613i −0.858349 0.513066i \(-0.828510\pi\)
0.858349 0.513066i \(-0.171490\pi\)
\(648\) 0 0
\(649\) 1638.94 0.0991279
\(650\) −1889.48 22781.1i −0.114018 1.37469i
\(651\) 0 0
\(652\) 19845.3i 1.19203i
\(653\) 20847.4i 1.24934i −0.780888 0.624671i \(-0.785233\pi\)
0.780888 0.624671i \(-0.214767\pi\)
\(654\) 0 0
\(655\) −5280.74 + 5736.86i −0.315016 + 0.342225i
\(656\) 18062.4 1.07503
\(657\) 0 0
\(658\) 38352.5i 2.27224i
\(659\) −21697.2 −1.28255 −0.641277 0.767309i \(-0.721595\pi\)
−0.641277 + 0.767309i \(0.721595\pi\)
\(660\) 0 0
\(661\) −2987.43 −0.175790 −0.0878952 0.996130i \(-0.528014\pi\)
−0.0878952 + 0.996130i \(0.528014\pi\)
\(662\) 46838.9i 2.74992i
\(663\) 0 0
\(664\) 9571.13 0.559385
\(665\) 18249.9 + 16798.9i 1.06421 + 0.979597i
\(666\) 0 0
\(667\) 13980.2i 0.811570i
\(668\) 58233.0i 3.37291i
\(669\) 0 0
\(670\) −665.177 + 722.631i −0.0383553 + 0.0416682i
\(671\) −4188.23 −0.240961
\(672\) 0 0
\(673\) 23532.4i 1.34785i 0.738798 + 0.673927i \(0.235394\pi\)
−0.738798 + 0.673927i \(0.764606\pi\)
\(674\) −29216.9 −1.66972
\(675\) 0 0
\(676\) −13342.2 −0.759116
\(677\) 18598.3i 1.05582i 0.849300 + 0.527911i \(0.177025\pi\)
−0.849300 + 0.527911i \(0.822975\pi\)
\(678\) 0 0
\(679\) 37139.9 2.09911
\(680\) −31718.7 + 34458.3i −1.78876 + 1.94326i
\(681\) 0 0
\(682\) 1528.04i 0.0857941i
\(683\) 474.740i 0.0265965i 0.999912 + 0.0132983i \(0.00423309\pi\)
−0.999912 + 0.0132983i \(0.995767\pi\)
\(684\) 0 0
\(685\) 12814.9 + 11796.0i 0.714792 + 0.657961i
\(686\) 89764.0 4.99592
\(687\) 0 0
\(688\) 7678.23i 0.425479i
\(689\) −1503.67 −0.0831425
\(690\) 0 0
\(691\) 1586.50 0.0873418 0.0436709 0.999046i \(-0.486095\pi\)
0.0436709 + 0.999046i \(0.486095\pi\)
\(692\) 38630.4i 2.12212i
\(693\) 0 0
\(694\) 20690.6 1.13171
\(695\) 2387.61 2593.84i 0.130313 0.141568i
\(696\) 0 0
\(697\) 26200.8i 1.42385i
\(698\) 22127.0i 1.19989i
\(699\) 0 0
\(700\) 70536.2 5850.32i 3.80859 0.315887i
\(701\) 12342.4 0.664999 0.332499 0.943103i \(-0.392108\pi\)
0.332499 + 0.943103i \(0.392108\pi\)
\(702\) 0 0
\(703\) 11906.8i 0.638794i
\(704\) 5678.85 0.304020
\(705\) 0 0
\(706\) −19673.8 −1.04877
\(707\) 50795.3i 2.70206i
\(708\) 0 0
\(709\) −27714.9 −1.46806 −0.734031 0.679116i \(-0.762363\pi\)
−0.734031 + 0.679116i \(0.762363\pi\)
\(710\) −40227.6 37029.2i −2.12636 1.95730i
\(711\) 0 0
\(712\) 16548.7i 0.871053i
\(713\) 2503.84i 0.131514i
\(714\) 0 0
\(715\) 3803.56 + 3501.15i 0.198944 + 0.183127i
\(716\) −12613.2 −0.658350
\(717\) 0 0
\(718\) 8032.60i 0.417512i
\(719\) −29126.8 −1.51077 −0.755387 0.655279i \(-0.772551\pi\)
−0.755387 + 0.655279i \(0.772551\pi\)
\(720\) 0 0
\(721\) 52295.8 2.70124
\(722\) 13749.3i 0.708721i
\(723\) 0 0
\(724\) 20350.1 1.04462
\(725\) −1435.95 17313.0i −0.0735586 0.886882i
\(726\) 0 0
\(727\) 32102.8i 1.63772i 0.573990 + 0.818862i \(0.305395\pi\)
−0.573990 + 0.818862i \(0.694605\pi\)
\(728\) 52663.2i 2.68108i
\(729\) 0 0
\(730\) −28708.4 + 31188.1i −1.45554 + 1.58126i
\(731\) 11137.8 0.563539
\(732\) 0 0
\(733\) 18658.3i 0.940190i 0.882616 + 0.470095i \(0.155780\pi\)
−0.882616 + 0.470095i \(0.844220\pi\)
\(734\) 6910.03 0.347485
\(735\) 0 0
\(736\) −2255.22 −0.112946
\(737\) 222.117i 0.0111015i
\(738\) 0 0
\(739\) −19105.8 −0.951040 −0.475520 0.879705i \(-0.657740\pi\)
−0.475520 + 0.879705i \(0.657740\pi\)
\(740\) 24997.5 + 23010.0i 1.24179 + 1.14306i
\(741\) 0 0
\(742\) 6943.63i 0.343543i
\(743\) 34177.1i 1.68753i 0.536712 + 0.843765i \(0.319666\pi\)
−0.536712 + 0.843765i \(0.680334\pi\)
\(744\) 0 0
\(745\) 15020.2 16317.5i 0.738654 0.802455i
\(746\) 24580.1 1.20636
\(747\) 0 0
\(748\) 20825.6i 1.01799i
\(749\) −64782.2 −3.16034
\(750\) 0 0
\(751\) −25906.0 −1.25875 −0.629376 0.777101i \(-0.716690\pi\)
−0.629376 + 0.777101i \(0.716690\pi\)
\(752\) 15840.6i 0.768146i
\(753\) 0 0
\(754\) 25415.9 1.22758
\(755\) 8005.42 8696.88i 0.385890 0.419221i
\(756\) 0 0
\(757\) 12734.0i 0.611391i −0.952129 0.305696i \(-0.901111\pi\)
0.952129 0.305696i \(-0.0988890\pi\)
\(758\) 46689.0i 2.23723i
\(759\) 0 0
\(760\) −21405.9 19704.0i −1.02167 0.940444i
\(761\) 26680.6 1.27092 0.635461 0.772133i \(-0.280810\pi\)
0.635461 + 0.772133i \(0.280810\pi\)
\(762\) 0 0
\(763\) 51791.4i 2.45737i
\(764\) −34854.9 −1.65053
\(765\) 0 0
\(766\) −35342.8 −1.66709
\(767\) 4882.33i 0.229844i
\(768\) 0 0
\(769\) 15123.8 0.709203 0.354602 0.935017i \(-0.384616\pi\)
0.354602 + 0.935017i \(0.384616\pi\)
\(770\) −16167.6 + 17564.1i −0.756676 + 0.822033i
\(771\) 0 0
\(772\) 29789.1i 1.38877i
\(773\) 32394.6i 1.50731i 0.657269 + 0.753656i \(0.271712\pi\)
−0.657269 + 0.753656i \(0.728288\pi\)
\(774\) 0 0
\(775\) −257.177 3100.74i −0.0119201 0.143718i
\(776\) −43562.6 −2.01522
\(777\) 0 0
\(778\) 320.135i 0.0147524i
\(779\) −16276.2 −0.748595
\(780\) 0 0
\(781\) 12364.9 0.566517
\(782\) 50894.2i 2.32733i
\(783\) 0 0
\(784\) −61354.4 −2.79493
\(785\) −17864.1 16443.8i −0.812228 0.747650i
\(786\) 0 0
\(787\) 13328.5i 0.603699i 0.953356 + 0.301849i \(0.0976040\pi\)
−0.953356 + 0.301849i \(0.902396\pi\)
\(788\) 18594.9i 0.840630i
\(789\) 0 0
\(790\) −10224.4 9411.53i −0.460468 0.423857i
\(791\) −32577.1 −1.46436
\(792\) 0 0
\(793\) 12476.5i 0.558707i
\(794\) 47491.4 2.12268
\(795\) 0 0
\(796\) 4624.64 0.205925
\(797\) 3904.61i 0.173536i 0.996229 + 0.0867681i \(0.0276539\pi\)
−0.996229 + 0.0867681i \(0.972346\pi\)
\(798\) 0 0
\(799\) 22977.9 1.01739
\(800\) −2792.84 + 231.640i −0.123427 + 0.0102371i
\(801\) 0 0
\(802\) 35134.1i 1.54692i
\(803\) 9586.36i 0.421289i
\(804\) 0 0
\(805\) −26492.2 + 28780.5i −1.15991 + 1.26010i
\(806\) 4551.96 0.198928
\(807\) 0 0
\(808\) 59579.6i 2.59406i
\(809\) 27021.7 1.17433 0.587165 0.809467i \(-0.300244\pi\)
0.587165 + 0.809467i \(0.300244\pi\)
\(810\) 0 0
\(811\) 13873.1 0.600679 0.300340 0.953832i \(-0.402900\pi\)
0.300340 + 0.953832i \(0.402900\pi\)
\(812\) 78694.0i 3.40101i
\(813\) 0 0
\(814\) −11459.3 −0.493427
\(815\) 10027.7 + 9230.44i 0.430988 + 0.396722i
\(816\) 0 0
\(817\) 6918.93i 0.296282i
\(818\) 4685.65i 0.200281i
\(819\) 0 0
\(820\) −31454.0 + 34170.8i −1.33954 + 1.45524i
\(821\) −11284.2 −0.479684 −0.239842 0.970812i \(-0.577096\pi\)
−0.239842 + 0.970812i \(0.577096\pi\)
\(822\) 0 0
\(823\) 30236.7i 1.28066i −0.768098 0.640332i \(-0.778797\pi\)
0.768098 0.640332i \(-0.221203\pi\)
\(824\) −61339.5 −2.59328
\(825\) 0 0
\(826\) −22545.6 −0.949712
\(827\) 2610.71i 0.109774i 0.998493 + 0.0548871i \(0.0174799\pi\)
−0.998493 + 0.0548871i \(0.982520\pi\)
\(828\) 0 0
\(829\) −43070.0 −1.80444 −0.902222 0.431272i \(-0.858065\pi\)
−0.902222 + 0.431272i \(0.858065\pi\)
\(830\) −8753.18 + 9509.23i −0.366057 + 0.397675i
\(831\) 0 0
\(832\) 16917.0i 0.704920i
\(833\) 88998.9i 3.70183i
\(834\) 0 0
\(835\) 29424.8 + 27085.3i 1.21951 + 1.12255i
\(836\) 12937.1 0.535212
\(837\) 0 0
\(838\) 80719.4i 3.32745i
\(839\) 19767.0 0.813388 0.406694 0.913564i \(-0.366681\pi\)
0.406694 + 0.913564i \(0.366681\pi\)
\(840\) 0 0
\(841\) −5073.64 −0.208030
\(842\) 2012.88i 0.0823854i
\(843\) 0 0
\(844\) −13236.4 −0.539831
\(845\) 6205.73 6741.75i 0.252643 0.274465i
\(846\) 0 0
\(847\) 40895.6i 1.65902i
\(848\) 2867.90i 0.116137i
\(849\) 0 0
\(850\) −5227.50 63027.0i −0.210943 2.54330i
\(851\) −18777.3 −0.756377
\(852\) 0 0
\(853\) 28437.0i 1.14146i 0.821139 + 0.570729i \(0.193339\pi\)
−0.821139 + 0.570729i \(0.806661\pi\)
\(854\) 57614.1 2.30857
\(855\) 0 0
\(856\) 75985.3 3.03402
\(857\) 45202.3i 1.80173i −0.434101 0.900864i \(-0.642934\pi\)
0.434101 0.900864i \(-0.357066\pi\)
\(858\) 0 0
\(859\) −39304.1 −1.56116 −0.780582 0.625054i \(-0.785077\pi\)
−0.780582 + 0.625054i \(0.785077\pi\)
\(860\) 14525.8 + 13370.9i 0.575961 + 0.530168i
\(861\) 0 0
\(862\) 40417.0i 1.59699i
\(863\) 41102.8i 1.62127i 0.585552 + 0.810635i \(0.300878\pi\)
−0.585552 + 0.810635i \(0.699122\pi\)
\(864\) 0 0
\(865\) 19519.7 + 17967.8i 0.767273 + 0.706270i
\(866\) 7074.33 0.277593
\(867\) 0 0
\(868\) 14094.0i 0.551131i
\(869\) 3142.72 0.122680
\(870\) 0 0
\(871\) 661.677 0.0257406
\(872\) 60747.9i 2.35916i
\(873\) 0 0
\(874\) 31616.0 1.22360
\(875\) −29851.7 + 38362.6i −1.15334 + 1.48216i
\(876\) 0 0
\(877\) 48649.4i 1.87317i −0.350436 0.936587i \(-0.613967\pi\)
0.350436 0.936587i \(-0.386033\pi\)
\(878\) 67157.5i 2.58139i
\(879\) 0 0
\(880\) 6677.64 7254.42i 0.255799 0.277894i
\(881\) 1470.17 0.0562217 0.0281108 0.999605i \(-0.491051\pi\)
0.0281108 + 0.999605i \(0.491051\pi\)
\(882\) 0 0
\(883\) 103.543i 0.00394622i 0.999998 + 0.00197311i \(0.000628061\pi\)
−0.999998 + 0.00197311i \(0.999372\pi\)
\(884\) 62038.4 2.36038
\(885\) 0 0
\(886\) 43521.1 1.65025
\(887\) 21162.1i 0.801074i 0.916281 + 0.400537i \(0.131176\pi\)
−0.916281 + 0.400537i \(0.868824\pi\)
\(888\) 0 0
\(889\) −9921.41 −0.374301
\(890\) −16441.7 15134.5i −0.619244 0.570009i
\(891\) 0 0
\(892\) 80362.5i 3.01652i
\(893\) 14274.1i 0.534898i
\(894\) 0 0
\(895\) 5866.67 6373.39i 0.219107 0.238033i
\(896\) −84357.8 −3.14531
\(897\) 0 0
\(898\) 54835.6i 2.03774i
\(899\) 3459.36 0.128338
\(900\) 0 0
\(901\) −4160.09 −0.153821
\(902\) 15664.6i 0.578242i
\(903\) 0 0
\(904\) 38210.8 1.40583
\(905\) −9465.26 + 10282.8i −0.347664 + 0.377693i
\(906\) 0 0
\(907\) 31376.9i 1.14868i 0.818617 + 0.574340i \(0.194741\pi\)
−0.818617 + 0.574340i \(0.805259\pi\)
\(908\) 58441.3i 2.13595i
\(909\) 0 0
\(910\) −52322.6 48162.6i −1.90602 1.75448i
\(911\) 9271.17 0.337176 0.168588 0.985687i \(-0.446079\pi\)
0.168588 + 0.985687i \(0.446079\pi\)
\(912\) 0 0
\(913\) 2922.88i 0.105951i
\(914\) −83687.3 −3.02859
\(915\) 0 0
\(916\) −62998.8 −2.27242
\(917\) 24257.1i 0.873544i
\(918\) 0 0
\(919\) 39558.3 1.41992 0.709962 0.704240i \(-0.248712\pi\)
0.709962 + 0.704240i \(0.248712\pi\)
\(920\) 31073.6 33757.6i 1.11355 1.20973i
\(921\) 0 0
\(922\) 77352.4i 2.76298i
\(923\) 36834.4i 1.31356i
\(924\) 0 0
\(925\) −23253.6 + 1928.67i −0.826568 + 0.0685561i
\(926\) −39401.2 −1.39828
\(927\) 0 0
\(928\) 3115.85i 0.110219i
\(929\) 37330.3 1.31837 0.659186 0.751980i \(-0.270901\pi\)
0.659186 + 0.751980i \(0.270901\pi\)
\(930\) 0 0
\(931\) 55287.0 1.94625
\(932\) 48566.4i 1.70692i
\(933\) 0 0
\(934\) 31277.6 1.09575
\(935\) 10523.0 + 9686.39i 0.368065 + 0.338801i
\(936\) 0 0
\(937\) 32301.0i 1.12618i −0.826397 0.563088i \(-0.809613\pi\)
0.826397 0.563088i \(-0.190387\pi\)
\(938\) 3055.49i 0.106360i
\(939\) 0 0
\(940\) 29967.5 + 27584.9i 1.03982 + 0.957148i
\(941\) −11473.3 −0.397468 −0.198734 0.980053i \(-0.563683\pi\)
−0.198734 + 0.980053i \(0.563683\pi\)
\(942\) 0 0
\(943\) 25668.0i 0.886389i
\(944\) 9311.91 0.321056
\(945\) 0 0
\(946\) −6658.94 −0.228859
\(947\) 34000.9i 1.16672i −0.812215 0.583359i \(-0.801738\pi\)
0.812215 0.583359i \(-0.198262\pi\)
\(948\) 0 0
\(949\) 28557.3 0.976829
\(950\) 39153.0 3247.38i 1.33715 0.110904i
\(951\) 0 0
\(952\) 145700.i 4.96024i
\(953\) 2018.64i 0.0686149i 0.999411 + 0.0343075i \(0.0109225\pi\)
−0.999411 + 0.0343075i \(0.989077\pi\)
\(954\) 0 0
\(955\) 16211.7 17612.0i 0.549318 0.596765i
\(956\) −42775.6 −1.44713
\(957\) 0 0
\(958\) 28549.5i 0.962833i
\(959\) 54185.1 1.82453
\(960\) 0 0
\(961\) −29171.4 −0.979203
\(962\) 34136.9i 1.14409i
\(963\) 0 0
\(964\) 68966.9 2.30423
\(965\) 15052.3 + 13855.5i 0.502124 + 0.462202i
\(966\) 0 0
\(967\) 18525.1i 0.616056i −0.951377 0.308028i \(-0.900331\pi\)
0.951377 0.308028i \(-0.0996690\pi\)
\(968\) 47967.8i 1.59271i
\(969\) 0 0
\(970\) 39839.8 43280.9i 1.31874 1.43264i
\(971\) −48076.1 −1.58891 −0.794457 0.607320i \(-0.792245\pi\)
−0.794457 + 0.607320i \(0.792245\pi\)
\(972\) 0 0
\(973\) 10967.5i 0.361359i
\(974\) −51066.5 −1.67995
\(975\) 0 0
\(976\) −23796.1 −0.780425
\(977\) 47135.6i 1.54350i −0.635925 0.771751i \(-0.719381\pi\)
0.635925 0.771751i \(-0.280619\pi\)
\(978\) 0 0
\(979\) 5053.73 0.164982
\(980\) 106843. 116071.i 3.48262 3.78343i
\(981\) 0 0
\(982\) 105548.i 3.42990i
\(983\) 20180.8i 0.654799i 0.944886 + 0.327399i \(0.106172\pi\)
−0.944886 + 0.327399i \(0.893828\pi\)
\(984\) 0 0
\(985\) 9395.91 + 8648.87i 0.303938 + 0.279773i
\(986\) 70316.4 2.27113
\(987\) 0 0
\(988\) 38538.9i 1.24098i
\(989\) −10911.3 −0.350819
\(990\) 0 0
\(991\) −21110.9 −0.676701 −0.338351 0.941020i \(-0.609869\pi\)
−0.338351 + 0.941020i \(0.609869\pi\)
\(992\) 558.045i 0.0178608i
\(993\) 0 0
\(994\) −170094. −5.42761
\(995\) −2151.01 + 2336.81i −0.0685344 + 0.0744540i
\(996\) 0 0
\(997\) 11304.0i 0.359079i 0.983751 + 0.179540i \(0.0574608\pi\)
−0.983751 + 0.179540i \(0.942539\pi\)
\(998\) 8188.28i 0.259715i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.4.b.c.109.2 yes 12
3.2 odd 2 inner 135.4.b.c.109.11 yes 12
5.2 odd 4 675.4.a.bc.1.6 6
5.3 odd 4 675.4.a.bb.1.1 6
5.4 even 2 inner 135.4.b.c.109.12 yes 12
15.2 even 4 675.4.a.bc.1.1 6
15.8 even 4 675.4.a.bb.1.6 6
15.14 odd 2 inner 135.4.b.c.109.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.b.c.109.1 12 15.14 odd 2 inner
135.4.b.c.109.2 yes 12 1.1 even 1 trivial
135.4.b.c.109.11 yes 12 3.2 odd 2 inner
135.4.b.c.109.12 yes 12 5.4 even 2 inner
675.4.a.bb.1.1 6 5.3 odd 4
675.4.a.bb.1.6 6 15.8 even 4
675.4.a.bc.1.1 6 15.2 even 4
675.4.a.bc.1.6 6 5.2 odd 4