| L(s) = 1 | − 4.92i·2-s − 16.2·4-s + (7.57 − 8.22i)5-s − 34.7i·7-s + 40.7i·8-s + (−40.5 − 37.3i)10-s + 12.4·11-s + 37.1i·13-s − 171.·14-s + 70.7·16-s + 102. i·17-s − 63.7·19-s + (−123. + 133. i)20-s − 61.3i·22-s − 100. i·23-s + ⋯ |
| L(s) = 1 | − 1.74i·2-s − 2.03·4-s + (0.677 − 0.735i)5-s − 1.87i·7-s + 1.80i·8-s + (−1.28 − 1.17i)10-s + 0.341·11-s + 0.791i·13-s − 3.27·14-s + 1.10·16-s + 1.46i·17-s − 0.770·19-s + (−1.37 + 1.49i)20-s − 0.594i·22-s − 0.911i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.735 - 0.677i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.516187 + 1.32295i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.516187 + 1.32295i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-7.57 + 8.22i)T \) |
| good | 2 | \( 1 + 4.92iT - 8T^{2} \) |
| 7 | \( 1 + 34.7iT - 343T^{2} \) |
| 11 | \( 1 - 12.4T + 1.33e3T^{2} \) |
| 13 | \( 1 - 37.1iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 102. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 63.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 100. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 138.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 24.8T + 2.97e4T^{2} \) |
| 37 | \( 1 + 186. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 255.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 108. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 223. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 40.5iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 131.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 336.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 17.8iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 992.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 769. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 252.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 234. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 405.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.06e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21339010986951573575042151821, −10.80731180487386475734844922787, −10.41243657644553844010801899262, −9.390110503210672467216963088466, −8.325933528662610108952374377911, −6.53043864715225518025052084056, −4.52886905160573631267956404368, −3.90567627275610069496618238186, −1.91001436251146243843278528126, −0.75014705199060930501036316851,
2.73377137483200058383581032238, 5.06286500067646609913589061440, 5.86913598682891371169612053241, 6.68071578037463100161981414389, 7.952158196555143372145010798101, 9.011902833071406775775036680901, 9.724578264496487369213669460274, 11.43710358183722335460277206523, 12.70488448357950231436858803276, 13.81596146302910677206741880345