Properties

Label 1344.4.c.e.673.1
Level $1344$
Weight $4$
Character 1344.673
Analytic conductor $79.299$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,4,Mod(673,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.673"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-84,0,-108,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.2985670477\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 386x^{10} + 54793x^{8} + 3447408x^{6} + 90154296x^{4} + 707138208x^{2} + 525876624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 673.1
Root \(-3.41237i\) of defining polynomial
Character \(\chi\) \(=\) 1344.673
Dual form 1344.4.c.e.673.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -20.9786i q^{5} -7.00000 q^{7} -9.00000 q^{9} +10.4070i q^{11} -50.9189i q^{13} -62.9357 q^{15} +19.1451 q^{17} +24.3954i q^{19} +21.0000i q^{21} +101.598 q^{23} -315.100 q^{25} +27.0000i q^{27} -179.241i q^{29} -264.163 q^{31} +31.2211 q^{33} +146.850i q^{35} -328.492i q^{37} -152.757 q^{39} -89.3686 q^{41} -124.343i q^{43} +188.807i q^{45} -446.379 q^{47} +49.0000 q^{49} -57.4353i q^{51} +384.874i q^{53} +218.325 q^{55} +73.1863 q^{57} -94.7027i q^{59} +376.701i q^{61} +63.0000 q^{63} -1068.21 q^{65} +338.575i q^{67} -304.795i q^{69} -268.469 q^{71} -634.633 q^{73} +945.300i q^{75} -72.8493i q^{77} +1134.80 q^{79} +81.0000 q^{81} -589.208i q^{83} -401.637i q^{85} -537.724 q^{87} -459.183 q^{89} +356.433i q^{91} +792.488i q^{93} +511.781 q^{95} -1365.75 q^{97} -93.6634i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 84 q^{7} - 108 q^{9} - 24 q^{15} + 24 q^{17} + 80 q^{23} - 564 q^{25} - 640 q^{31} - 408 q^{33} + 120 q^{39} + 1416 q^{41} - 1536 q^{47} + 588 q^{49} + 1392 q^{55} - 336 q^{57} + 756 q^{63} - 2880 q^{65}+ \cdots - 2712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) − 20.9786i − 1.87638i −0.346121 0.938190i \(-0.612501\pi\)
0.346121 0.938190i \(-0.387499\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 10.4070i 0.285258i 0.989776 + 0.142629i \(0.0455556\pi\)
−0.989776 + 0.142629i \(0.954444\pi\)
\(12\) 0 0
\(13\) − 50.9189i − 1.08634i −0.839624 0.543168i \(-0.817225\pi\)
0.839624 0.543168i \(-0.182775\pi\)
\(14\) 0 0
\(15\) −62.9357 −1.08333
\(16\) 0 0
\(17\) 19.1451 0.273139 0.136570 0.990630i \(-0.456392\pi\)
0.136570 + 0.990630i \(0.456392\pi\)
\(18\) 0 0
\(19\) 24.3954i 0.294563i 0.989095 + 0.147281i \(0.0470523\pi\)
−0.989095 + 0.147281i \(0.952948\pi\)
\(20\) 0 0
\(21\) 21.0000i 0.218218i
\(22\) 0 0
\(23\) 101.598 0.921074 0.460537 0.887641i \(-0.347657\pi\)
0.460537 + 0.887641i \(0.347657\pi\)
\(24\) 0 0
\(25\) −315.100 −2.52080
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) − 179.241i − 1.14773i −0.818949 0.573866i \(-0.805443\pi\)
0.818949 0.573866i \(-0.194557\pi\)
\(30\) 0 0
\(31\) −264.163 −1.53048 −0.765242 0.643743i \(-0.777381\pi\)
−0.765242 + 0.643743i \(0.777381\pi\)
\(32\) 0 0
\(33\) 31.2211 0.164694
\(34\) 0 0
\(35\) 146.850i 0.709205i
\(36\) 0 0
\(37\) − 328.492i − 1.45956i −0.683682 0.729780i \(-0.739623\pi\)
0.683682 0.729780i \(-0.260377\pi\)
\(38\) 0 0
\(39\) −152.757 −0.627197
\(40\) 0 0
\(41\) −89.3686 −0.340415 −0.170208 0.985408i \(-0.554444\pi\)
−0.170208 + 0.985408i \(0.554444\pi\)
\(42\) 0 0
\(43\) − 124.343i − 0.440979i −0.975389 0.220490i \(-0.929234\pi\)
0.975389 0.220490i \(-0.0707655\pi\)
\(44\) 0 0
\(45\) 188.807i 0.625460i
\(46\) 0 0
\(47\) −446.379 −1.38534 −0.692672 0.721253i \(-0.743566\pi\)
−0.692672 + 0.721253i \(0.743566\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) − 57.4353i − 0.157697i
\(52\) 0 0
\(53\) 384.874i 0.997481i 0.866751 + 0.498740i \(0.166204\pi\)
−0.866751 + 0.498740i \(0.833796\pi\)
\(54\) 0 0
\(55\) 218.325 0.535253
\(56\) 0 0
\(57\) 73.1863 0.170066
\(58\) 0 0
\(59\) − 94.7027i − 0.208970i −0.994526 0.104485i \(-0.966681\pi\)
0.994526 0.104485i \(-0.0333194\pi\)
\(60\) 0 0
\(61\) 376.701i 0.790682i 0.918534 + 0.395341i \(0.129374\pi\)
−0.918534 + 0.395341i \(0.870626\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) −1068.21 −2.03838
\(66\) 0 0
\(67\) 338.575i 0.617365i 0.951165 + 0.308683i \(0.0998881\pi\)
−0.951165 + 0.308683i \(0.900112\pi\)
\(68\) 0 0
\(69\) − 304.795i − 0.531782i
\(70\) 0 0
\(71\) −268.469 −0.448752 −0.224376 0.974503i \(-0.572034\pi\)
−0.224376 + 0.974503i \(0.572034\pi\)
\(72\) 0 0
\(73\) −634.633 −1.01751 −0.508755 0.860911i \(-0.669894\pi\)
−0.508755 + 0.860911i \(0.669894\pi\)
\(74\) 0 0
\(75\) 945.300i 1.45538i
\(76\) 0 0
\(77\) − 72.8493i − 0.107817i
\(78\) 0 0
\(79\) 1134.80 1.61614 0.808068 0.589089i \(-0.200513\pi\)
0.808068 + 0.589089i \(0.200513\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 589.208i − 0.779204i −0.920983 0.389602i \(-0.872613\pi\)
0.920983 0.389602i \(-0.127387\pi\)
\(84\) 0 0
\(85\) − 401.637i − 0.512513i
\(86\) 0 0
\(87\) −537.724 −0.662644
\(88\) 0 0
\(89\) −459.183 −0.546891 −0.273446 0.961887i \(-0.588163\pi\)
−0.273446 + 0.961887i \(0.588163\pi\)
\(90\) 0 0
\(91\) 356.433i 0.410597i
\(92\) 0 0
\(93\) 792.488i 0.883625i
\(94\) 0 0
\(95\) 511.781 0.552712
\(96\) 0 0
\(97\) −1365.75 −1.42960 −0.714801 0.699328i \(-0.753483\pi\)
−0.714801 + 0.699328i \(0.753483\pi\)
\(98\) 0 0
\(99\) − 93.6634i − 0.0950861i
\(100\) 0 0
\(101\) 1558.33i 1.53524i 0.640905 + 0.767620i \(0.278559\pi\)
−0.640905 + 0.767620i \(0.721441\pi\)
\(102\) 0 0
\(103\) 1257.71 1.20316 0.601581 0.798812i \(-0.294538\pi\)
0.601581 + 0.798812i \(0.294538\pi\)
\(104\) 0 0
\(105\) 440.550 0.409460
\(106\) 0 0
\(107\) 703.204i 0.635339i 0.948201 + 0.317670i \(0.102900\pi\)
−0.948201 + 0.317670i \(0.897100\pi\)
\(108\) 0 0
\(109\) − 904.817i − 0.795099i −0.917581 0.397549i \(-0.869861\pi\)
0.917581 0.397549i \(-0.130139\pi\)
\(110\) 0 0
\(111\) −985.475 −0.842677
\(112\) 0 0
\(113\) 2157.08 1.79576 0.897882 0.440236i \(-0.145105\pi\)
0.897882 + 0.440236i \(0.145105\pi\)
\(114\) 0 0
\(115\) − 2131.39i − 1.72828i
\(116\) 0 0
\(117\) 458.270i 0.362112i
\(118\) 0 0
\(119\) −134.016 −0.103237
\(120\) 0 0
\(121\) 1222.69 0.918628
\(122\) 0 0
\(123\) 268.106i 0.196539i
\(124\) 0 0
\(125\) 3988.03i 2.85360i
\(126\) 0 0
\(127\) 1544.72 1.07931 0.539654 0.841887i \(-0.318555\pi\)
0.539654 + 0.841887i \(0.318555\pi\)
\(128\) 0 0
\(129\) −373.029 −0.254600
\(130\) 0 0
\(131\) − 28.1940i − 0.0188040i −0.999956 0.00940199i \(-0.997007\pi\)
0.999956 0.00940199i \(-0.00299279\pi\)
\(132\) 0 0
\(133\) − 170.768i − 0.111334i
\(134\) 0 0
\(135\) 566.421 0.361109
\(136\) 0 0
\(137\) 1141.37 0.711778 0.355889 0.934528i \(-0.384178\pi\)
0.355889 + 0.934528i \(0.384178\pi\)
\(138\) 0 0
\(139\) 1977.61i 1.20675i 0.797456 + 0.603377i \(0.206179\pi\)
−0.797456 + 0.603377i \(0.793821\pi\)
\(140\) 0 0
\(141\) 1339.14i 0.799828i
\(142\) 0 0
\(143\) 529.915 0.309886
\(144\) 0 0
\(145\) −3760.22 −2.15358
\(146\) 0 0
\(147\) − 147.000i − 0.0824786i
\(148\) 0 0
\(149\) 2276.30i 1.25156i 0.780001 + 0.625778i \(0.215218\pi\)
−0.780001 + 0.625778i \(0.784782\pi\)
\(150\) 0 0
\(151\) 3060.92 1.64963 0.824815 0.565403i \(-0.191279\pi\)
0.824815 + 0.565403i \(0.191279\pi\)
\(152\) 0 0
\(153\) −172.306 −0.0910464
\(154\) 0 0
\(155\) 5541.75i 2.87177i
\(156\) 0 0
\(157\) − 128.085i − 0.0651102i −0.999470 0.0325551i \(-0.989636\pi\)
0.999470 0.0325551i \(-0.0103644\pi\)
\(158\) 0 0
\(159\) 1154.62 0.575896
\(160\) 0 0
\(161\) −711.188 −0.348133
\(162\) 0 0
\(163\) − 1544.81i − 0.742325i −0.928568 0.371163i \(-0.878959\pi\)
0.928568 0.371163i \(-0.121041\pi\)
\(164\) 0 0
\(165\) − 654.974i − 0.309028i
\(166\) 0 0
\(167\) 3135.14 1.45272 0.726359 0.687315i \(-0.241211\pi\)
0.726359 + 0.687315i \(0.241211\pi\)
\(168\) 0 0
\(169\) −395.738 −0.180126
\(170\) 0 0
\(171\) − 219.559i − 0.0981876i
\(172\) 0 0
\(173\) − 1895.37i − 0.832963i −0.909144 0.416481i \(-0.863263\pi\)
0.909144 0.416481i \(-0.136737\pi\)
\(174\) 0 0
\(175\) 2205.70 0.952773
\(176\) 0 0
\(177\) −284.108 −0.120649
\(178\) 0 0
\(179\) − 1200.50i − 0.501284i −0.968080 0.250642i \(-0.919358\pi\)
0.968080 0.250642i \(-0.0806417\pi\)
\(180\) 0 0
\(181\) − 2505.09i − 1.02874i −0.857568 0.514371i \(-0.828026\pi\)
0.857568 0.514371i \(-0.171974\pi\)
\(182\) 0 0
\(183\) 1130.10 0.456501
\(184\) 0 0
\(185\) −6891.28 −2.73869
\(186\) 0 0
\(187\) 199.244i 0.0779152i
\(188\) 0 0
\(189\) − 189.000i − 0.0727393i
\(190\) 0 0
\(191\) −4889.67 −1.85238 −0.926188 0.377061i \(-0.876935\pi\)
−0.926188 + 0.377061i \(0.876935\pi\)
\(192\) 0 0
\(193\) 30.9625 0.0115478 0.00577391 0.999983i \(-0.498162\pi\)
0.00577391 + 0.999983i \(0.498162\pi\)
\(194\) 0 0
\(195\) 3204.62i 1.17686i
\(196\) 0 0
\(197\) − 2367.06i − 0.856070i −0.903762 0.428035i \(-0.859206\pi\)
0.903762 0.428035i \(-0.140794\pi\)
\(198\) 0 0
\(199\) −1509.90 −0.537858 −0.268929 0.963160i \(-0.586670\pi\)
−0.268929 + 0.963160i \(0.586670\pi\)
\(200\) 0 0
\(201\) 1015.72 0.356436
\(202\) 0 0
\(203\) 1254.69i 0.433802i
\(204\) 0 0
\(205\) 1874.82i 0.638748i
\(206\) 0 0
\(207\) −914.384 −0.307025
\(208\) 0 0
\(209\) −253.884 −0.0840265
\(210\) 0 0
\(211\) 5169.66i 1.68670i 0.537362 + 0.843352i \(0.319421\pi\)
−0.537362 + 0.843352i \(0.680579\pi\)
\(212\) 0 0
\(213\) 805.407i 0.259087i
\(214\) 0 0
\(215\) −2608.54 −0.827445
\(216\) 0 0
\(217\) 1849.14 0.578469
\(218\) 0 0
\(219\) 1903.90i 0.587460i
\(220\) 0 0
\(221\) − 974.848i − 0.296721i
\(222\) 0 0
\(223\) −1702.47 −0.511237 −0.255619 0.966778i \(-0.582279\pi\)
−0.255619 + 0.966778i \(0.582279\pi\)
\(224\) 0 0
\(225\) 2835.90 0.840267
\(226\) 0 0
\(227\) − 2199.68i − 0.643162i −0.946882 0.321581i \(-0.895786\pi\)
0.946882 0.321581i \(-0.104214\pi\)
\(228\) 0 0
\(229\) − 1970.83i − 0.568718i −0.958718 0.284359i \(-0.908219\pi\)
0.958718 0.284359i \(-0.0917807\pi\)
\(230\) 0 0
\(231\) −218.548 −0.0622484
\(232\) 0 0
\(233\) −5697.11 −1.60185 −0.800923 0.598767i \(-0.795657\pi\)
−0.800923 + 0.598767i \(0.795657\pi\)
\(234\) 0 0
\(235\) 9364.40i 2.59943i
\(236\) 0 0
\(237\) − 3404.40i − 0.933077i
\(238\) 0 0
\(239\) 95.7576 0.0259165 0.0129582 0.999916i \(-0.495875\pi\)
0.0129582 + 0.999916i \(0.495875\pi\)
\(240\) 0 0
\(241\) −5641.06 −1.50777 −0.753886 0.657006i \(-0.771823\pi\)
−0.753886 + 0.657006i \(0.771823\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) − 1027.95i − 0.268054i
\(246\) 0 0
\(247\) 1242.19 0.319994
\(248\) 0 0
\(249\) −1767.62 −0.449874
\(250\) 0 0
\(251\) 4647.92i 1.16882i 0.811458 + 0.584411i \(0.198674\pi\)
−0.811458 + 0.584411i \(0.801326\pi\)
\(252\) 0 0
\(253\) 1057.34i 0.262744i
\(254\) 0 0
\(255\) −1204.91 −0.295900
\(256\) 0 0
\(257\) −4602.82 −1.11718 −0.558591 0.829443i \(-0.688658\pi\)
−0.558591 + 0.829443i \(0.688658\pi\)
\(258\) 0 0
\(259\) 2299.44i 0.551662i
\(260\) 0 0
\(261\) 1613.17i 0.382578i
\(262\) 0 0
\(263\) 4475.15 1.04924 0.524619 0.851337i \(-0.324208\pi\)
0.524619 + 0.851337i \(0.324208\pi\)
\(264\) 0 0
\(265\) 8074.10 1.87165
\(266\) 0 0
\(267\) 1377.55i 0.315748i
\(268\) 0 0
\(269\) 7509.73i 1.70214i 0.525051 + 0.851071i \(0.324046\pi\)
−0.525051 + 0.851071i \(0.675954\pi\)
\(270\) 0 0
\(271\) −2967.44 −0.665162 −0.332581 0.943075i \(-0.607920\pi\)
−0.332581 + 0.943075i \(0.607920\pi\)
\(272\) 0 0
\(273\) 1069.30 0.237058
\(274\) 0 0
\(275\) − 3279.26i − 0.719079i
\(276\) 0 0
\(277\) 2729.73i 0.592106i 0.955171 + 0.296053i \(0.0956705\pi\)
−0.955171 + 0.296053i \(0.904329\pi\)
\(278\) 0 0
\(279\) 2377.46 0.510161
\(280\) 0 0
\(281\) −7993.52 −1.69699 −0.848494 0.529205i \(-0.822490\pi\)
−0.848494 + 0.529205i \(0.822490\pi\)
\(282\) 0 0
\(283\) 3955.08i 0.830761i 0.909648 + 0.415380i \(0.136352\pi\)
−0.909648 + 0.415380i \(0.863648\pi\)
\(284\) 0 0
\(285\) − 1535.34i − 0.319108i
\(286\) 0 0
\(287\) 625.580 0.128665
\(288\) 0 0
\(289\) −4546.47 −0.925395
\(290\) 0 0
\(291\) 4097.26i 0.825381i
\(292\) 0 0
\(293\) − 5416.11i − 1.07991i −0.841695 0.539953i \(-0.818442\pi\)
0.841695 0.539953i \(-0.181558\pi\)
\(294\) 0 0
\(295\) −1986.73 −0.392107
\(296\) 0 0
\(297\) −280.990 −0.0548980
\(298\) 0 0
\(299\) − 5173.28i − 1.00060i
\(300\) 0 0
\(301\) 870.400i 0.166675i
\(302\) 0 0
\(303\) 4674.98 0.886371
\(304\) 0 0
\(305\) 7902.64 1.48362
\(306\) 0 0
\(307\) − 240.932i − 0.0447907i −0.999749 0.0223953i \(-0.992871\pi\)
0.999749 0.0223953i \(-0.00712925\pi\)
\(308\) 0 0
\(309\) − 3773.12i − 0.694646i
\(310\) 0 0
\(311\) −7215.09 −1.31553 −0.657765 0.753223i \(-0.728498\pi\)
−0.657765 + 0.753223i \(0.728498\pi\)
\(312\) 0 0
\(313\) −723.443 −0.130643 −0.0653217 0.997864i \(-0.520807\pi\)
−0.0653217 + 0.997864i \(0.520807\pi\)
\(314\) 0 0
\(315\) − 1321.65i − 0.236402i
\(316\) 0 0
\(317\) − 2823.83i − 0.500321i −0.968204 0.250161i \(-0.919517\pi\)
0.968204 0.250161i \(-0.0804835\pi\)
\(318\) 0 0
\(319\) 1865.37 0.327400
\(320\) 0 0
\(321\) 2109.61 0.366813
\(322\) 0 0
\(323\) 467.053i 0.0804567i
\(324\) 0 0
\(325\) 16044.6i 2.73844i
\(326\) 0 0
\(327\) −2714.45 −0.459050
\(328\) 0 0
\(329\) 3124.66 0.523611
\(330\) 0 0
\(331\) − 10663.4i − 1.77073i −0.464898 0.885364i \(-0.653909\pi\)
0.464898 0.885364i \(-0.346091\pi\)
\(332\) 0 0
\(333\) 2956.43i 0.486520i
\(334\) 0 0
\(335\) 7102.81 1.15841
\(336\) 0 0
\(337\) 6999.28 1.13138 0.565690 0.824618i \(-0.308610\pi\)
0.565690 + 0.824618i \(0.308610\pi\)
\(338\) 0 0
\(339\) − 6471.25i − 1.03678i
\(340\) 0 0
\(341\) − 2749.15i − 0.436583i
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −6394.16 −0.997825
\(346\) 0 0
\(347\) − 3111.79i − 0.481411i −0.970598 0.240706i \(-0.922621\pi\)
0.970598 0.240706i \(-0.0773788\pi\)
\(348\) 0 0
\(349\) − 2210.72i − 0.339075i −0.985524 0.169537i \(-0.945773\pi\)
0.985524 0.169537i \(-0.0542274\pi\)
\(350\) 0 0
\(351\) 1374.81 0.209066
\(352\) 0 0
\(353\) −6372.88 −0.960889 −0.480445 0.877025i \(-0.659525\pi\)
−0.480445 + 0.877025i \(0.659525\pi\)
\(354\) 0 0
\(355\) 5632.10i 0.842030i
\(356\) 0 0
\(357\) 402.047i 0.0596039i
\(358\) 0 0
\(359\) 9991.87 1.46894 0.734472 0.678639i \(-0.237430\pi\)
0.734472 + 0.678639i \(0.237430\pi\)
\(360\) 0 0
\(361\) 6263.86 0.913233
\(362\) 0 0
\(363\) − 3668.08i − 0.530370i
\(364\) 0 0
\(365\) 13313.7i 1.90923i
\(366\) 0 0
\(367\) −1731.20 −0.246234 −0.123117 0.992392i \(-0.539289\pi\)
−0.123117 + 0.992392i \(0.539289\pi\)
\(368\) 0 0
\(369\) 804.317 0.113472
\(370\) 0 0
\(371\) − 2694.12i − 0.377012i
\(372\) 0 0
\(373\) − 1327.90i − 0.184333i −0.995744 0.0921666i \(-0.970621\pi\)
0.995744 0.0921666i \(-0.0293792\pi\)
\(374\) 0 0
\(375\) 11964.1 1.64753
\(376\) 0 0
\(377\) −9126.77 −1.24682
\(378\) 0 0
\(379\) 2160.90i 0.292871i 0.989220 + 0.146436i \(0.0467801\pi\)
−0.989220 + 0.146436i \(0.953220\pi\)
\(380\) 0 0
\(381\) − 4634.17i − 0.623139i
\(382\) 0 0
\(383\) −6004.88 −0.801136 −0.400568 0.916267i \(-0.631187\pi\)
−0.400568 + 0.916267i \(0.631187\pi\)
\(384\) 0 0
\(385\) −1528.27 −0.202307
\(386\) 0 0
\(387\) 1119.09i 0.146993i
\(388\) 0 0
\(389\) 1246.72i 0.162497i 0.996694 + 0.0812487i \(0.0258908\pi\)
−0.996694 + 0.0812487i \(0.974109\pi\)
\(390\) 0 0
\(391\) 1945.11 0.251582
\(392\) 0 0
\(393\) −84.5820 −0.0108565
\(394\) 0 0
\(395\) − 23806.4i − 3.03249i
\(396\) 0 0
\(397\) 13520.7i 1.70927i 0.519225 + 0.854637i \(0.326221\pi\)
−0.519225 + 0.854637i \(0.673779\pi\)
\(398\) 0 0
\(399\) −512.304 −0.0642789
\(400\) 0 0
\(401\) −3991.79 −0.497108 −0.248554 0.968618i \(-0.579955\pi\)
−0.248554 + 0.968618i \(0.579955\pi\)
\(402\) 0 0
\(403\) 13450.9i 1.66262i
\(404\) 0 0
\(405\) − 1699.26i − 0.208487i
\(406\) 0 0
\(407\) 3418.63 0.416351
\(408\) 0 0
\(409\) −1723.34 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(410\) 0 0
\(411\) − 3424.10i − 0.410945i
\(412\) 0 0
\(413\) 662.919i 0.0789833i
\(414\) 0 0
\(415\) −12360.7 −1.46208
\(416\) 0 0
\(417\) 5932.83 0.696720
\(418\) 0 0
\(419\) 6902.47i 0.804791i 0.915466 + 0.402396i \(0.131822\pi\)
−0.915466 + 0.402396i \(0.868178\pi\)
\(420\) 0 0
\(421\) − 11855.5i − 1.37245i −0.727387 0.686227i \(-0.759265\pi\)
0.727387 0.686227i \(-0.240735\pi\)
\(422\) 0 0
\(423\) 4017.41 0.461781
\(424\) 0 0
\(425\) −6032.62 −0.688530
\(426\) 0 0
\(427\) − 2636.91i − 0.298850i
\(428\) 0 0
\(429\) − 1589.75i − 0.178913i
\(430\) 0 0
\(431\) −13678.4 −1.52869 −0.764345 0.644808i \(-0.776937\pi\)
−0.764345 + 0.644808i \(0.776937\pi\)
\(432\) 0 0
\(433\) 11620.4 1.28970 0.644849 0.764310i \(-0.276920\pi\)
0.644849 + 0.764310i \(0.276920\pi\)
\(434\) 0 0
\(435\) 11280.7i 1.24337i
\(436\) 0 0
\(437\) 2478.53i 0.271314i
\(438\) 0 0
\(439\) 8292.22 0.901518 0.450759 0.892646i \(-0.351153\pi\)
0.450759 + 0.892646i \(0.351153\pi\)
\(440\) 0 0
\(441\) −441.000 −0.0476190
\(442\) 0 0
\(443\) − 14991.6i − 1.60784i −0.594736 0.803921i \(-0.702744\pi\)
0.594736 0.803921i \(-0.297256\pi\)
\(444\) 0 0
\(445\) 9633.01i 1.02618i
\(446\) 0 0
\(447\) 6828.91 0.722586
\(448\) 0 0
\(449\) −2614.56 −0.274807 −0.137404 0.990515i \(-0.543876\pi\)
−0.137404 + 0.990515i \(0.543876\pi\)
\(450\) 0 0
\(451\) − 930.062i − 0.0971063i
\(452\) 0 0
\(453\) − 9182.76i − 0.952414i
\(454\) 0 0
\(455\) 7477.44 0.770435
\(456\) 0 0
\(457\) 16248.2 1.66315 0.831573 0.555416i \(-0.187441\pi\)
0.831573 + 0.555416i \(0.187441\pi\)
\(458\) 0 0
\(459\) 516.918i 0.0525657i
\(460\) 0 0
\(461\) − 7665.84i − 0.774477i −0.921980 0.387238i \(-0.873429\pi\)
0.921980 0.387238i \(-0.126571\pi\)
\(462\) 0 0
\(463\) −15029.1 −1.50855 −0.754277 0.656557i \(-0.772012\pi\)
−0.754277 + 0.656557i \(0.772012\pi\)
\(464\) 0 0
\(465\) 16625.3 1.65802
\(466\) 0 0
\(467\) − 5847.67i − 0.579439i −0.957112 0.289719i \(-0.906438\pi\)
0.957112 0.289719i \(-0.0935620\pi\)
\(468\) 0 0
\(469\) − 2370.02i − 0.233342i
\(470\) 0 0
\(471\) −384.255 −0.0375914
\(472\) 0 0
\(473\) 1294.04 0.125793
\(474\) 0 0
\(475\) − 7687.00i − 0.742534i
\(476\) 0 0
\(477\) − 3463.86i − 0.332494i
\(478\) 0 0
\(479\) −6500.50 −0.620074 −0.310037 0.950725i \(-0.600341\pi\)
−0.310037 + 0.950725i \(0.600341\pi\)
\(480\) 0 0
\(481\) −16726.4 −1.58557
\(482\) 0 0
\(483\) 2133.56i 0.200995i
\(484\) 0 0
\(485\) 28651.6i 2.68248i
\(486\) 0 0
\(487\) 4298.52 0.399968 0.199984 0.979799i \(-0.435911\pi\)
0.199984 + 0.979799i \(0.435911\pi\)
\(488\) 0 0
\(489\) −4634.44 −0.428582
\(490\) 0 0
\(491\) − 1928.34i − 0.177240i −0.996066 0.0886198i \(-0.971754\pi\)
0.996066 0.0886198i \(-0.0282456\pi\)
\(492\) 0 0
\(493\) − 3431.59i − 0.313491i
\(494\) 0 0
\(495\) −1964.92 −0.178418
\(496\) 0 0
\(497\) 1879.28 0.169612
\(498\) 0 0
\(499\) − 7456.37i − 0.668923i −0.942409 0.334462i \(-0.891446\pi\)
0.942409 0.334462i \(-0.108554\pi\)
\(500\) 0 0
\(501\) − 9405.41i − 0.838728i
\(502\) 0 0
\(503\) −18407.6 −1.63172 −0.815860 0.578250i \(-0.803736\pi\)
−0.815860 + 0.578250i \(0.803736\pi\)
\(504\) 0 0
\(505\) 32691.4 2.88069
\(506\) 0 0
\(507\) 1187.21i 0.103996i
\(508\) 0 0
\(509\) − 2154.61i − 0.187625i −0.995590 0.0938127i \(-0.970095\pi\)
0.995590 0.0938127i \(-0.0299055\pi\)
\(510\) 0 0
\(511\) 4442.43 0.384583
\(512\) 0 0
\(513\) −658.677 −0.0566887
\(514\) 0 0
\(515\) − 26384.9i − 2.25759i
\(516\) 0 0
\(517\) − 4645.49i − 0.395181i
\(518\) 0 0
\(519\) −5686.12 −0.480911
\(520\) 0 0
\(521\) 6052.25 0.508933 0.254467 0.967082i \(-0.418100\pi\)
0.254467 + 0.967082i \(0.418100\pi\)
\(522\) 0 0
\(523\) 11824.5i 0.988618i 0.869286 + 0.494309i \(0.164579\pi\)
−0.869286 + 0.494309i \(0.835421\pi\)
\(524\) 0 0
\(525\) − 6617.10i − 0.550084i
\(526\) 0 0
\(527\) −5057.42 −0.418035
\(528\) 0 0
\(529\) −1844.79 −0.151623
\(530\) 0 0
\(531\) 852.324i 0.0696567i
\(532\) 0 0
\(533\) 4550.55i 0.369805i
\(534\) 0 0
\(535\) 14752.2 1.19214
\(536\) 0 0
\(537\) −3601.51 −0.289416
\(538\) 0 0
\(539\) 509.945i 0.0407512i
\(540\) 0 0
\(541\) − 21393.6i − 1.70015i −0.526660 0.850076i \(-0.676556\pi\)
0.526660 0.850076i \(-0.323444\pi\)
\(542\) 0 0
\(543\) −7515.28 −0.593944
\(544\) 0 0
\(545\) −18981.8 −1.49191
\(546\) 0 0
\(547\) 4427.67i 0.346094i 0.984914 + 0.173047i \(0.0553613\pi\)
−0.984914 + 0.173047i \(0.944639\pi\)
\(548\) 0 0
\(549\) − 3390.31i − 0.263561i
\(550\) 0 0
\(551\) 4372.67 0.338080
\(552\) 0 0
\(553\) −7943.59 −0.610842
\(554\) 0 0
\(555\) 20673.9i 1.58118i
\(556\) 0 0
\(557\) − 12901.0i − 0.981390i −0.871331 0.490695i \(-0.836743\pi\)
0.871331 0.490695i \(-0.163257\pi\)
\(558\) 0 0
\(559\) −6331.41 −0.479052
\(560\) 0 0
\(561\) 597.731 0.0449844
\(562\) 0 0
\(563\) 12560.1i 0.940225i 0.882607 + 0.470112i \(0.155787\pi\)
−0.882607 + 0.470112i \(0.844213\pi\)
\(564\) 0 0
\(565\) − 45252.5i − 3.36954i
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −7389.66 −0.544448 −0.272224 0.962234i \(-0.587759\pi\)
−0.272224 + 0.962234i \(0.587759\pi\)
\(570\) 0 0
\(571\) − 26490.4i − 1.94148i −0.240124 0.970742i \(-0.577188\pi\)
0.240124 0.970742i \(-0.422812\pi\)
\(572\) 0 0
\(573\) 14669.0i 1.06947i
\(574\) 0 0
\(575\) −32013.6 −2.32184
\(576\) 0 0
\(577\) −14125.9 −1.01919 −0.509593 0.860415i \(-0.670204\pi\)
−0.509593 + 0.860415i \(0.670204\pi\)
\(578\) 0 0
\(579\) − 92.8874i − 0.00666713i
\(580\) 0 0
\(581\) 4124.45i 0.294511i
\(582\) 0 0
\(583\) −4005.40 −0.284540
\(584\) 0 0
\(585\) 9613.85 0.679460
\(586\) 0 0
\(587\) − 6882.21i − 0.483917i −0.970287 0.241959i \(-0.922210\pi\)
0.970287 0.241959i \(-0.0777898\pi\)
\(588\) 0 0
\(589\) − 6444.36i − 0.450824i
\(590\) 0 0
\(591\) −7101.17 −0.494252
\(592\) 0 0
\(593\) 20160.3 1.39609 0.698047 0.716052i \(-0.254052\pi\)
0.698047 + 0.716052i \(0.254052\pi\)
\(594\) 0 0
\(595\) 2811.46i 0.193712i
\(596\) 0 0
\(597\) 4529.69i 0.310533i
\(598\) 0 0
\(599\) −10896.5 −0.743268 −0.371634 0.928379i \(-0.621202\pi\)
−0.371634 + 0.928379i \(0.621202\pi\)
\(600\) 0 0
\(601\) 4724.07 0.320631 0.160315 0.987066i \(-0.448749\pi\)
0.160315 + 0.987066i \(0.448749\pi\)
\(602\) 0 0
\(603\) − 3047.17i − 0.205788i
\(604\) 0 0
\(605\) − 25650.4i − 1.72369i
\(606\) 0 0
\(607\) −12422.1 −0.830636 −0.415318 0.909676i \(-0.636330\pi\)
−0.415318 + 0.909676i \(0.636330\pi\)
\(608\) 0 0
\(609\) 3764.06 0.250456
\(610\) 0 0
\(611\) 22729.2i 1.50495i
\(612\) 0 0
\(613\) 5228.08i 0.344470i 0.985056 + 0.172235i \(0.0550989\pi\)
−0.985056 + 0.172235i \(0.944901\pi\)
\(614\) 0 0
\(615\) 5624.47 0.368781
\(616\) 0 0
\(617\) 17595.6 1.14809 0.574046 0.818823i \(-0.305373\pi\)
0.574046 + 0.818823i \(0.305373\pi\)
\(618\) 0 0
\(619\) 21111.0i 1.37080i 0.728168 + 0.685399i \(0.240372\pi\)
−0.728168 + 0.685399i \(0.759628\pi\)
\(620\) 0 0
\(621\) 2743.15i 0.177261i
\(622\) 0 0
\(623\) 3214.28 0.206706
\(624\) 0 0
\(625\) 44275.5 2.83363
\(626\) 0 0
\(627\) 761.653i 0.0485127i
\(628\) 0 0
\(629\) − 6289.01i − 0.398663i
\(630\) 0 0
\(631\) −11648.1 −0.734872 −0.367436 0.930049i \(-0.619764\pi\)
−0.367436 + 0.930049i \(0.619764\pi\)
\(632\) 0 0
\(633\) 15509.0 0.973819
\(634\) 0 0
\(635\) − 32406.1i − 2.02519i
\(636\) 0 0
\(637\) − 2495.03i − 0.155191i
\(638\) 0 0
\(639\) 2416.22 0.149584
\(640\) 0 0
\(641\) −6913.84 −0.426022 −0.213011 0.977050i \(-0.568327\pi\)
−0.213011 + 0.977050i \(0.568327\pi\)
\(642\) 0 0
\(643\) − 13390.6i − 0.821263i −0.911801 0.410631i \(-0.865308\pi\)
0.911801 0.410631i \(-0.134692\pi\)
\(644\) 0 0
\(645\) 7825.61i 0.477725i
\(646\) 0 0
\(647\) −12474.0 −0.757966 −0.378983 0.925404i \(-0.623726\pi\)
−0.378983 + 0.925404i \(0.623726\pi\)
\(648\) 0 0
\(649\) 985.574 0.0596104
\(650\) 0 0
\(651\) − 5547.41i − 0.333979i
\(652\) 0 0
\(653\) − 17114.5i − 1.02564i −0.858497 0.512819i \(-0.828601\pi\)
0.858497 0.512819i \(-0.171399\pi\)
\(654\) 0 0
\(655\) −591.470 −0.0352834
\(656\) 0 0
\(657\) 5711.70 0.339170
\(658\) 0 0
\(659\) − 28563.2i − 1.68841i −0.536018 0.844207i \(-0.680072\pi\)
0.536018 0.844207i \(-0.319928\pi\)
\(660\) 0 0
\(661\) 18291.7i 1.07635i 0.842834 + 0.538173i \(0.180885\pi\)
−0.842834 + 0.538173i \(0.819115\pi\)
\(662\) 0 0
\(663\) −2924.54 −0.171312
\(664\) 0 0
\(665\) −3582.47 −0.208905
\(666\) 0 0
\(667\) − 18210.6i − 1.05715i
\(668\) 0 0
\(669\) 5107.41i 0.295163i
\(670\) 0 0
\(671\) −3920.34 −0.225549
\(672\) 0 0
\(673\) −18737.9 −1.07324 −0.536622 0.843823i \(-0.680300\pi\)
−0.536622 + 0.843823i \(0.680300\pi\)
\(674\) 0 0
\(675\) − 8507.70i − 0.485128i
\(676\) 0 0
\(677\) − 22789.1i − 1.29373i −0.762603 0.646866i \(-0.776079\pi\)
0.762603 0.646866i \(-0.223921\pi\)
\(678\) 0 0
\(679\) 9560.28 0.540339
\(680\) 0 0
\(681\) −6599.03 −0.371330
\(682\) 0 0
\(683\) 21025.9i 1.17794i 0.808155 + 0.588970i \(0.200466\pi\)
−0.808155 + 0.588970i \(0.799534\pi\)
\(684\) 0 0
\(685\) − 23944.2i − 1.33557i
\(686\) 0 0
\(687\) −5912.50 −0.328349
\(688\) 0 0
\(689\) 19597.4 1.08360
\(690\) 0 0
\(691\) 26862.7i 1.47888i 0.673223 + 0.739440i \(0.264909\pi\)
−0.673223 + 0.739440i \(0.735091\pi\)
\(692\) 0 0
\(693\) 655.643i 0.0359392i
\(694\) 0 0
\(695\) 41487.4 2.26433
\(696\) 0 0
\(697\) −1710.97 −0.0929808
\(698\) 0 0
\(699\) 17091.3i 0.924826i
\(700\) 0 0
\(701\) 31268.5i 1.68473i 0.538908 + 0.842365i \(0.318837\pi\)
−0.538908 + 0.842365i \(0.681163\pi\)
\(702\) 0 0
\(703\) 8013.70 0.429932
\(704\) 0 0
\(705\) 28093.2 1.50078
\(706\) 0 0
\(707\) − 10908.3i − 0.580266i
\(708\) 0 0
\(709\) − 26727.7i − 1.41577i −0.706328 0.707884i \(-0.749650\pi\)
0.706328 0.707884i \(-0.250350\pi\)
\(710\) 0 0
\(711\) −10213.2 −0.538712
\(712\) 0 0
\(713\) −26838.5 −1.40969
\(714\) 0 0
\(715\) − 11116.9i − 0.581464i
\(716\) 0 0
\(717\) − 287.273i − 0.0149629i
\(718\) 0 0
\(719\) −20723.9 −1.07493 −0.537463 0.843287i \(-0.680617\pi\)
−0.537463 + 0.843287i \(0.680617\pi\)
\(720\) 0 0
\(721\) −8803.95 −0.454752
\(722\) 0 0
\(723\) 16923.2i 0.870512i
\(724\) 0 0
\(725\) 56478.9i 2.89321i
\(726\) 0 0
\(727\) 18312.1 0.934194 0.467097 0.884206i \(-0.345300\pi\)
0.467097 + 0.884206i \(0.345300\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) − 2380.56i − 0.120449i
\(732\) 0 0
\(733\) − 3140.53i − 0.158251i −0.996865 0.0791255i \(-0.974787\pi\)
0.996865 0.0791255i \(-0.0252128\pi\)
\(734\) 0 0
\(735\) −3083.85 −0.154761
\(736\) 0 0
\(737\) −3523.56 −0.176109
\(738\) 0 0
\(739\) − 678.083i − 0.0337533i −0.999858 0.0168766i \(-0.994628\pi\)
0.999858 0.0168766i \(-0.00537226\pi\)
\(740\) 0 0
\(741\) − 3726.57i − 0.184749i
\(742\) 0 0
\(743\) −2610.32 −0.128887 −0.0644436 0.997921i \(-0.520527\pi\)
−0.0644436 + 0.997921i \(0.520527\pi\)
\(744\) 0 0
\(745\) 47753.5 2.34839
\(746\) 0 0
\(747\) 5302.87i 0.259735i
\(748\) 0 0
\(749\) − 4922.43i − 0.240136i
\(750\) 0 0
\(751\) 34275.1 1.66540 0.832700 0.553724i \(-0.186794\pi\)
0.832700 + 0.553724i \(0.186794\pi\)
\(752\) 0 0
\(753\) 13943.8 0.674820
\(754\) 0 0
\(755\) − 64213.7i − 3.09533i
\(756\) 0 0
\(757\) 12274.8i 0.589347i 0.955598 + 0.294673i \(0.0952108\pi\)
−0.955598 + 0.294673i \(0.904789\pi\)
\(758\) 0 0
\(759\) 3172.01 0.151695
\(760\) 0 0
\(761\) −10216.4 −0.486656 −0.243328 0.969944i \(-0.578239\pi\)
−0.243328 + 0.969944i \(0.578239\pi\)
\(762\) 0 0
\(763\) 6333.72i 0.300519i
\(764\) 0 0
\(765\) 3614.73i 0.170838i
\(766\) 0 0
\(767\) −4822.16 −0.227012
\(768\) 0 0
\(769\) −3611.71 −0.169365 −0.0846823 0.996408i \(-0.526988\pi\)
−0.0846823 + 0.996408i \(0.526988\pi\)
\(770\) 0 0
\(771\) 13808.5i 0.645006i
\(772\) 0 0
\(773\) 28663.3i 1.33370i 0.745194 + 0.666848i \(0.232357\pi\)
−0.745194 + 0.666848i \(0.767643\pi\)
\(774\) 0 0
\(775\) 83237.6 3.85804
\(776\) 0 0
\(777\) 6898.33 0.318502
\(778\) 0 0
\(779\) − 2180.19i − 0.100274i
\(780\) 0 0
\(781\) − 2793.97i − 0.128010i
\(782\) 0 0
\(783\) 4839.51 0.220881
\(784\) 0 0
\(785\) −2687.04 −0.122172
\(786\) 0 0
\(787\) 17764.4i 0.804613i 0.915505 + 0.402307i \(0.131791\pi\)
−0.915505 + 0.402307i \(0.868209\pi\)
\(788\) 0 0
\(789\) − 13425.4i − 0.605778i
\(790\) 0 0
\(791\) −15099.6 −0.678735
\(792\) 0 0
\(793\) 19181.2 0.858947
\(794\) 0 0
\(795\) − 24222.3i − 1.08060i
\(796\) 0 0
\(797\) 34572.4i 1.53653i 0.640129 + 0.768267i \(0.278881\pi\)
−0.640129 + 0.768267i \(0.721119\pi\)
\(798\) 0 0
\(799\) −8545.98 −0.378392
\(800\) 0 0
\(801\) 4132.65 0.182297
\(802\) 0 0
\(803\) − 6604.65i − 0.290253i
\(804\) 0 0
\(805\) 14919.7i 0.653230i
\(806\) 0 0
\(807\) 22529.2 0.982732
\(808\) 0 0
\(809\) −7092.56 −0.308234 −0.154117 0.988053i \(-0.549253\pi\)
−0.154117 + 0.988053i \(0.549253\pi\)
\(810\) 0 0
\(811\) − 43146.0i − 1.86814i −0.357090 0.934070i \(-0.616231\pi\)
0.357090 0.934070i \(-0.383769\pi\)
\(812\) 0 0
\(813\) 8902.31i 0.384032i
\(814\) 0 0
\(815\) −32407.9 −1.39288
\(816\) 0 0
\(817\) 3033.40 0.129896
\(818\) 0 0
\(819\) − 3207.89i − 0.136866i
\(820\) 0 0
\(821\) − 7634.01i − 0.324518i −0.986748 0.162259i \(-0.948122\pi\)
0.986748 0.162259i \(-0.0518779\pi\)
\(822\) 0 0
\(823\) 8563.47 0.362702 0.181351 0.983418i \(-0.441953\pi\)
0.181351 + 0.983418i \(0.441953\pi\)
\(824\) 0 0
\(825\) −9837.78 −0.415160
\(826\) 0 0
\(827\) 26203.9i 1.10181i 0.834567 + 0.550906i \(0.185718\pi\)
−0.834567 + 0.550906i \(0.814282\pi\)
\(828\) 0 0
\(829\) − 22349.0i − 0.936324i −0.883643 0.468162i \(-0.844916\pi\)
0.883643 0.468162i \(-0.155084\pi\)
\(830\) 0 0
\(831\) 8189.18 0.341853
\(832\) 0 0
\(833\) 938.110 0.0390199
\(834\) 0 0
\(835\) − 65770.6i − 2.72585i
\(836\) 0 0
\(837\) − 7132.39i − 0.294542i
\(838\) 0 0
\(839\) 33036.4 1.35941 0.679705 0.733486i \(-0.262108\pi\)
0.679705 + 0.733486i \(0.262108\pi\)
\(840\) 0 0
\(841\) −7738.40 −0.317291
\(842\) 0 0
\(843\) 23980.6i 0.979756i
\(844\) 0 0
\(845\) 8302.01i 0.337986i
\(846\) 0 0
\(847\) −8558.85 −0.347209
\(848\) 0 0
\(849\) 11865.3 0.479640
\(850\) 0 0
\(851\) − 33374.2i − 1.34436i
\(852\) 0 0
\(853\) − 25570.3i − 1.02639i −0.858272 0.513196i \(-0.828461\pi\)
0.858272 0.513196i \(-0.171539\pi\)
\(854\) 0 0
\(855\) −4606.03 −0.184237
\(856\) 0 0
\(857\) 47355.1 1.88754 0.943768 0.330607i \(-0.107254\pi\)
0.943768 + 0.330607i \(0.107254\pi\)
\(858\) 0 0
\(859\) 13079.5i 0.519518i 0.965673 + 0.259759i \(0.0836431\pi\)
−0.965673 + 0.259759i \(0.916357\pi\)
\(860\) 0 0
\(861\) − 1876.74i − 0.0742847i
\(862\) 0 0
\(863\) −11909.5 −0.469761 −0.234881 0.972024i \(-0.575470\pi\)
−0.234881 + 0.972024i \(0.575470\pi\)
\(864\) 0 0
\(865\) −39762.2 −1.56295
\(866\) 0 0
\(867\) 13639.4i 0.534277i
\(868\) 0 0
\(869\) 11809.9i 0.461016i
\(870\) 0 0
\(871\) 17239.9 0.670666
\(872\) 0 0
\(873\) 12291.8 0.476534
\(874\) 0 0
\(875\) − 27916.2i − 1.07856i
\(876\) 0 0
\(877\) − 42127.8i − 1.62207i −0.584998 0.811035i \(-0.698905\pi\)
0.584998 0.811035i \(-0.301095\pi\)
\(878\) 0 0
\(879\) −16248.3 −0.623484
\(880\) 0 0
\(881\) 15490.5 0.592380 0.296190 0.955129i \(-0.404284\pi\)
0.296190 + 0.955129i \(0.404284\pi\)
\(882\) 0 0
\(883\) − 13891.7i − 0.529437i −0.964326 0.264719i \(-0.914721\pi\)
0.964326 0.264719i \(-0.0852791\pi\)
\(884\) 0 0
\(885\) 5960.18i 0.226383i
\(886\) 0 0
\(887\) −28588.2 −1.08218 −0.541092 0.840963i \(-0.681989\pi\)
−0.541092 + 0.840963i \(0.681989\pi\)
\(888\) 0 0
\(889\) −10813.1 −0.407940
\(890\) 0 0
\(891\) 842.970i 0.0316954i
\(892\) 0 0
\(893\) − 10889.6i − 0.408071i
\(894\) 0 0
\(895\) −25184.8 −0.940599
\(896\) 0 0
\(897\) −15519.8 −0.577694
\(898\) 0 0
\(899\) 47348.8i 1.75659i
\(900\) 0 0
\(901\) 7368.45i 0.272451i
\(902\) 0 0
\(903\) 2611.20 0.0962296
\(904\) 0 0
\(905\) −52553.3 −1.93031
\(906\) 0 0
\(907\) 37104.2i 1.35835i 0.733975 + 0.679177i \(0.237663\pi\)
−0.733975 + 0.679177i \(0.762337\pi\)
\(908\) 0 0
\(909\) − 14024.9i − 0.511747i
\(910\) 0 0
\(911\) −42276.6 −1.53753 −0.768763 0.639534i \(-0.779127\pi\)
−0.768763 + 0.639534i \(0.779127\pi\)
\(912\) 0 0
\(913\) 6131.91 0.222274
\(914\) 0 0
\(915\) − 23707.9i − 0.856568i
\(916\) 0 0
\(917\) 197.358i 0.00710724i
\(918\) 0 0
\(919\) −37225.8 −1.33620 −0.668099 0.744072i \(-0.732892\pi\)
−0.668099 + 0.744072i \(0.732892\pi\)
\(920\) 0 0
\(921\) −722.797 −0.0258599
\(922\) 0 0
\(923\) 13670.2i 0.487496i
\(924\) 0 0
\(925\) 103508.i 3.67926i
\(926\) 0 0
\(927\) −11319.4 −0.401054
\(928\) 0 0
\(929\) −52977.0 −1.87096 −0.935479 0.353382i \(-0.885032\pi\)
−0.935479 + 0.353382i \(0.885032\pi\)
\(930\) 0 0
\(931\) 1195.38i 0.0420804i
\(932\) 0 0
\(933\) 21645.3i 0.759522i
\(934\) 0 0
\(935\) 4179.85 0.146199
\(936\) 0 0
\(937\) −6236.65 −0.217441 −0.108721 0.994072i \(-0.534675\pi\)
−0.108721 + 0.994072i \(0.534675\pi\)
\(938\) 0 0
\(939\) 2170.33i 0.0754270i
\(940\) 0 0
\(941\) − 15813.3i − 0.547820i −0.961755 0.273910i \(-0.911683\pi\)
0.961755 0.273910i \(-0.0883171\pi\)
\(942\) 0 0
\(943\) −9079.69 −0.313548
\(944\) 0 0
\(945\) −3964.95 −0.136487
\(946\) 0 0
\(947\) 35736.3i 1.22626i 0.789980 + 0.613132i \(0.210091\pi\)
−0.789980 + 0.613132i \(0.789909\pi\)
\(948\) 0 0
\(949\) 32314.9i 1.10536i
\(950\) 0 0
\(951\) −8471.48 −0.288861
\(952\) 0 0
\(953\) −29928.6 −1.01729 −0.508647 0.860975i \(-0.669854\pi\)
−0.508647 + 0.860975i \(0.669854\pi\)
\(954\) 0 0
\(955\) 102578.i 3.47576i
\(956\) 0 0
\(957\) − 5596.11i − 0.189025i
\(958\) 0 0
\(959\) −7989.57 −0.269027
\(960\) 0 0
\(961\) 39990.9 1.34238
\(962\) 0 0
\(963\) − 6328.83i − 0.211780i
\(964\) 0 0
\(965\) − 649.548i − 0.0216681i
\(966\) 0 0
\(967\) −43498.1 −1.44654 −0.723270 0.690565i \(-0.757362\pi\)
−0.723270 + 0.690565i \(0.757362\pi\)
\(968\) 0 0
\(969\) 1401.16 0.0464517
\(970\) 0 0
\(971\) 15759.7i 0.520859i 0.965493 + 0.260430i \(0.0838642\pi\)
−0.965493 + 0.260430i \(0.916136\pi\)
\(972\) 0 0
\(973\) − 13843.3i − 0.456110i
\(974\) 0 0
\(975\) 48133.7 1.58104
\(976\) 0 0
\(977\) −15388.1 −0.503900 −0.251950 0.967740i \(-0.581072\pi\)
−0.251950 + 0.967740i \(0.581072\pi\)
\(978\) 0 0
\(979\) − 4778.74i − 0.156005i
\(980\) 0 0
\(981\) 8143.35i 0.265033i
\(982\) 0 0
\(983\) 25215.2 0.818147 0.409074 0.912501i \(-0.365852\pi\)
0.409074 + 0.912501i \(0.365852\pi\)
\(984\) 0 0
\(985\) −49657.4 −1.60631
\(986\) 0 0
\(987\) − 9373.97i − 0.302307i
\(988\) 0 0
\(989\) − 12633.0i − 0.406175i
\(990\) 0 0
\(991\) −37192.6 −1.19219 −0.596096 0.802913i \(-0.703282\pi\)
−0.596096 + 0.802913i \(0.703282\pi\)
\(992\) 0 0
\(993\) −31990.1 −1.02233
\(994\) 0 0
\(995\) 31675.5i 1.00923i
\(996\) 0 0
\(997\) 4547.23i 0.144446i 0.997389 + 0.0722228i \(0.0230093\pi\)
−0.997389 + 0.0722228i \(0.976991\pi\)
\(998\) 0 0
\(999\) 8869.28 0.280892
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.4.c.e.673.1 12
4.3 odd 2 1344.4.c.h.673.7 yes 12
8.3 odd 2 1344.4.c.h.673.6 yes 12
8.5 even 2 inner 1344.4.c.e.673.12 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1344.4.c.e.673.1 12 1.1 even 1 trivial
1344.4.c.e.673.12 yes 12 8.5 even 2 inner
1344.4.c.h.673.6 yes 12 8.3 odd 2
1344.4.c.h.673.7 yes 12 4.3 odd 2