Properties

Label 1340.2.a.b
Level $1340$
Weight $2$
Character orbit 1340.a
Self dual yes
Analytic conductor $10.700$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1340,2,Mod(1,1340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1340.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1340 = 2^{2} \cdot 5 \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1340.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6999538709\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - q^{5} + q^{7} - 2 q^{9} - 6 q^{11} + 2 q^{13} - q^{15} + 4 q^{17} - 8 q^{19} + q^{21} + 4 q^{23} + q^{25} - 5 q^{27} - 7 q^{29} - 4 q^{31} - 6 q^{33} - q^{35} - 2 q^{37} + 2 q^{39} - 4 q^{41}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −1.00000 0 1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(67\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1340.2.a.b 1
4.b odd 2 1 5360.2.a.c 1
5.b even 2 1 6700.2.a.e 1
5.c odd 4 2 6700.2.d.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1340.2.a.b 1 1.a even 1 1 trivial
5360.2.a.c 1 4.b odd 2 1
6700.2.a.e 1 5.b even 2 1
6700.2.d.e 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1340))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T + 8 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 7 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 4 \) Copy content Toggle raw display
$43$ \( T + 11 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 3 \) Copy content Toggle raw display
$59$ \( T - 9 \) Copy content Toggle raw display
$61$ \( T + 12 \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T + 6 \) Copy content Toggle raw display
$83$ \( T + 16 \) Copy content Toggle raw display
$89$ \( T - 1 \) Copy content Toggle raw display
$97$ \( T + 11 \) Copy content Toggle raw display
show more
show less