Defining parameters
Level: | \( N \) | \(=\) | \( 1340 = 2^{2} \cdot 5 \cdot 67 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1340.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(408\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1340))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 210 | 22 | 188 |
Cusp forms | 199 | 22 | 177 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(67\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(17\) | \(0\) | \(17\) | \(16\) | \(0\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(35\) | \(0\) | \(35\) | \(33\) | \(0\) | \(33\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(36\) | \(0\) | \(36\) | \(34\) | \(0\) | \(34\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(18\) | \(0\) | \(18\) | \(16\) | \(0\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(22\) | \(5\) | \(17\) | \(21\) | \(5\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(31\) | \(6\) | \(25\) | \(30\) | \(6\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(30\) | \(5\) | \(25\) | \(29\) | \(5\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(21\) | \(6\) | \(15\) | \(20\) | \(6\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(96\) | \(11\) | \(85\) | \(91\) | \(11\) | \(80\) | \(5\) | \(0\) | \(5\) | |||||
Minus space | \(-\) | \(114\) | \(11\) | \(103\) | \(108\) | \(11\) | \(97\) | \(6\) | \(0\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1340))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1340))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1340)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(67))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(134))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(268))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(335))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(670))\)\(^{\oplus 2}\)