Properties

Label 1338.2.e.g.1075.4
Level $1338$
Weight $2$
Character 1338.1075
Analytic conductor $10.684$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 24 x^{10} + x^{9} + 237 x^{8} + 22 x^{7} + 1386 x^{6} + 2016 x^{5} + 2360 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1075.4
Root \(-0.123027 - 0.213090i\) of defining polynomial
Character \(\chi\) \(=\) 1338.1075
Dual form 1338.2.e.g.931.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(-0.623027 + 1.07912i) q^{5} +(-0.500000 - 0.866025i) q^{6} +4.88222 q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.623027 - 1.07912i) q^{10} +(-1.38368 + 2.39661i) q^{11} +(0.500000 + 0.866025i) q^{12} -3.00000 q^{13} -4.88222 q^{14} -1.24605 q^{15} +1.00000 q^{16} +3.18130 q^{17} +(0.500000 - 0.866025i) q^{18} +(1.69092 + 2.92876i) q^{19} +(-0.623027 + 1.07912i) q^{20} +(2.44111 + 4.22812i) q^{21} +(1.38368 - 2.39661i) q^{22} +(-2.41644 - 4.18539i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(1.72367 + 2.98549i) q^{25} +3.00000 q^{26} -1.00000 q^{27} +4.88222 q^{28} +(-3.74459 + 6.48582i) q^{29} +1.24605 q^{30} +(4.28157 + 7.41590i) q^{31} -1.00000 q^{32} -2.76736 q^{33} -3.18130 q^{34} +(-3.04175 + 5.26847i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(2.02505 - 3.50749i) q^{37} +(-1.69092 - 2.92876i) q^{38} +(-1.50000 - 2.59808i) q^{39} +(0.623027 - 1.07912i) q^{40} -4.21396 q^{41} +(-2.44111 - 4.22812i) q^{42} +(-4.40644 - 7.63218i) q^{43} +(-1.38368 + 2.39661i) q^{44} +(-0.623027 - 1.07912i) q^{45} +(2.41644 + 4.18539i) q^{46} +(5.19763 - 9.00256i) q^{47} +(0.500000 + 0.866025i) q^{48} +16.8360 q^{49} +(-1.72367 - 2.98549i) q^{50} +(1.59065 + 2.75509i) q^{51} -3.00000 q^{52} +(-4.24085 + 7.34536i) q^{53} +1.00000 q^{54} +(-1.72414 - 2.98630i) q^{55} -4.88222 q^{56} +(-1.69092 + 2.92876i) q^{57} +(3.74459 - 6.48582i) q^{58} +5.05893 q^{59} -1.24605 q^{60} +(-3.81808 - 6.61311i) q^{61} +(-4.28157 - 7.41590i) q^{62} +(-2.44111 + 4.22812i) q^{63} +1.00000 q^{64} +(1.86908 - 3.23735i) q^{65} +2.76736 q^{66} +(4.40039 + 7.62169i) q^{67} +3.18130 q^{68} +(2.41644 - 4.18539i) q^{69} +(3.04175 - 5.26847i) q^{70} +(0.203212 + 0.351974i) q^{71} +(0.500000 - 0.866025i) q^{72} +(-6.67525 + 11.5619i) q^{73} +(-2.02505 + 3.50749i) q^{74} +(-1.72367 + 2.98549i) q^{75} +(1.69092 + 2.92876i) q^{76} +(-6.75543 + 11.7008i) q^{77} +(1.50000 + 2.59808i) q^{78} +(3.20176 - 5.54561i) q^{79} +(-0.623027 + 1.07912i) q^{80} +(-0.500000 - 0.866025i) q^{81} +4.21396 q^{82} +(-3.82066 + 6.61757i) q^{83} +(2.44111 + 4.22812i) q^{84} +(-1.98204 + 3.43299i) q^{85} +(4.40644 + 7.63218i) q^{86} -7.48918 q^{87} +(1.38368 - 2.39661i) q^{88} +(5.53176 + 9.58129i) q^{89} +(0.623027 + 1.07912i) q^{90} -14.6466 q^{91} +(-2.41644 - 4.18539i) q^{92} +(-4.28157 + 7.41590i) q^{93} +(-5.19763 + 9.00256i) q^{94} -4.21396 q^{95} +(-0.500000 - 0.866025i) q^{96} +(6.38892 - 11.0659i) q^{97} -16.8360 q^{98} +(-1.38368 - 2.39661i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 6 q^{3} + 12 q^{4} - 3 q^{5} - 6 q^{6} - 2 q^{7} - 12 q^{8} - 6 q^{9} + 3 q^{10} + 3 q^{11} + 6 q^{12} - 36 q^{13} + 2 q^{14} - 6 q^{15} + 12 q^{16} + 6 q^{18} + 4 q^{19} - 3 q^{20} - q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.623027 + 1.07912i −0.278626 + 0.482595i −0.971044 0.238902i \(-0.923212\pi\)
0.692417 + 0.721497i \(0.256546\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 4.88222 1.84530 0.922652 0.385634i \(-0.126017\pi\)
0.922652 + 0.385634i \(0.126017\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.623027 1.07912i 0.197019 0.341246i
\(11\) −1.38368 + 2.39661i −0.417196 + 0.722604i −0.995656 0.0931063i \(-0.970320\pi\)
0.578460 + 0.815710i \(0.303654\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) −4.88222 −1.30483
\(15\) −1.24605 −0.321730
\(16\) 1.00000 0.250000
\(17\) 3.18130 0.771579 0.385789 0.922587i \(-0.373929\pi\)
0.385789 + 0.922587i \(0.373929\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 1.69092 + 2.92876i 0.387923 + 0.671903i 0.992170 0.124894i \(-0.0398592\pi\)
−0.604247 + 0.796797i \(0.706526\pi\)
\(20\) −0.623027 + 1.07912i −0.139313 + 0.241297i
\(21\) 2.44111 + 4.22812i 0.532693 + 0.922652i
\(22\) 1.38368 2.39661i 0.295002 0.510958i
\(23\) −2.41644 4.18539i −0.503862 0.872714i −0.999990 0.00446494i \(-0.998579\pi\)
0.496128 0.868249i \(-0.334755\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 1.72367 + 2.98549i 0.344735 + 0.597098i
\(26\) 3.00000 0.588348
\(27\) −1.00000 −0.192450
\(28\) 4.88222 0.922652
\(29\) −3.74459 + 6.48582i −0.695353 + 1.20439i 0.274709 + 0.961527i \(0.411418\pi\)
−0.970062 + 0.242859i \(0.921915\pi\)
\(30\) 1.24605 0.227497
\(31\) 4.28157 + 7.41590i 0.768993 + 1.33193i 0.938110 + 0.346338i \(0.112575\pi\)
−0.169117 + 0.985596i \(0.554092\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.76736 −0.481736
\(34\) −3.18130 −0.545589
\(35\) −3.04175 + 5.26847i −0.514150 + 0.890534i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.02505 3.50749i 0.332916 0.576627i −0.650166 0.759792i \(-0.725301\pi\)
0.983082 + 0.183165i \(0.0586341\pi\)
\(38\) −1.69092 2.92876i −0.274303 0.475107i
\(39\) −1.50000 2.59808i −0.240192 0.416025i
\(40\) 0.623027 1.07912i 0.0985093 0.170623i
\(41\) −4.21396 −0.658109 −0.329055 0.944311i \(-0.606730\pi\)
−0.329055 + 0.944311i \(0.606730\pi\)
\(42\) −2.44111 4.22812i −0.376671 0.652414i
\(43\) −4.40644 7.63218i −0.671976 1.16390i −0.977343 0.211662i \(-0.932113\pi\)
0.305367 0.952235i \(-0.401221\pi\)
\(44\) −1.38368 + 2.39661i −0.208598 + 0.361302i
\(45\) −0.623027 1.07912i −0.0928754 0.160865i
\(46\) 2.41644 + 4.18539i 0.356284 + 0.617102i
\(47\) 5.19763 9.00256i 0.758152 1.31316i −0.185640 0.982618i \(-0.559436\pi\)
0.943792 0.330540i \(-0.107231\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 16.8360 2.40515
\(50\) −1.72367 2.98549i −0.243764 0.422212i
\(51\) 1.59065 + 2.75509i 0.222736 + 0.385789i
\(52\) −3.00000 −0.416025
\(53\) −4.24085 + 7.34536i −0.582525 + 1.00896i 0.412654 + 0.910888i \(0.364602\pi\)
−0.995179 + 0.0980754i \(0.968731\pi\)
\(54\) 1.00000 0.136083
\(55\) −1.72414 2.98630i −0.232483 0.402673i
\(56\) −4.88222 −0.652414
\(57\) −1.69092 + 2.92876i −0.223968 + 0.387923i
\(58\) 3.74459 6.48582i 0.491689 0.851630i
\(59\) 5.05893 0.658617 0.329309 0.944222i \(-0.393184\pi\)
0.329309 + 0.944222i \(0.393184\pi\)
\(60\) −1.24605 −0.160865
\(61\) −3.81808 6.61311i −0.488855 0.846722i 0.511063 0.859543i \(-0.329252\pi\)
−0.999918 + 0.0128216i \(0.995919\pi\)
\(62\) −4.28157 7.41590i −0.543760 0.941820i
\(63\) −2.44111 + 4.22812i −0.307551 + 0.532693i
\(64\) 1.00000 0.125000
\(65\) 1.86908 3.23735i 0.231831 0.401543i
\(66\) 2.76736 0.340639
\(67\) 4.40039 + 7.62169i 0.537593 + 0.931138i 0.999033 + 0.0439667i \(0.0139996\pi\)
−0.461440 + 0.887171i \(0.652667\pi\)
\(68\) 3.18130 0.385789
\(69\) 2.41644 4.18539i 0.290905 0.503862i
\(70\) 3.04175 5.26847i 0.363559 0.629703i
\(71\) 0.203212 + 0.351974i 0.0241168 + 0.0417716i 0.877832 0.478969i \(-0.158989\pi\)
−0.853715 + 0.520740i \(0.825656\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) −6.67525 + 11.5619i −0.781279 + 1.35321i 0.149919 + 0.988698i \(0.452099\pi\)
−0.931197 + 0.364516i \(0.881235\pi\)
\(74\) −2.02505 + 3.50749i −0.235407 + 0.407737i
\(75\) −1.72367 + 2.98549i −0.199033 + 0.344735i
\(76\) 1.69092 + 2.92876i 0.193962 + 0.335952i
\(77\) −6.75543 + 11.7008i −0.769853 + 1.33342i
\(78\) 1.50000 + 2.59808i 0.169842 + 0.294174i
\(79\) 3.20176 5.54561i 0.360226 0.623930i −0.627772 0.778398i \(-0.716033\pi\)
0.987998 + 0.154467i \(0.0493661\pi\)
\(80\) −0.623027 + 1.07912i −0.0696566 + 0.120649i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.21396 0.465354
\(83\) −3.82066 + 6.61757i −0.419371 + 0.726373i −0.995876 0.0907211i \(-0.971083\pi\)
0.576505 + 0.817094i \(0.304416\pi\)
\(84\) 2.44111 + 4.22812i 0.266347 + 0.461326i
\(85\) −1.98204 + 3.43299i −0.214982 + 0.372360i
\(86\) 4.40644 + 7.63218i 0.475159 + 0.822999i
\(87\) −7.48918 −0.802924
\(88\) 1.38368 2.39661i 0.147501 0.255479i
\(89\) 5.53176 + 9.58129i 0.586365 + 1.01561i 0.994704 + 0.102784i \(0.0327750\pi\)
−0.408339 + 0.912831i \(0.633892\pi\)
\(90\) 0.623027 + 1.07912i 0.0656729 + 0.113749i
\(91\) −14.6466 −1.53539
\(92\) −2.41644 4.18539i −0.251931 0.436357i
\(93\) −4.28157 + 7.41590i −0.443978 + 0.768993i
\(94\) −5.19763 + 9.00256i −0.536094 + 0.928543i
\(95\) −4.21396 −0.432343
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 6.38892 11.0659i 0.648697 1.12358i −0.334737 0.942311i \(-0.608648\pi\)
0.983434 0.181265i \(-0.0580191\pi\)
\(98\) −16.8360 −1.70070
\(99\) −1.38368 2.39661i −0.139065 0.240868i
\(100\) 1.72367 + 2.98549i 0.172367 + 0.298549i
\(101\) 2.18092 + 3.77747i 0.217010 + 0.375872i 0.953892 0.300149i \(-0.0970363\pi\)
−0.736883 + 0.676021i \(0.763703\pi\)
\(102\) −1.59065 2.75509i −0.157498 0.272794i
\(103\) −16.8443 −1.65972 −0.829859 0.557973i \(-0.811579\pi\)
−0.829859 + 0.557973i \(0.811579\pi\)
\(104\) 3.00000 0.294174
\(105\) −6.08351 −0.593690
\(106\) 4.24085 7.34536i 0.411908 0.713445i
\(107\) 3.59836 6.23253i 0.347866 0.602522i −0.638004 0.770033i \(-0.720240\pi\)
0.985870 + 0.167511i \(0.0535730\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −4.42315 + 7.66111i −0.423660 + 0.733801i −0.996294 0.0860098i \(-0.972588\pi\)
0.572634 + 0.819811i \(0.305922\pi\)
\(110\) 1.72414 + 2.98630i 0.164391 + 0.284733i
\(111\) 4.05010 0.384418
\(112\) 4.88222 0.461326
\(113\) 3.60698 + 6.24747i 0.339316 + 0.587712i 0.984304 0.176480i \(-0.0564711\pi\)
−0.644988 + 0.764192i \(0.723138\pi\)
\(114\) 1.69092 2.92876i 0.158369 0.274303i
\(115\) 6.02202 0.561557
\(116\) −3.74459 + 6.48582i −0.347676 + 0.602193i
\(117\) 1.50000 2.59808i 0.138675 0.240192i
\(118\) −5.05893 −0.465713
\(119\) 15.5318 1.42380
\(120\) 1.24605 0.113749
\(121\) 1.67085 + 2.89400i 0.151896 + 0.263091i
\(122\) 3.81808 + 6.61311i 0.345673 + 0.598723i
\(123\) −2.10698 3.64939i −0.189980 0.329055i
\(124\) 4.28157 + 7.41590i 0.384496 + 0.665967i
\(125\) −10.5259 −0.941461
\(126\) 2.44111 4.22812i 0.217471 0.376671i
\(127\) 5.06083 + 8.76561i 0.449076 + 0.777822i 0.998326 0.0578359i \(-0.0184200\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.40644 7.63218i 0.387965 0.671976i
\(130\) −1.86908 + 3.23735i −0.163929 + 0.283934i
\(131\) 6.99378 + 12.1136i 0.611049 + 1.05837i 0.991064 + 0.133388i \(0.0425857\pi\)
−0.380014 + 0.924981i \(0.624081\pi\)
\(132\) −2.76736 −0.240868
\(133\) 8.25543 + 14.2988i 0.715837 + 1.23987i
\(134\) −4.40039 7.62169i −0.380136 0.658414i
\(135\) 0.623027 1.07912i 0.0536217 0.0928754i
\(136\) −3.18130 −0.272794
\(137\) −4.46387 7.73164i −0.381374 0.660559i 0.609885 0.792490i \(-0.291216\pi\)
−0.991259 + 0.131931i \(0.957882\pi\)
\(138\) −2.41644 + 4.18539i −0.205701 + 0.356284i
\(139\) −9.00782 15.6020i −0.764033 1.32334i −0.940756 0.339084i \(-0.889883\pi\)
0.176723 0.984261i \(-0.443450\pi\)
\(140\) −3.04175 + 5.26847i −0.257075 + 0.445267i
\(141\) 10.3953 0.875438
\(142\) −0.203212 0.351974i −0.0170532 0.0295370i
\(143\) 4.15104 7.18982i 0.347128 0.601243i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −4.66596 8.08168i −0.387487 0.671147i
\(146\) 6.67525 11.5619i 0.552447 0.956867i
\(147\) 8.41801 + 14.5804i 0.694306 + 1.20257i
\(148\) 2.02505 3.50749i 0.166458 0.288314i
\(149\) −4.71183 + 8.16114i −0.386009 + 0.668586i −0.991909 0.126954i \(-0.959480\pi\)
0.605900 + 0.795541i \(0.292813\pi\)
\(150\) 1.72367 2.98549i 0.140737 0.243764i
\(151\) −6.15334 + 10.6579i −0.500751 + 0.867327i 0.499248 + 0.866459i \(0.333610\pi\)
−1.00000 0.000867766i \(0.999724\pi\)
\(152\) −1.69092 2.92876i −0.137152 0.237554i
\(153\) −1.59065 + 2.75509i −0.128596 + 0.222736i
\(154\) 6.75543 11.7008i 0.544368 0.942873i
\(155\) −10.6701 −0.857046
\(156\) −1.50000 2.59808i −0.120096 0.208013i
\(157\) 5.51207 0.439911 0.219956 0.975510i \(-0.429409\pi\)
0.219956 + 0.975510i \(0.429409\pi\)
\(158\) −3.20176 + 5.54561i −0.254719 + 0.441185i
\(159\) −8.48170 −0.672642
\(160\) 0.623027 1.07912i 0.0492546 0.0853115i
\(161\) −11.7976 20.4340i −0.929778 1.61042i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −6.41300 −0.502305 −0.251152 0.967948i \(-0.580810\pi\)
−0.251152 + 0.967948i \(0.580810\pi\)
\(164\) −4.21396 −0.329055
\(165\) 1.72414 2.98630i 0.134224 0.232483i
\(166\) 3.82066 6.61757i 0.296540 0.513623i
\(167\) 11.0406 0.854349 0.427175 0.904169i \(-0.359509\pi\)
0.427175 + 0.904169i \(0.359509\pi\)
\(168\) −2.44111 4.22812i −0.188336 0.326207i
\(169\) −4.00000 −0.307692
\(170\) 1.98204 3.43299i 0.152015 0.263298i
\(171\) −3.38184 −0.258616
\(172\) −4.40644 7.63218i −0.335988 0.581948i
\(173\) −1.70992 2.96167i −0.130003 0.225172i 0.793675 0.608343i \(-0.208165\pi\)
−0.923677 + 0.383171i \(0.874832\pi\)
\(174\) 7.48918 0.567753
\(175\) 8.41535 + 14.5758i 0.636140 + 1.10183i
\(176\) −1.38368 + 2.39661i −0.104299 + 0.180651i
\(177\) 2.52947 + 4.38117i 0.190126 + 0.329309i
\(178\) −5.53176 9.58129i −0.414623 0.718148i
\(179\) 7.74315 13.4115i 0.578750 1.00242i −0.416873 0.908965i \(-0.636874\pi\)
0.995623 0.0934595i \(-0.0297926\pi\)
\(180\) −0.623027 1.07912i −0.0464377 0.0804325i
\(181\) −7.97023 13.8049i −0.592423 1.02611i −0.993905 0.110240i \(-0.964838\pi\)
0.401482 0.915867i \(-0.368495\pi\)
\(182\) 14.6466 1.08568
\(183\) 3.81808 6.61311i 0.282241 0.488855i
\(184\) 2.41644 + 4.18539i 0.178142 + 0.308551i
\(185\) 2.52332 + 4.37052i 0.185518 + 0.321327i
\(186\) 4.28157 7.41590i 0.313940 0.543760i
\(187\) −4.40191 + 7.62433i −0.321899 + 0.557546i
\(188\) 5.19763 9.00256i 0.379076 0.656579i
\(189\) −4.88222 −0.355129
\(190\) 4.21396 0.305712
\(191\) −9.41194 −0.681024 −0.340512 0.940240i \(-0.610600\pi\)
−0.340512 + 0.940240i \(0.610600\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 23.9432 1.72347 0.861735 0.507358i \(-0.169378\pi\)
0.861735 + 0.507358i \(0.169378\pi\)
\(194\) −6.38892 + 11.0659i −0.458698 + 0.794488i
\(195\) 3.73816 0.267696
\(196\) 16.8360 1.20257
\(197\) 5.90311 0.420580 0.210290 0.977639i \(-0.432559\pi\)
0.210290 + 0.977639i \(0.432559\pi\)
\(198\) 1.38368 + 2.39661i 0.0983340 + 0.170319i
\(199\) 4.12432 + 7.14353i 0.292365 + 0.506392i 0.974369 0.224957i \(-0.0722243\pi\)
−0.682003 + 0.731349i \(0.738891\pi\)
\(200\) −1.72367 2.98549i −0.121882 0.211106i
\(201\) −4.40039 + 7.62169i −0.310379 + 0.537593i
\(202\) −2.18092 3.77747i −0.153449 0.265782i
\(203\) −18.2819 + 31.6652i −1.28314 + 2.22246i
\(204\) 1.59065 + 2.75509i 0.111368 + 0.192895i
\(205\) 2.62541 4.54734i 0.183367 0.317600i
\(206\) 16.8443 1.17360
\(207\) 4.83287 0.335908
\(208\) −3.00000 −0.208013
\(209\) −9.35877 −0.647360
\(210\) 6.08351 0.419802
\(211\) 2.82616 + 4.89506i 0.194561 + 0.336990i 0.946757 0.321950i \(-0.104338\pi\)
−0.752195 + 0.658940i \(0.771005\pi\)
\(212\) −4.24085 + 7.34536i −0.291263 + 0.504482i
\(213\) −0.203212 + 0.351974i −0.0139239 + 0.0241168i
\(214\) −3.59836 + 6.23253i −0.245979 + 0.426047i
\(215\) 10.9813 0.748921
\(216\) 1.00000 0.0680414
\(217\) 20.9035 + 36.2060i 1.41903 + 2.45782i
\(218\) 4.42315 7.66111i 0.299573 0.518876i
\(219\) −13.3505 −0.902143
\(220\) −1.72414 2.98630i −0.116242 0.201337i
\(221\) −9.54390 −0.641992
\(222\) −4.05010 −0.271825
\(223\) 12.5404 8.10792i 0.839767 0.542946i
\(224\) −4.88222 −0.326207
\(225\) −3.44735 −0.229823
\(226\) −3.60698 6.24747i −0.239933 0.415575i
\(227\) −8.40101 −0.557595 −0.278797 0.960350i \(-0.589936\pi\)
−0.278797 + 0.960350i \(0.589936\pi\)
\(228\) −1.69092 + 2.92876i −0.111984 + 0.193962i
\(229\) −8.44423 14.6258i −0.558010 0.966502i −0.997662 0.0683342i \(-0.978232\pi\)
0.439652 0.898168i \(-0.355102\pi\)
\(230\) −6.02202 −0.397080
\(231\) −13.5109 −0.888950
\(232\) 3.74459 6.48582i 0.245844 0.425815i
\(233\) 10.1970 17.6617i 0.668027 1.15706i −0.310428 0.950597i \(-0.600472\pi\)
0.978455 0.206460i \(-0.0661944\pi\)
\(234\) −1.50000 + 2.59808i −0.0980581 + 0.169842i
\(235\) 6.47653 + 11.2177i 0.422482 + 0.731761i
\(236\) 5.05893 0.329309
\(237\) 6.40352 0.415954
\(238\) −15.5318 −1.00678
\(239\) 11.6854 0.755863 0.377931 0.925834i \(-0.376636\pi\)
0.377931 + 0.925834i \(0.376636\pi\)
\(240\) −1.24605 −0.0804325
\(241\) 9.75564 16.8973i 0.628416 1.08845i −0.359454 0.933163i \(-0.617037\pi\)
0.987870 0.155286i \(-0.0496298\pi\)
\(242\) −1.67085 2.89400i −0.107406 0.186033i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −3.81808 6.61311i −0.244428 0.423361i
\(245\) −10.4893 + 18.1680i −0.670137 + 1.16071i
\(246\) 2.10698 + 3.64939i 0.134336 + 0.232677i
\(247\) −5.07276 8.78627i −0.322772 0.559057i
\(248\) −4.28157 7.41590i −0.271880 0.470910i
\(249\) −7.64131 −0.484248
\(250\) 10.5259 0.665714
\(251\) 11.2266 0.708616 0.354308 0.935129i \(-0.384716\pi\)
0.354308 + 0.935129i \(0.384716\pi\)
\(252\) −2.44111 + 4.22812i −0.153775 + 0.266347i
\(253\) 13.3743 0.840836
\(254\) −5.06083 8.76561i −0.317544 0.550003i
\(255\) −3.96407 −0.248240
\(256\) 1.00000 0.0625000
\(257\) −12.6258 −0.787573 −0.393787 0.919202i \(-0.628835\pi\)
−0.393787 + 0.919202i \(0.628835\pi\)
\(258\) −4.40644 + 7.63218i −0.274333 + 0.475159i
\(259\) 9.88673 17.1243i 0.614331 1.06405i
\(260\) 1.86908 3.23735i 0.115916 0.200772i
\(261\) −3.74459 6.48582i −0.231784 0.401462i
\(262\) −6.99378 12.1136i −0.432077 0.748380i
\(263\) −5.74019 + 9.94231i −0.353955 + 0.613069i −0.986939 0.161097i \(-0.948497\pi\)
0.632983 + 0.774166i \(0.281830\pi\)
\(264\) 2.76736 0.170319
\(265\) −5.28433 9.15273i −0.324614 0.562248i
\(266\) −8.25543 14.2988i −0.506173 0.876717i
\(267\) −5.53176 + 9.58129i −0.338538 + 0.586365i
\(268\) 4.40039 + 7.62169i 0.268796 + 0.465569i
\(269\) 3.07902 + 5.33302i 0.187731 + 0.325160i 0.944493 0.328530i \(-0.106553\pi\)
−0.756762 + 0.653690i \(0.773220\pi\)
\(270\) −0.623027 + 1.07912i −0.0379162 + 0.0656729i
\(271\) −2.19448 3.80094i −0.133305 0.230891i 0.791644 0.610983i \(-0.209226\pi\)
−0.924949 + 0.380092i \(0.875892\pi\)
\(272\) 3.18130 0.192895
\(273\) −7.32332 12.6844i −0.443228 0.767693i
\(274\) 4.46387 + 7.73164i 0.269672 + 0.467086i
\(275\) −9.54006 −0.575287
\(276\) 2.41644 4.18539i 0.145452 0.251931i
\(277\) 11.7233 0.704385 0.352193 0.935928i \(-0.385436\pi\)
0.352193 + 0.935928i \(0.385436\pi\)
\(278\) 9.00782 + 15.6020i 0.540253 + 0.935746i
\(279\) −8.56314 −0.512662
\(280\) 3.04175 5.26847i 0.181780 0.314851i
\(281\) 9.68346 16.7722i 0.577667 1.00055i −0.418080 0.908410i \(-0.637297\pi\)
0.995746 0.0921377i \(-0.0293700\pi\)
\(282\) −10.3953 −0.619028
\(283\) 8.42194 0.500632 0.250316 0.968164i \(-0.419465\pi\)
0.250316 + 0.968164i \(0.419465\pi\)
\(284\) 0.203212 + 0.351974i 0.0120584 + 0.0208858i
\(285\) −2.10698 3.64939i −0.124807 0.216171i
\(286\) −4.15104 + 7.18982i −0.245456 + 0.425143i
\(287\) −20.5734 −1.21441
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −6.87933 −0.404666
\(290\) 4.66596 + 8.08168i 0.273995 + 0.474573i
\(291\) 12.7778 0.749051
\(292\) −6.67525 + 11.5619i −0.390639 + 0.676607i
\(293\) 8.87537 15.3726i 0.518505 0.898077i −0.481264 0.876576i \(-0.659822\pi\)
0.999769 0.0215011i \(-0.00684453\pi\)
\(294\) −8.41801 14.5804i −0.490949 0.850348i
\(295\) −3.15186 + 5.45917i −0.183508 + 0.317845i
\(296\) −2.02505 + 3.50749i −0.117704 + 0.203869i
\(297\) 1.38368 2.39661i 0.0802893 0.139065i
\(298\) 4.71183 8.16114i 0.272949 0.472762i
\(299\) 7.24931 + 12.5562i 0.419238 + 0.726142i
\(300\) −1.72367 + 2.98549i −0.0995163 + 0.172367i
\(301\) −21.5132 37.2619i −1.24000 2.14774i
\(302\) 6.15334 10.6579i 0.354085 0.613293i
\(303\) −2.18092 + 3.77747i −0.125291 + 0.217010i
\(304\) 1.69092 + 2.92876i 0.0969809 + 0.167976i
\(305\) 9.51507 0.544832
\(306\) 1.59065 2.75509i 0.0909314 0.157498i
\(307\) 1.66585 + 2.88534i 0.0950753 + 0.164675i 0.909640 0.415397i \(-0.136357\pi\)
−0.814565 + 0.580073i \(0.803024\pi\)
\(308\) −6.75543 + 11.7008i −0.384926 + 0.666712i
\(309\) −8.42215 14.5876i −0.479119 0.829859i
\(310\) 10.6701 0.606023
\(311\) 12.5452 21.7288i 0.711370 1.23213i −0.252972 0.967473i \(-0.581408\pi\)
0.964343 0.264656i \(-0.0852585\pi\)
\(312\) 1.50000 + 2.59808i 0.0849208 + 0.147087i
\(313\) −9.37104 16.2311i −0.529682 0.917437i −0.999401 0.0346204i \(-0.988978\pi\)
0.469718 0.882816i \(-0.344356\pi\)
\(314\) −5.51207 −0.311064
\(315\) −3.04175 5.26847i −0.171383 0.296845i
\(316\) 3.20176 5.54561i 0.180113 0.311965i
\(317\) 6.60177 11.4346i 0.370792 0.642231i −0.618895 0.785474i \(-0.712419\pi\)
0.989688 + 0.143242i \(0.0457528\pi\)
\(318\) 8.48170 0.475630
\(319\) −10.3626 17.9486i −0.580196 1.00493i
\(320\) −0.623027 + 1.07912i −0.0348283 + 0.0603244i
\(321\) 7.19671 0.401681
\(322\) 11.7976 + 20.4340i 0.657452 + 1.13874i
\(323\) 5.37932 + 9.31726i 0.299313 + 0.518426i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −5.17102 8.95647i −0.286837 0.496816i
\(326\) 6.41300 0.355183
\(327\) −8.84629 −0.489201
\(328\) 4.21396 0.232677
\(329\) 25.3759 43.9524i 1.39902 2.42318i
\(330\) −1.72414 + 2.98630i −0.0949110 + 0.164391i
\(331\) 18.6644 1.02589 0.512945 0.858422i \(-0.328555\pi\)
0.512945 + 0.858422i \(0.328555\pi\)
\(332\) −3.82066 + 6.61757i −0.209686 + 0.363186i
\(333\) 2.02505 + 3.50749i 0.110972 + 0.192209i
\(334\) −11.0406 −0.604116
\(335\) −10.9662 −0.599150
\(336\) 2.44111 + 4.22812i 0.133173 + 0.230663i
\(337\) 10.5044 18.1942i 0.572213 0.991102i −0.424125 0.905604i \(-0.639418\pi\)
0.996338 0.0854988i \(-0.0272484\pi\)
\(338\) 4.00000 0.217571
\(339\) −3.60698 + 6.24747i −0.195904 + 0.339316i
\(340\) −1.98204 + 3.43299i −0.107491 + 0.186180i
\(341\) −23.6973 −1.28328
\(342\) 3.38184 0.182869
\(343\) 48.0216 2.59292
\(344\) 4.40644 + 7.63218i 0.237579 + 0.411499i
\(345\) 3.01101 + 5.21523i 0.162107 + 0.280778i
\(346\) 1.70992 + 2.96167i 0.0919259 + 0.159220i
\(347\) 2.85499 + 4.94499i 0.153264 + 0.265461i 0.932426 0.361362i \(-0.117688\pi\)
−0.779162 + 0.626823i \(0.784355\pi\)
\(348\) −7.48918 −0.401462
\(349\) −4.40103 + 7.62280i −0.235581 + 0.408039i −0.959442 0.281908i \(-0.909033\pi\)
0.723860 + 0.689947i \(0.242366\pi\)
\(350\) −8.41535 14.5758i −0.449819 0.779110i
\(351\) 3.00000 0.160128
\(352\) 1.38368 2.39661i 0.0737505 0.127740i
\(353\) 17.8038 30.8371i 0.947601 1.64129i 0.197145 0.980374i \(-0.436833\pi\)
0.750457 0.660919i \(-0.229834\pi\)
\(354\) −2.52947 4.38117i −0.134440 0.232856i
\(355\) −0.506427 −0.0268783
\(356\) 5.53176 + 9.58129i 0.293183 + 0.507807i
\(357\) 7.76590 + 13.4509i 0.411015 + 0.711899i
\(358\) −7.74315 + 13.4115i −0.409238 + 0.708821i
\(359\) −20.2968 −1.07122 −0.535612 0.844464i \(-0.679919\pi\)
−0.535612 + 0.844464i \(0.679919\pi\)
\(360\) 0.623027 + 1.07912i 0.0328364 + 0.0568744i
\(361\) 3.78159 6.54990i 0.199031 0.344731i
\(362\) 7.97023 + 13.8049i 0.418906 + 0.725567i
\(363\) −1.67085 + 2.89400i −0.0876969 + 0.151896i
\(364\) −14.6466 −0.767693
\(365\) −8.31772 14.4067i −0.435370 0.754082i
\(366\) −3.81808 + 6.61311i −0.199574 + 0.345673i
\(367\) −8.83865 + 15.3090i −0.461374 + 0.799123i −0.999030 0.0440413i \(-0.985977\pi\)
0.537656 + 0.843164i \(0.319310\pi\)
\(368\) −2.41644 4.18539i −0.125965 0.218179i
\(369\) 2.10698 3.64939i 0.109685 0.189980i
\(370\) −2.52332 4.37052i −0.131181 0.227213i
\(371\) −20.7047 + 35.8617i −1.07494 + 1.86184i
\(372\) −4.28157 + 7.41590i −0.221989 + 0.384496i
\(373\) 6.82214 11.8163i 0.353237 0.611825i −0.633577 0.773679i \(-0.718414\pi\)
0.986815 + 0.161855i \(0.0517476\pi\)
\(374\) 4.40191 7.62433i 0.227617 0.394245i
\(375\) −5.26293 9.11566i −0.271776 0.470731i
\(376\) −5.19763 + 9.00256i −0.268047 + 0.464271i
\(377\) 11.2338 19.4575i 0.578568 1.00211i
\(378\) 4.88222 0.251114
\(379\) 14.3484 + 24.8521i 0.737026 + 1.27657i 0.953829 + 0.300352i \(0.0971040\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(380\) −4.21396 −0.216171
\(381\) −5.06083 + 8.76561i −0.259274 + 0.449076i
\(382\) 9.41194 0.481557
\(383\) 10.8721 18.8310i 0.555537 0.962218i −0.442325 0.896855i \(-0.645846\pi\)
0.997862 0.0653630i \(-0.0208205\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −8.41764 14.5798i −0.429003 0.743054i
\(386\) −23.9432 −1.21868
\(387\) 8.81288 0.447984
\(388\) 6.38892 11.0659i 0.324349 0.561788i
\(389\) 16.9985 29.4422i 0.861856 1.49278i −0.00827900 0.999966i \(-0.502635\pi\)
0.870135 0.492813i \(-0.164031\pi\)
\(390\) −3.73816 −0.189289
\(391\) −7.68741 13.3150i −0.388769 0.673368i
\(392\) −16.8360 −0.850348
\(393\) −6.99378 + 12.1136i −0.352790 + 0.611049i
\(394\) −5.90311 −0.297395
\(395\) 3.98957 + 6.91014i 0.200737 + 0.347687i
\(396\) −1.38368 2.39661i −0.0695326 0.120434i
\(397\) 1.75896 0.0882795 0.0441397 0.999025i \(-0.485945\pi\)
0.0441397 + 0.999025i \(0.485945\pi\)
\(398\) −4.12432 7.14353i −0.206734 0.358073i
\(399\) −8.25543 + 14.2988i −0.413289 + 0.715837i
\(400\) 1.72367 + 2.98549i 0.0861837 + 0.149275i
\(401\) 15.5324 + 26.9029i 0.775651 + 1.34347i 0.934428 + 0.356152i \(0.115912\pi\)
−0.158777 + 0.987314i \(0.550755\pi\)
\(402\) 4.40039 7.62169i 0.219471 0.380136i
\(403\) −12.8447 22.2477i −0.639840 1.10824i
\(404\) 2.18092 + 3.77747i 0.108505 + 0.187936i
\(405\) 1.24605 0.0619170
\(406\) 18.2819 31.6652i 0.907315 1.57152i
\(407\) 5.60405 + 9.70649i 0.277782 + 0.481133i
\(408\) −1.59065 2.75509i −0.0787489 0.136397i
\(409\) −5.65041 + 9.78680i −0.279395 + 0.483926i −0.971234 0.238125i \(-0.923467\pi\)
0.691840 + 0.722051i \(0.256800\pi\)
\(410\) −2.62541 + 4.54734i −0.129660 + 0.224577i
\(411\) 4.46387 7.73164i 0.220186 0.381374i
\(412\) −16.8443 −0.829859
\(413\) 24.6988 1.21535
\(414\) −4.83287 −0.237523
\(415\) −4.76075 8.24585i −0.233696 0.404773i
\(416\) 3.00000 0.147087
\(417\) 9.00782 15.6020i 0.441115 0.764033i
\(418\) 9.35877 0.457753
\(419\) −19.0801 −0.932122 −0.466061 0.884753i \(-0.654327\pi\)
−0.466061 + 0.884753i \(0.654327\pi\)
\(420\) −6.08351 −0.296845
\(421\) −2.06701 3.58017i −0.100740 0.174487i 0.811250 0.584700i \(-0.198788\pi\)
−0.911990 + 0.410213i \(0.865454\pi\)
\(422\) −2.82616 4.89506i −0.137575 0.238288i
\(423\) 5.19763 + 9.00256i 0.252717 + 0.437719i
\(424\) 4.24085 7.34536i 0.205954 0.356722i
\(425\) 5.48352 + 9.49774i 0.265990 + 0.460708i
\(426\) 0.203212 0.351974i 0.00984566 0.0170532i
\(427\) −18.6407 32.2866i −0.902086 1.56246i
\(428\) 3.59836 6.23253i 0.173933 0.301261i
\(429\) 8.30209 0.400829
\(430\) −10.9813 −0.529567
\(431\) −7.28927 −0.351112 −0.175556 0.984469i \(-0.556172\pi\)
−0.175556 + 0.984469i \(0.556172\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −36.6254 −1.76011 −0.880053 0.474876i \(-0.842493\pi\)
−0.880053 + 0.474876i \(0.842493\pi\)
\(434\) −20.9035 36.2060i −1.00340 1.73794i
\(435\) 4.66596 8.08168i 0.223716 0.387487i
\(436\) −4.42315 + 7.66111i −0.211830 + 0.366901i
\(437\) 8.17200 14.1543i 0.390920 0.677093i
\(438\) 13.3505 0.637911
\(439\) 33.5039 1.59906 0.799528 0.600629i \(-0.205083\pi\)
0.799528 + 0.600629i \(0.205083\pi\)
\(440\) 1.72414 + 2.98630i 0.0821953 + 0.142366i
\(441\) −8.41801 + 14.5804i −0.400858 + 0.694306i
\(442\) 9.54390 0.453957
\(443\) −15.4109 26.6925i −0.732194 1.26820i −0.955943 0.293551i \(-0.905163\pi\)
0.223749 0.974647i \(-0.428170\pi\)
\(444\) 4.05010 0.192209
\(445\) −13.7857 −0.653507
\(446\) −12.5404 + 8.10792i −0.593805 + 0.383921i
\(447\) −9.42367 −0.445724
\(448\) 4.88222 0.230663
\(449\) 4.41598 + 7.64871i 0.208403 + 0.360965i 0.951212 0.308539i \(-0.0998401\pi\)
−0.742809 + 0.669504i \(0.766507\pi\)
\(450\) 3.44735 0.162510
\(451\) 5.83077 10.0992i 0.274560 0.475553i
\(452\) 3.60698 + 6.24747i 0.169658 + 0.293856i
\(453\) −12.3067 −0.578218
\(454\) 8.40101 0.394279
\(455\) 9.12526 15.8054i 0.427799 0.740969i
\(456\) 1.69092 2.92876i 0.0791845 0.137152i
\(457\) 14.6510 25.3762i 0.685343 1.18705i −0.287986 0.957635i \(-0.592986\pi\)
0.973329 0.229414i \(-0.0736809\pi\)
\(458\) 8.44423 + 14.6258i 0.394573 + 0.683420i
\(459\) −3.18130 −0.148490
\(460\) 6.02202 0.280778
\(461\) 38.0014 1.76990 0.884950 0.465685i \(-0.154192\pi\)
0.884950 + 0.465685i \(0.154192\pi\)
\(462\) 13.5109 0.628582
\(463\) −28.4100 −1.32033 −0.660163 0.751122i \(-0.729513\pi\)
−0.660163 + 0.751122i \(0.729513\pi\)
\(464\) −3.74459 + 6.48582i −0.173838 + 0.301097i
\(465\) −5.33507 9.24061i −0.247408 0.428523i
\(466\) −10.1970 + 17.6617i −0.472367 + 0.818163i
\(467\) 0.284899 + 0.493460i 0.0131836 + 0.0228346i 0.872542 0.488539i \(-0.162470\pi\)
−0.859358 + 0.511374i \(0.829137\pi\)
\(468\) 1.50000 2.59808i 0.0693375 0.120096i
\(469\) 21.4836 + 37.2107i 0.992022 + 1.71823i
\(470\) −6.47653 11.2177i −0.298740 0.517433i
\(471\) 2.75604 + 4.77359i 0.126991 + 0.219956i
\(472\) −5.05893 −0.232856
\(473\) 24.3884 1.12138
\(474\) −6.40352 −0.294124
\(475\) −5.82919 + 10.0964i −0.267461 + 0.463257i
\(476\) 15.5318 0.711899
\(477\) −4.24085 7.34536i −0.194175 0.336321i
\(478\) −11.6854 −0.534476
\(479\) −11.6056 −0.530274 −0.265137 0.964211i \(-0.585417\pi\)
−0.265137 + 0.964211i \(0.585417\pi\)
\(480\) 1.24605 0.0568744
\(481\) −6.07515 + 10.5225i −0.277003 + 0.479783i
\(482\) −9.75564 + 16.8973i −0.444357 + 0.769649i
\(483\) 11.7976 20.4340i 0.536808 0.929778i
\(484\) 1.67085 + 2.89400i 0.0759478 + 0.131545i
\(485\) 7.96095 + 13.7888i 0.361488 + 0.626116i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −14.7108 −0.666612 −0.333306 0.942819i \(-0.608164\pi\)
−0.333306 + 0.942819i \(0.608164\pi\)
\(488\) 3.81808 + 6.61311i 0.172836 + 0.299361i
\(489\) −3.20650 5.55382i −0.145003 0.251152i
\(490\) 10.4893 18.1680i 0.473859 0.820747i
\(491\) −9.29629 16.1016i −0.419535 0.726657i 0.576357 0.817198i \(-0.304474\pi\)
−0.995893 + 0.0905411i \(0.971140\pi\)
\(492\) −2.10698 3.64939i −0.0949899 0.164527i
\(493\) −11.9127 + 20.6333i −0.536519 + 0.929279i
\(494\) 5.07276 + 8.78627i 0.228234 + 0.395313i
\(495\) 3.44829 0.154989
\(496\) 4.28157 + 7.41590i 0.192248 + 0.332984i
\(497\) 0.992125 + 1.71841i 0.0445029 + 0.0770813i
\(498\) 7.64131 0.342415
\(499\) −16.8916 + 29.2571i −0.756171 + 1.30973i 0.188619 + 0.982050i \(0.439599\pi\)
−0.944790 + 0.327676i \(0.893735\pi\)
\(500\) −10.5259 −0.470731
\(501\) 5.52031 + 9.56146i 0.246629 + 0.427175i
\(502\) −11.2266 −0.501067
\(503\) 16.2272 28.1064i 0.723536 1.25320i −0.236037 0.971744i \(-0.575849\pi\)
0.959574 0.281458i \(-0.0908180\pi\)
\(504\) 2.44111 4.22812i 0.108736 0.188336i
\(505\) −5.43510 −0.241859
\(506\) −13.3743 −0.594561
\(507\) −2.00000 3.46410i −0.0888231 0.153846i
\(508\) 5.06083 + 8.76561i 0.224538 + 0.388911i
\(509\) 18.1935 31.5121i 0.806413 1.39675i −0.108921 0.994050i \(-0.534739\pi\)
0.915333 0.402697i \(-0.131927\pi\)
\(510\) 3.96407 0.175532
\(511\) −32.5900 + 56.4475i −1.44170 + 2.49709i
\(512\) −1.00000 −0.0441942
\(513\) −1.69092 2.92876i −0.0746559 0.129308i
\(514\) 12.6258 0.556898
\(515\) 10.4945 18.1769i 0.462441 0.800971i
\(516\) 4.40644 7.63218i 0.193983 0.335988i
\(517\) 14.3837 + 24.9133i 0.632595 + 1.09569i
\(518\) −9.88673 + 17.1243i −0.434398 + 0.752399i
\(519\) 1.70992 2.96167i 0.0750572 0.130003i
\(520\) −1.86908 + 3.23735i −0.0819647 + 0.141967i
\(521\) −9.10685 + 15.7735i −0.398978 + 0.691050i −0.993600 0.112955i \(-0.963968\pi\)
0.594622 + 0.804005i \(0.297302\pi\)
\(522\) 3.74459 + 6.48582i 0.163896 + 0.283877i
\(523\) −16.1248 + 27.9290i −0.705090 + 1.22125i 0.261570 + 0.965185i \(0.415760\pi\)
−0.966659 + 0.256066i \(0.917573\pi\)
\(524\) 6.99378 + 12.1136i 0.305525 + 0.529184i
\(525\) −8.41535 + 14.5758i −0.367276 + 0.636140i
\(526\) 5.74019 9.94231i 0.250284 0.433505i
\(527\) 13.6210 + 23.5922i 0.593338 + 1.02769i
\(528\) −2.76736 −0.120434
\(529\) −0.178327 + 0.308872i −0.00775336 + 0.0134292i
\(530\) 5.28433 + 9.15273i 0.229537 + 0.397569i
\(531\) −2.52947 + 4.38117i −0.109770 + 0.190126i
\(532\) 8.25543 + 14.2988i 0.357918 + 0.619933i
\(533\) 12.6419 0.547580
\(534\) 5.53176 9.58129i 0.239383 0.414623i
\(535\) 4.48375 + 7.76608i 0.193849 + 0.335757i
\(536\) −4.40039 7.62169i −0.190068 0.329207i
\(537\) 15.4863 0.668283
\(538\) −3.07902 5.33302i −0.132746 0.229923i
\(539\) −23.2957 + 40.3493i −1.00342 + 1.73797i
\(540\) 0.623027 1.07912i 0.0268108 0.0464377i
\(541\) −28.1647 −1.21089 −0.605447 0.795886i \(-0.707006\pi\)
−0.605447 + 0.795886i \(0.707006\pi\)
\(542\) 2.19448 + 3.80094i 0.0942608 + 0.163264i
\(543\) 7.97023 13.8049i 0.342035 0.592423i
\(544\) −3.18130 −0.136397
\(545\) −5.51148 9.54617i −0.236086 0.408913i
\(546\) 7.32332 + 12.6844i 0.313409 + 0.542841i
\(547\) 10.4734 + 18.1405i 0.447810 + 0.775630i 0.998243 0.0592490i \(-0.0188706\pi\)
−0.550433 + 0.834879i \(0.685537\pi\)
\(548\) −4.46387 7.73164i −0.190687 0.330279i
\(549\) 7.63616 0.325903
\(550\) 9.54006 0.406790
\(551\) −25.3272 −1.07897
\(552\) −2.41644 + 4.18539i −0.102850 + 0.178142i
\(553\) 15.6317 27.0749i 0.664727 1.15134i
\(554\) −11.7233 −0.498076
\(555\) −2.52332 + 4.37052i −0.107109 + 0.185518i
\(556\) −9.00782 15.6020i −0.382017 0.661672i
\(557\) −7.17929 −0.304196 −0.152098 0.988365i \(-0.548603\pi\)
−0.152098 + 0.988365i \(0.548603\pi\)
\(558\) 8.56314 0.362507
\(559\) 13.2193 + 22.8965i 0.559118 + 0.968420i
\(560\) −3.04175 + 5.26847i −0.128538 + 0.222634i
\(561\) −8.80381 −0.371697
\(562\) −9.68346 + 16.7722i −0.408472 + 0.707494i
\(563\) −6.72175 + 11.6424i −0.283288 + 0.490669i −0.972193 0.234183i \(-0.924759\pi\)
0.688904 + 0.724852i \(0.258092\pi\)
\(564\) 10.3953 0.437719
\(565\) −8.98898 −0.378169
\(566\) −8.42194 −0.354001
\(567\) −2.44111 4.22812i −0.102517 0.177564i
\(568\) −0.203212 0.351974i −0.00852659 0.0147685i
\(569\) 5.23889 + 9.07402i 0.219626 + 0.380403i 0.954694 0.297591i \(-0.0961831\pi\)
−0.735068 + 0.677994i \(0.762850\pi\)
\(570\) 2.10698 + 3.64939i 0.0882516 + 0.152856i
\(571\) −12.4930 −0.522816 −0.261408 0.965228i \(-0.584187\pi\)
−0.261408 + 0.965228i \(0.584187\pi\)
\(572\) 4.15104 7.18982i 0.173564 0.300621i
\(573\) −4.70597 8.15098i −0.196595 0.340512i
\(574\) 20.5734 0.858719
\(575\) 8.33029 14.4285i 0.347397 0.601710i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 0.0735342 + 0.127365i 0.00306127 + 0.00530227i 0.867552 0.497347i \(-0.165692\pi\)
−0.864491 + 0.502649i \(0.832359\pi\)
\(578\) 6.87933 0.286142
\(579\) 11.9716 + 20.7354i 0.497523 + 0.861735i
\(580\) −4.66596 8.08168i −0.193744 0.335574i
\(581\) −18.6533 + 32.3084i −0.773868 + 1.34038i
\(582\) −12.7778 −0.529659
\(583\) −11.7360 20.3273i −0.486054 0.841870i
\(584\) 6.67525 11.5619i 0.276224 0.478433i
\(585\) 1.86908 + 3.23735i 0.0772770 + 0.133848i
\(586\) −8.87537 + 15.3726i −0.366638 + 0.635036i
\(587\) 35.1185 1.44950 0.724748 0.689014i \(-0.241956\pi\)
0.724748 + 0.689014i \(0.241956\pi\)
\(588\) 8.41801 + 14.5804i 0.347153 + 0.601287i
\(589\) −14.4796 + 25.0794i −0.596620 + 1.03338i
\(590\) 3.15186 5.45917i 0.129760 0.224751i
\(591\) 2.95156 + 5.11225i 0.121411 + 0.210290i
\(592\) 2.02505 3.50749i 0.0832290 0.144157i
\(593\) 11.3424 + 19.6457i 0.465778 + 0.806752i 0.999236 0.0390749i \(-0.0124411\pi\)
−0.533458 + 0.845827i \(0.679108\pi\)
\(594\) −1.38368 + 2.39661i −0.0567731 + 0.0983340i
\(595\) −9.67673 + 16.7606i −0.396707 + 0.687117i
\(596\) −4.71183 + 8.16114i −0.193004 + 0.334293i
\(597\) −4.12432 + 7.14353i −0.168797 + 0.292365i
\(598\) −7.24931 12.5562i −0.296446 0.513460i
\(599\) 0.675004 1.16914i 0.0275799 0.0477698i −0.851906 0.523695i \(-0.824553\pi\)
0.879486 + 0.475925i \(0.157887\pi\)
\(600\) 1.72367 2.98549i 0.0703687 0.121882i
\(601\) −19.0899 −0.778694 −0.389347 0.921091i \(-0.627299\pi\)
−0.389347 + 0.921091i \(0.627299\pi\)
\(602\) 21.5132 + 37.2619i 0.876812 + 1.51868i
\(603\) −8.80077 −0.358395
\(604\) −6.15334 + 10.6579i −0.250376 + 0.433663i
\(605\) −4.16394 −0.169288
\(606\) 2.18092 3.77747i 0.0885939 0.153449i
\(607\) 14.1640 + 24.5327i 0.574897 + 0.995751i 0.996053 + 0.0887628i \(0.0282913\pi\)
−0.421156 + 0.906988i \(0.638375\pi\)
\(608\) −1.69092 2.92876i −0.0685758 0.118777i
\(609\) −36.5638 −1.48164
\(610\) −9.51507 −0.385254
\(611\) −15.5929 + 27.0077i −0.630821 + 1.09261i
\(612\) −1.59065 + 2.75509i −0.0642982 + 0.111368i
\(613\) −21.3895 −0.863913 −0.431956 0.901895i \(-0.642177\pi\)
−0.431956 + 0.901895i \(0.642177\pi\)
\(614\) −1.66585 2.88534i −0.0672284 0.116443i
\(615\) 5.25082 0.211733
\(616\) 6.75543 11.7008i 0.272184 0.471437i
\(617\) −44.0231 −1.77230 −0.886152 0.463394i \(-0.846631\pi\)
−0.886152 + 0.463394i \(0.846631\pi\)
\(618\) 8.42215 + 14.5876i 0.338788 + 0.586799i
\(619\) 19.9515 + 34.5570i 0.801917 + 1.38896i 0.918353 + 0.395763i \(0.129520\pi\)
−0.116435 + 0.993198i \(0.537147\pi\)
\(620\) −10.6701 −0.428523
\(621\) 2.41644 + 4.18539i 0.0969682 + 0.167954i
\(622\) −12.5452 + 21.7288i −0.503015 + 0.871247i
\(623\) 27.0072 + 46.7779i 1.08202 + 1.87412i
\(624\) −1.50000 2.59808i −0.0600481 0.104006i
\(625\) −2.06047 + 3.56884i −0.0824188 + 0.142754i
\(626\) 9.37104 + 16.2311i 0.374542 + 0.648726i
\(627\) −4.67939 8.10494i −0.186877 0.323680i
\(628\) 5.51207 0.219956
\(629\) 6.44229 11.1584i 0.256871 0.444913i
\(630\) 3.04175 + 5.26847i 0.121186 + 0.209901i
\(631\) −10.7072 18.5455i −0.426249 0.738285i 0.570287 0.821445i \(-0.306832\pi\)
−0.996536 + 0.0831607i \(0.973499\pi\)
\(632\) −3.20176 + 5.54561i −0.127359 + 0.220593i
\(633\) −2.82616 + 4.89506i −0.112330 + 0.194561i
\(634\) −6.60177 + 11.4346i −0.262190 + 0.454126i
\(635\) −12.6121 −0.500497
\(636\) −8.48170 −0.336321
\(637\) −50.5081 −2.00120
\(638\) 10.3626 + 17.9486i 0.410261 + 0.710592i
\(639\) −0.406424 −0.0160779
\(640\) 0.623027 1.07912i 0.0246273 0.0426558i
\(641\) 45.4557 1.79539 0.897697 0.440614i \(-0.145239\pi\)
0.897697 + 0.440614i \(0.145239\pi\)
\(642\) −7.19671 −0.284032
\(643\) 5.14357 0.202843 0.101421 0.994844i \(-0.467661\pi\)
0.101421 + 0.994844i \(0.467661\pi\)
\(644\) −11.7976 20.4340i −0.464889 0.805212i
\(645\) 5.49067 + 9.51011i 0.216195 + 0.374460i
\(646\) −5.37932 9.31726i −0.211647 0.366583i
\(647\) 9.41281 16.3035i 0.370056 0.640956i −0.619518 0.784983i \(-0.712672\pi\)
0.989574 + 0.144027i \(0.0460052\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) −6.99995 + 12.1243i −0.274772 + 0.475920i
\(650\) 5.17102 + 8.95647i 0.202824 + 0.351302i
\(651\) −20.9035 + 36.2060i −0.819275 + 1.41903i
\(652\) −6.41300 −0.251152
\(653\) 42.9359 1.68021 0.840106 0.542423i \(-0.182493\pi\)
0.840106 + 0.542423i \(0.182493\pi\)
\(654\) 8.84629 0.345917
\(655\) −17.4293 −0.681018
\(656\) −4.21396 −0.164527
\(657\) −6.67525 11.5619i −0.260426 0.451071i
\(658\) −25.3759 + 43.9524i −0.989257 + 1.71344i
\(659\) 19.8904 34.4513i 0.774822 1.34203i −0.160073 0.987105i \(-0.551173\pi\)
0.934895 0.354926i \(-0.115494\pi\)
\(660\) 1.72414 2.98630i 0.0671122 0.116242i
\(661\) 0.821365 0.0319474 0.0159737 0.999872i \(-0.494915\pi\)
0.0159737 + 0.999872i \(0.494915\pi\)
\(662\) −18.6644 −0.725413
\(663\) −4.77195 8.26526i −0.185327 0.320996i
\(664\) 3.82066 6.61757i 0.148270 0.256811i
\(665\) −20.5734 −0.797804
\(666\) −2.02505 3.50749i −0.0784691 0.135912i
\(667\) 36.1942 1.40145
\(668\) 11.0406 0.427175
\(669\) 13.2919 + 6.80635i 0.513893 + 0.263149i
\(670\) 10.9662 0.423663
\(671\) 21.1320 0.815793
\(672\) −2.44111 4.22812i −0.0941678 0.163103i
\(673\) 33.1305 1.27709 0.638543 0.769586i \(-0.279538\pi\)
0.638543 + 0.769586i \(0.279538\pi\)
\(674\) −10.5044 + 18.1942i −0.404616 + 0.700815i
\(675\) −1.72367 2.98549i −0.0663442 0.114912i
\(676\) −4.00000 −0.153846
\(677\) −11.5084 −0.442306 −0.221153 0.975239i \(-0.570982\pi\)
−0.221153 + 0.975239i \(0.570982\pi\)
\(678\) 3.60698 6.24747i 0.138525 0.239933i
\(679\) 31.1921 54.0263i 1.19704 2.07334i
\(680\) 1.98204 3.43299i 0.0760077 0.131649i
\(681\) −4.20050 7.27549i −0.160964 0.278797i
\(682\) 23.6973 0.907417
\(683\) 26.7142 1.02219 0.511095 0.859524i \(-0.329240\pi\)
0.511095 + 0.859524i \(0.329240\pi\)
\(684\) −3.38184 −0.129308
\(685\) 11.1244 0.425043
\(686\) −48.0216 −1.83347
\(687\) 8.44423 14.6258i 0.322167 0.558010i
\(688\) −4.40644 7.63218i −0.167994 0.290974i
\(689\) 12.7225 22.0361i 0.484690 0.839508i
\(690\) −3.01101 5.21523i −0.114627 0.198540i
\(691\) 18.3257 31.7410i 0.697142 1.20749i −0.272311 0.962209i \(-0.587788\pi\)
0.969453 0.245277i \(-0.0788788\pi\)
\(692\) −1.70992 2.96167i −0.0650014 0.112586i
\(693\) −6.75543 11.7008i −0.256618 0.444475i
\(694\) −2.85499 4.94499i −0.108374 0.187709i
\(695\) 22.4485 0.851519
\(696\) 7.48918 0.283877
\(697\) −13.4059 −0.507783
\(698\) 4.40103 7.62280i 0.166581 0.288527i
\(699\) 20.3940 0.771371
\(700\) 8.41535 + 14.5758i 0.318070 + 0.550914i
\(701\) −36.6709 −1.38504 −0.692520 0.721399i \(-0.743499\pi\)
−0.692520 + 0.721399i \(0.743499\pi\)
\(702\) −3.00000 −0.113228
\(703\) 13.6968 0.516584
\(704\) −1.38368 + 2.39661i −0.0521495 + 0.0903255i
\(705\) −6.47653 + 11.2177i −0.243920 + 0.422482i
\(706\) −17.8038 + 30.8371i −0.670055 + 1.16057i
\(707\) 10.6477 + 18.4424i 0.400449 + 0.693599i
\(708\) 2.52947 + 4.38117i 0.0950632 + 0.164654i
\(709\) 21.8465 37.8392i 0.820462 1.42108i −0.0848765 0.996391i \(-0.527050\pi\)
0.905339 0.424691i \(-0.139617\pi\)
\(710\) 0.506427 0.0190059
\(711\) 3.20176 + 5.54561i 0.120075 + 0.207977i
\(712\) −5.53176 9.58129i −0.207311 0.359074i
\(713\) 20.6923 35.8401i 0.774932 1.34222i
\(714\) −7.76590 13.4509i −0.290631 0.503388i
\(715\) 5.17243 + 8.95891i 0.193438 + 0.335044i
\(716\) 7.74315 13.4115i 0.289375 0.501212i
\(717\) 5.84268 + 10.1198i 0.218199 + 0.377931i
\(718\) 20.2968 0.757470
\(719\) 16.0347 + 27.7728i 0.597992 + 1.03575i 0.993117 + 0.117125i \(0.0373678\pi\)
−0.395125 + 0.918627i \(0.629299\pi\)
\(720\) −0.623027 1.07912i −0.0232189 0.0402162i
\(721\) −82.2375 −3.06268
\(722\) −3.78159 + 6.54990i −0.140736 + 0.243762i
\(723\) 19.5113 0.725632
\(724\) −7.97023 13.8049i −0.296211 0.513053i
\(725\) −25.8178 −0.958849
\(726\) 1.67085 2.89400i 0.0620111 0.107406i
\(727\) −13.9384 + 24.1421i −0.516947 + 0.895379i 0.482859 + 0.875698i \(0.339598\pi\)
−0.999806 + 0.0196810i \(0.993735\pi\)
\(728\) 14.6466 0.542841
\(729\) 1.00000 0.0370370
\(730\) 8.31772 + 14.4067i 0.307853 + 0.533217i
\(731\) −14.0182 24.2803i −0.518482 0.898038i
\(732\) 3.81808 6.61311i 0.141120 0.244428i
\(733\) 17.4517 0.644595 0.322297 0.946638i \(-0.395545\pi\)
0.322297 + 0.946638i \(0.395545\pi\)
\(734\) 8.83865 15.3090i 0.326241 0.565065i
\(735\) −20.9786 −0.773808
\(736\) 2.41644 + 4.18539i 0.0890710 + 0.154276i
\(737\) −24.3549 −0.897126
\(738\) −2.10698 + 3.64939i −0.0775589 + 0.134336i
\(739\) 5.98056 10.3586i 0.219998 0.381048i −0.734809 0.678274i \(-0.762728\pi\)
0.954807 + 0.297226i \(0.0960615\pi\)
\(740\) 2.52332 + 4.37052i 0.0927592 + 0.160664i
\(741\) 5.07276 8.78627i 0.186352 0.322772i
\(742\) 20.7047 35.8617i 0.760095 1.31652i
\(743\) −9.24199 + 16.0076i −0.339056 + 0.587262i −0.984255 0.176752i \(-0.943441\pi\)
0.645200 + 0.764014i \(0.276774\pi\)
\(744\) 4.28157 7.41590i 0.156970 0.271880i
\(745\) −5.87120 10.1692i −0.215104 0.372572i
\(746\) −6.82214 + 11.8163i −0.249776 + 0.432625i
\(747\) −3.82066 6.61757i −0.139790 0.242124i
\(748\) −4.40191 + 7.62433i −0.160950 + 0.278773i
\(749\) 17.5679 30.4286i 0.641919 1.11184i
\(750\) 5.26293 + 9.11566i 0.192175 + 0.332857i
\(751\) −19.0018 −0.693387 −0.346694 0.937978i \(-0.612696\pi\)
−0.346694 + 0.937978i \(0.612696\pi\)
\(752\) 5.19763 9.00256i 0.189538 0.328289i
\(753\) 5.61329 + 9.72251i 0.204560 + 0.354308i
\(754\) −11.2338 + 19.4575i −0.409110 + 0.708599i
\(755\) −7.66739 13.2803i −0.279045 0.483320i
\(756\) −4.88222 −0.177564
\(757\) −5.26647 + 9.12179i −0.191413 + 0.331537i −0.945719 0.324986i \(-0.894640\pi\)
0.754306 + 0.656523i \(0.227974\pi\)
\(758\) −14.3484 24.8521i −0.521156 0.902669i
\(759\) 6.68716 + 11.5825i 0.242728 + 0.420418i
\(760\) 4.21396 0.152856
\(761\) 20.6953 + 35.8453i 0.750203 + 1.29939i 0.947724 + 0.319091i \(0.103378\pi\)
−0.197521 + 0.980299i \(0.563289\pi\)
\(762\) 5.06083 8.76561i 0.183334 0.317544i
\(763\) −21.5947 + 37.4032i −0.781782 + 1.35409i
\(764\) −9.41194 −0.340512
\(765\) −1.98204 3.43299i −0.0716607 0.124120i
\(766\) −10.8721 + 18.8310i −0.392824 + 0.680391i
\(767\) −15.1768 −0.548003
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −11.5466 19.9993i −0.416382 0.721195i 0.579190 0.815192i \(-0.303369\pi\)
−0.995572 + 0.0939975i \(0.970035\pi\)
\(770\) 8.41764 + 14.5798i 0.303351 + 0.525419i
\(771\) −6.31288 10.9342i −0.227353 0.393787i
\(772\) 23.9432 0.861735
\(773\) 13.6231 0.489989 0.244995 0.969524i \(-0.421214\pi\)
0.244995 + 0.969524i \(0.421214\pi\)
\(774\) −8.81288 −0.316772
\(775\) −14.7601 + 25.5652i −0.530197 + 0.918328i
\(776\) −6.38892 + 11.0659i −0.229349 + 0.397244i
\(777\) 19.7735 0.709369
\(778\) −16.9985 + 29.4422i −0.609424 + 1.05555i
\(779\) −7.12546 12.3417i −0.255296 0.442186i
\(780\) 3.73816 0.133848
\(781\) −1.12472 −0.0402458
\(782\) 7.68741 + 13.3150i 0.274901 + 0.476143i
\(783\) 3.74459 6.48582i 0.133821 0.231784i
\(784\) 16.8360 0.601287
\(785\) −3.43417 + 5.94816i −0.122571 + 0.212299i
\(786\) 6.99378 12.1136i 0.249460 0.432077i
\(787\) 15.0414 0.536168 0.268084 0.963395i \(-0.413609\pi\)
0.268084 + 0.963395i \(0.413609\pi\)
\(788\) 5.90311 0.210290
\(789\) −11.4804 −0.408713
\(790\) −3.98957 6.91014i −0.141943 0.245852i
\(791\) 17.6100 + 30.5015i 0.626141 + 1.08451i
\(792\) 1.38368 + 2.39661i 0.0491670 + 0.0851597i
\(793\) 11.4542 + 19.8393i 0.406752 + 0.704515i
\(794\) −1.75896 −0.0624230
\(795\) 5.28433 9.15273i 0.187416 0.324614i
\(796\) 4.12432 + 7.14353i 0.146183 + 0.253196i
\(797\) 28.4692 1.00843 0.504216 0.863578i \(-0.331782\pi\)
0.504216 + 0.863578i \(0.331782\pi\)
\(798\) 8.25543 14.2988i 0.292239 0.506173i
\(799\) 16.5352 28.6398i 0.584974 1.01320i
\(800\) −1.72367 2.98549i −0.0609411 0.105553i
\(801\) −11.0635 −0.390910
\(802\) −15.5324 26.9029i −0.548468 0.949974i
\(803\) −18.4728 31.9959i −0.651892 1.12911i
\(804\) −4.40039 + 7.62169i −0.155190 + 0.268796i
\(805\) 29.4008 1.03624
\(806\) 12.8447 + 22.2477i 0.452436 + 0.783641i
\(807\) −3.07902 + 5.33302i −0.108387 + 0.187731i
\(808\) −2.18092 3.77747i −0.0767246 0.132891i
\(809\) −15.1895 + 26.3090i −0.534035 + 0.924976i 0.465174 + 0.885219i \(0.345992\pi\)
−0.999209 + 0.0397572i \(0.987342\pi\)
\(810\) −1.24605 −0.0437819
\(811\) −9.05881 15.6903i −0.318098 0.550962i 0.661993 0.749510i \(-0.269711\pi\)
−0.980091 + 0.198548i \(0.936377\pi\)
\(812\) −18.2819 + 31.6652i −0.641569 + 1.11123i
\(813\) 2.19448 3.80094i 0.0769636 0.133305i
\(814\) −5.60405 9.70649i −0.196422 0.340212i
\(815\) 3.99547 6.92036i 0.139955 0.242410i
\(816\) 1.59065 + 2.75509i 0.0556839 + 0.0964473i
\(817\) 14.9019 25.8108i 0.521350 0.903005i
\(818\) 5.65041 9.78680i 0.197562 0.342187i
\(819\) 7.32332 12.6844i 0.255898 0.443228i
\(820\) 2.62541 4.54734i 0.0916833 0.158800i
\(821\) −25.7731 44.6404i −0.899489 1.55796i −0.828149 0.560508i \(-0.810606\pi\)
−0.0713396 0.997452i \(-0.522727\pi\)
\(822\) −4.46387 + 7.73164i −0.155695 + 0.269672i
\(823\) 21.9021 37.9356i 0.763461 1.32235i −0.177596 0.984104i \(-0.556832\pi\)
0.941056 0.338250i \(-0.109835\pi\)
\(824\) 16.8443 0.586799
\(825\) −4.77003 8.26194i −0.166071 0.287644i
\(826\) −24.6988 −0.859382
\(827\) −4.79109 + 8.29842i −0.166603 + 0.288564i −0.937223 0.348730i \(-0.886613\pi\)
0.770621 + 0.637294i \(0.219946\pi\)
\(828\) 4.83287 0.167954
\(829\) 2.58676 4.48040i 0.0898419 0.155611i −0.817602 0.575783i \(-0.804697\pi\)
0.907444 + 0.420173i \(0.138031\pi\)
\(830\) 4.76075 + 8.24585i 0.165248 + 0.286218i
\(831\) 5.86165 + 10.1527i 0.203339 + 0.352193i
\(832\) −3.00000 −0.104006
\(833\) 53.5605 1.85576
\(834\) −9.00782 + 15.6020i −0.311915 + 0.540253i
\(835\) −6.87861 + 11.9141i −0.238044 + 0.412305i
\(836\) −9.35877 −0.323680
\(837\) −4.28157 7.41590i −0.147993 0.256331i
\(838\) 19.0801 0.659109
\(839\) −10.0471 + 17.4021i −0.346865 + 0.600788i −0.985691 0.168563i \(-0.946087\pi\)
0.638825 + 0.769352i \(0.279421\pi\)
\(840\) 6.08351 0.209901
\(841\) −13.5439 23.4587i −0.467031 0.808921i
\(842\) 2.06701 + 3.58017i 0.0712339 + 0.123381i
\(843\) 19.3669 0.667032
\(844\) 2.82616 + 4.89506i 0.0972806 + 0.168495i
\(845\) 2.49211 4.31646i 0.0857312 0.148491i
\(846\) −5.19763 9.00256i −0.178698 0.309514i
\(847\) 8.15745 + 14.1291i 0.280293 + 0.485482i
\(848\) −4.24085 + 7.34536i −0.145631 + 0.252241i
\(849\) 4.21097 + 7.29361i 0.144520 + 0.250316i
\(850\) −5.48352 9.49774i −0.188083 0.325770i
\(851\) −19.5736 −0.670975
\(852\) −0.203212 + 0.351974i −0.00696193 + 0.0120584i
\(853\) −15.7336 27.2513i −0.538707 0.933068i −0.998974 0.0452876i \(-0.985580\pi\)
0.460267 0.887781i \(-0.347754\pi\)
\(854\) 18.6407 + 32.2866i 0.637871 + 1.10483i
\(855\) 2.10698 3.64939i 0.0720571 0.124807i
\(856\) −3.59836 + 6.23253i −0.122989 + 0.213024i
\(857\) −6.39355 + 11.0740i −0.218400 + 0.378279i −0.954319 0.298790i \(-0.903417\pi\)
0.735919 + 0.677069i \(0.236750\pi\)
\(858\) −8.30209 −0.283429
\(859\) −37.5587 −1.28148 −0.640742 0.767756i \(-0.721373\pi\)
−0.640742 + 0.767756i \(0.721373\pi\)
\(860\) 10.9813 0.374460
\(861\) −10.2867 17.8171i −0.350570 0.607206i
\(862\) 7.28927 0.248274
\(863\) −12.5577 + 21.7506i −0.427469 + 0.740398i −0.996647 0.0818162i \(-0.973928\pi\)
0.569179 + 0.822214i \(0.307261\pi\)
\(864\) 1.00000 0.0340207
\(865\) 4.26131 0.144889
\(866\) 36.6254 1.24458
\(867\) −3.43966 5.95767i −0.116817 0.202333i
\(868\) 20.9035 + 36.2060i 0.709513 + 1.22891i
\(869\) 8.86044 + 15.3467i 0.300570 + 0.520602i
\(870\) −4.66596 + 8.08168i −0.158191 + 0.273995i
\(871\) −13.2012 22.8651i −0.447304 0.774754i
\(872\) 4.42315 7.66111i 0.149787 0.259438i
\(873\) 6.38892 + 11.0659i 0.216232 + 0.374525i
\(874\) −8.17200 + 14.1543i −0.276422 + 0.478777i
\(875\) −51.3895 −1.73728
\(876\) −13.3505 −0.451071
\(877\) −41.0285 −1.38543 −0.692717 0.721210i \(-0.743586\pi\)
−0.692717 + 0.721210i \(0.743586\pi\)
\(878\) −33.5039 −1.13070
\(879\) 17.7507 0.598718
\(880\) −1.72414 2.98630i −0.0581209 0.100668i
\(881\) 7.57504 13.1204i 0.255210 0.442036i −0.709743 0.704461i \(-0.751189\pi\)
0.964952 + 0.262425i \(0.0845222\pi\)
\(882\) 8.41801 14.5804i 0.283449 0.490949i
\(883\) 9.10401 15.7686i 0.306374 0.530656i −0.671192 0.741284i \(-0.734217\pi\)
0.977566 + 0.210628i \(0.0675507\pi\)
\(884\) −9.54390 −0.320996
\(885\) −6.30371 −0.211897
\(886\) 15.4109 + 26.6925i 0.517740 + 0.896751i
\(887\) −3.80669 + 6.59338i −0.127816 + 0.221384i −0.922830 0.385207i \(-0.874130\pi\)
0.795014 + 0.606591i \(0.207463\pi\)
\(888\) −4.05010 −0.135912
\(889\) 24.7080 + 42.7956i 0.828681 + 1.43532i
\(890\) 13.7857 0.462099
\(891\) 2.76736 0.0927102
\(892\) 12.5404 8.10792i 0.419884 0.271473i
\(893\) 35.1551 1.17642
\(894\) 9.42367 0.315175
\(895\) 9.64838 + 16.7115i 0.322510 + 0.558603i
\(896\) −4.88222 −0.163103
\(897\) −7.24931 + 12.5562i −0.242047 + 0.419238i
\(898\) −4.41598 7.64871i −0.147363 0.255241i
\(899\) −64.1309 −2.13888
\(900\) −3.44735 −0.114912
\(901\) −13.4914 + 23.3678i −0.449464 + 0.778495i
\(902\) −5.83077 + 10.0992i −0.194144 + 0.336266i
\(903\) 21.5132 37.2619i 0.715914 1.24000i
\(904\) −3.60698 6.24747i −0.119966 0.207788i
\(905\) 19.8627 0.660258
\(906\) 12.3067 0.408862
\(907\) 14.4827 0.480890 0.240445 0.970663i \(-0.422707\pi\)
0.240445 + 0.970663i \(0.422707\pi\)
\(908\) −8.40101 −0.278797
\(909\) −4.36185 −0.144673
\(910\) −9.12526 + 15.8054i −0.302500 + 0.523945i
\(911\) 5.69280 + 9.86022i 0.188611 + 0.326684i 0.944787 0.327684i \(-0.106268\pi\)
−0.756176 + 0.654368i \(0.772935\pi\)
\(912\) −1.69092 + 2.92876i −0.0559919 + 0.0969809i
\(913\) −10.5731 18.3132i −0.349920 0.606079i
\(914\) −14.6510 + 25.3762i −0.484610 + 0.839370i
\(915\) 4.75754 + 8.24030i 0.157279 + 0.272416i
\(916\) −8.44423 14.6258i −0.279005 0.483251i
\(917\) 34.1451 + 59.1411i 1.12757 + 1.95301i
\(918\) 3.18130 0.104999
\(919\) 1.87167 0.0617406 0.0308703 0.999523i \(-0.490172\pi\)
0.0308703 + 0.999523i \(0.490172\pi\)
\(920\) −6.02202 −0.198540
\(921\) −1.66585 + 2.88534i −0.0548918 + 0.0950753i
\(922\) −38.0014 −1.25151
\(923\) −0.609636 1.05592i −0.0200664 0.0347561i
\(924\) −13.5109 −0.444475
\(925\) 13.9621 0.459071
\(926\) 28.4100 0.933612
\(927\) 8.42215 14.5876i 0.276620 0.479119i
\(928\) 3.74459 6.48582i 0.122922 0.212907i
\(929\) −14.7446 + 25.5384i −0.483754 + 0.837887i −0.999826 0.0186583i \(-0.994061\pi\)
0.516072 + 0.856546i \(0.327394\pi\)
\(930\) 5.33507 + 9.24061i 0.174944 + 0.303012i
\(931\) 28.4684 + 49.3087i 0.933013 + 1.61603i
\(932\) 10.1970 17.6617i 0.334014 0.578529i
\(933\) 25.0903 0.821420
\(934\) −0.284899 0.493460i −0.00932218 0.0161465i
\(935\) −5.48502 9.50033i −0.179379 0.310694i
\(936\) −1.50000 + 2.59808i −0.0490290 + 0.0849208i
\(937\) 24.6688 + 42.7277i 0.805896 + 1.39585i 0.915685 + 0.401897i \(0.131649\pi\)
−0.109789 + 0.993955i \(0.535018\pi\)
\(938\) −21.4836 37.2107i −0.701466 1.21497i
\(939\) 9.37104 16.2311i 0.305812 0.529682i
\(940\) 6.47653 + 11.2177i 0.211241 + 0.365880i
\(941\) −25.3326 −0.825818 −0.412909 0.910772i \(-0.635487\pi\)
−0.412909 + 0.910772i \(0.635487\pi\)
\(942\) −2.75604 4.77359i −0.0897965 0.155532i
\(943\) 10.1828 + 17.6370i 0.331596 + 0.574341i
\(944\) 5.05893 0.164654
\(945\) 3.04175 5.26847i 0.0989483 0.171383i
\(946\) −24.3884 −0.792937
\(947\) −14.3170 24.7978i −0.465240 0.805820i 0.533972 0.845502i \(-0.320699\pi\)
−0.999212 + 0.0396825i \(0.987365\pi\)
\(948\) 6.40352 0.207977
\(949\) 20.0257 34.6856i 0.650063 1.12594i
\(950\) 5.82919 10.0964i 0.189124 0.327572i
\(951\) 13.2035 0.428154
\(952\) −15.5318 −0.503388
\(953\) 3.23696 + 5.60658i 0.104855 + 0.181615i 0.913679 0.406436i \(-0.133229\pi\)
−0.808824 + 0.588051i \(0.799895\pi\)
\(954\) 4.24085 + 7.34536i 0.137303 + 0.237815i
\(955\) 5.86390 10.1566i 0.189751 0.328659i
\(956\) 11.6854 0.377931
\(957\) 10.3626 17.9486i 0.334976 0.580196i
\(958\) 11.6056 0.374960
\(959\) −21.7936 37.7475i −0.703751 1.21893i
\(960\) −1.24605 −0.0402162
\(961\) −21.1637 + 36.6566i −0.682699 + 1.18247i
\(962\) 6.07515 10.5225i 0.195871 0.339258i
\(963\) 3.59836 + 6.23253i 0.115955 + 0.200841i
\(964\) 9.75564 16.8973i 0.314208 0.544224i
\(965\) −14.9173 + 25.8375i −0.480204 + 0.831738i
\(966\) −11.7976 + 20.4340i −0.379580 + 0.657452i
\(967\) 14.4693 25.0615i 0.465300 0.805923i −0.533915 0.845538i \(-0.679280\pi\)
0.999215 + 0.0396151i \(0.0126132\pi\)
\(968\) −1.67085 2.89400i −0.0537032 0.0930166i
\(969\) −5.37932 + 9.31726i −0.172809 + 0.299313i
\(970\) −7.96095 13.7888i −0.255611 0.442731i
\(971\) −22.3255 + 38.6689i −0.716460 + 1.24095i 0.245933 + 0.969287i \(0.420906\pi\)
−0.962394 + 0.271659i \(0.912428\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) −43.9781 76.1723i −1.40987 2.44197i
\(974\) 14.7108 0.471366
\(975\) 5.17102 8.95647i 0.165605 0.286837i
\(976\) −3.81808 6.61311i −0.122214 0.211680i
\(977\) 26.6893 46.2273i 0.853868 1.47894i −0.0238240 0.999716i \(-0.507584\pi\)
0.877692 0.479226i \(-0.159083\pi\)
\(978\) 3.20650 + 5.55382i 0.102533 + 0.177592i
\(979\) −30.6168 −0.978516
\(980\) −10.4893 + 18.1680i −0.335069 + 0.580356i
\(981\) −4.42315 7.66111i −0.141220 0.244600i
\(982\) 9.29629 + 16.1016i 0.296656 + 0.513824i
\(983\) −4.51117 −0.143884 −0.0719420 0.997409i \(-0.522920\pi\)
−0.0719420 + 0.997409i \(0.522920\pi\)
\(984\) 2.10698 + 3.64939i 0.0671680 + 0.116338i
\(985\) −3.67780 + 6.37014i −0.117185 + 0.202970i
\(986\) 11.9127 20.6333i 0.379376 0.657099i
\(987\) 50.7519 1.61545
\(988\) −5.07276 8.78627i −0.161386 0.279529i
\(989\) −21.2958 + 36.8853i −0.677166 + 1.17289i
\(990\) −3.44829 −0.109594
\(991\) −18.0859 31.3257i −0.574517 0.995093i −0.996094 0.0883004i \(-0.971856\pi\)
0.421577 0.906793i \(-0.361477\pi\)
\(992\) −4.28157 7.41590i −0.135940 0.235455i
\(993\) 9.33221 + 16.1639i 0.296149 + 0.512945i
\(994\) −0.992125 1.71841i −0.0314683 0.0545047i
\(995\) −10.2783 −0.325843
\(996\) −7.64131 −0.242124
\(997\) −26.5844 −0.841937 −0.420968 0.907075i \(-0.638310\pi\)
−0.420968 + 0.907075i \(0.638310\pi\)
\(998\) 16.8916 29.2571i 0.534694 0.926116i
\(999\) −2.02505 + 3.50749i −0.0640697 + 0.110972i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.g.1075.4 yes 12
223.39 even 3 inner 1338.2.e.g.931.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.g.931.4 12 223.39 even 3 inner
1338.2.e.g.1075.4 yes 12 1.1 even 1 trivial