Properties

Label 1338.2.e.c.1075.1
Level $1338$
Weight $2$
Character 1338.1075
Analytic conductor $10.684$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1075.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1338.1075
Dual form 1338.2.e.c.931.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{6} +1.00000 q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(1.50000 - 2.59808i) q^{11} +(0.500000 + 0.866025i) q^{12} +1.00000 q^{14} -1.00000 q^{15} +1.00000 q^{16} +4.00000 q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.500000 + 0.866025i) q^{20} +(0.500000 + 0.866025i) q^{21} +(1.50000 - 2.59808i) q^{22} +(3.00000 + 5.19615i) q^{23} +(0.500000 + 0.866025i) q^{24} +(2.00000 + 3.46410i) q^{25} -1.00000 q^{27} +1.00000 q^{28} +(0.500000 - 0.866025i) q^{29} -1.00000 q^{30} +(2.00000 + 3.46410i) q^{31} +1.00000 q^{32} +3.00000 q^{33} +4.00000 q^{34} +(-0.500000 + 0.866025i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(2.00000 - 3.46410i) q^{37} +(-0.500000 + 0.866025i) q^{40} +(0.500000 + 0.866025i) q^{42} +(-3.00000 - 5.19615i) q^{43} +(1.50000 - 2.59808i) q^{44} +(-0.500000 - 0.866025i) q^{45} +(3.00000 + 5.19615i) q^{46} +(-4.00000 + 6.92820i) q^{47} +(0.500000 + 0.866025i) q^{48} -6.00000 q^{49} +(2.00000 + 3.46410i) q^{50} +(2.00000 + 3.46410i) q^{51} +(-5.50000 + 9.52628i) q^{53} -1.00000 q^{54} +(1.50000 + 2.59808i) q^{55} +1.00000 q^{56} +(0.500000 - 0.866025i) q^{58} -3.00000 q^{59} -1.00000 q^{60} +(2.00000 + 3.46410i) q^{62} +(-0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +3.00000 q^{66} +(1.00000 + 1.73205i) q^{67} +4.00000 q^{68} +(-3.00000 + 5.19615i) q^{69} +(-0.500000 + 0.866025i) q^{70} +(-3.00000 - 5.19615i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(7.00000 - 12.1244i) q^{73} +(2.00000 - 3.46410i) q^{74} +(-2.00000 + 3.46410i) q^{75} +(1.50000 - 2.59808i) q^{77} +(5.50000 - 9.52628i) q^{79} +(-0.500000 + 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.00000 + 10.3923i) q^{83} +(0.500000 + 0.866025i) q^{84} +(-2.00000 + 3.46410i) q^{85} +(-3.00000 - 5.19615i) q^{86} +1.00000 q^{87} +(1.50000 - 2.59808i) q^{88} +(-0.500000 - 0.866025i) q^{90} +(3.00000 + 5.19615i) q^{92} +(-2.00000 + 3.46410i) q^{93} +(-4.00000 + 6.92820i) q^{94} +(0.500000 + 0.866025i) q^{96} +(4.50000 - 7.79423i) q^{97} -6.00000 q^{98} +(1.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} - q^{5} + q^{6} + 2 q^{7} + 2 q^{8} - q^{9} - q^{10} + 3 q^{11} + q^{12} + 2 q^{14} - 2 q^{15} + 2 q^{16} + 8 q^{17} - q^{18} - q^{20} + q^{21} + 3 q^{22} + 6 q^{23}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 1.00000 0.267261
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0.500000 + 0.866025i 0.109109 + 0.188982i
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 1.00000 0.188982
\(29\) 0.500000 0.866025i 0.0928477 0.160817i −0.815861 0.578249i \(-0.803736\pi\)
0.908708 + 0.417432i \(0.137070\pi\)
\(30\) −1.00000 −0.182574
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.00000 0.522233
\(34\) 4.00000 0.685994
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.500000 + 0.866025i 0.0771517 + 0.133631i
\(43\) −3.00000 5.19615i −0.457496 0.792406i 0.541332 0.840809i \(-0.317920\pi\)
−0.998828 + 0.0484030i \(0.984587\pi\)
\(44\) 1.50000 2.59808i 0.226134 0.391675i
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) −6.00000 −0.857143
\(50\) 2.00000 + 3.46410i 0.282843 + 0.489898i
\(51\) 2.00000 + 3.46410i 0.280056 + 0.485071i
\(52\) 0 0
\(53\) −5.50000 + 9.52628i −0.755483 + 1.30854i 0.189651 + 0.981852i \(0.439264\pi\)
−0.945134 + 0.326683i \(0.894069\pi\)
\(54\) −1.00000 −0.136083
\(55\) 1.50000 + 2.59808i 0.202260 + 0.350325i
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 0.500000 0.866025i 0.0656532 0.113715i
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) −1.00000 −0.129099
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 2.00000 + 3.46410i 0.254000 + 0.439941i
\(63\) −0.500000 + 0.866025i −0.0629941 + 0.109109i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 4.00000 0.485071
\(69\) −3.00000 + 5.19615i −0.361158 + 0.625543i
\(70\) −0.500000 + 0.866025i −0.0597614 + 0.103510i
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 7.00000 12.1244i 0.819288 1.41905i −0.0869195 0.996215i \(-0.527702\pi\)
0.906208 0.422833i \(-0.138964\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) 0 0
\(77\) 1.50000 2.59808i 0.170941 0.296078i
\(78\) 0 0
\(79\) 5.50000 9.52628i 0.618798 1.07179i −0.370907 0.928670i \(-0.620953\pi\)
0.989705 0.143120i \(-0.0457135\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i \(0.395512\pi\)
−0.980982 + 0.194099i \(0.937822\pi\)
\(84\) 0.500000 + 0.866025i 0.0545545 + 0.0944911i
\(85\) −2.00000 + 3.46410i −0.216930 + 0.375735i
\(86\) −3.00000 5.19615i −0.323498 0.560316i
\(87\) 1.00000 0.107211
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) −0.500000 0.866025i −0.0527046 0.0912871i
\(91\) 0 0
\(92\) 3.00000 + 5.19615i 0.312772 + 0.541736i
\(93\) −2.00000 + 3.46410i −0.207390 + 0.359211i
\(94\) −4.00000 + 6.92820i −0.412568 + 0.714590i
\(95\) 0 0
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) 4.50000 7.79423i 0.456906 0.791384i −0.541890 0.840450i \(-0.682291\pi\)
0.998796 + 0.0490655i \(0.0156243\pi\)
\(98\) −6.00000 −0.606092
\(99\) 1.50000 + 2.59808i 0.150756 + 0.261116i
\(100\) 2.00000 + 3.46410i 0.200000 + 0.346410i
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 2.00000 + 3.46410i 0.198030 + 0.342997i
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 0 0
\(105\) −1.00000 −0.0975900
\(106\) −5.50000 + 9.52628i −0.534207 + 0.925274i
\(107\) 5.50000 9.52628i 0.531705 0.920940i −0.467610 0.883935i \(-0.654885\pi\)
0.999315 0.0370053i \(-0.0117818\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 5.00000 8.66025i 0.478913 0.829502i −0.520794 0.853682i \(-0.674364\pi\)
0.999708 + 0.0241802i \(0.00769755\pi\)
\(110\) 1.50000 + 2.59808i 0.143019 + 0.247717i
\(111\) 4.00000 0.379663
\(112\) 1.00000 0.0944911
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 0.500000 0.866025i 0.0464238 0.0804084i
\(117\) 0 0
\(118\) −3.00000 −0.276172
\(119\) 4.00000 0.366679
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) −9.00000 −0.804984
\(126\) −0.500000 + 0.866025i −0.0445435 + 0.0771517i
\(127\) 0.500000 + 0.866025i 0.0443678 + 0.0768473i 0.887357 0.461084i \(-0.152539\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.00000 5.19615i 0.264135 0.457496i
\(130\) 0 0
\(131\) −3.50000 6.06218i −0.305796 0.529655i 0.671642 0.740876i \(-0.265589\pi\)
−0.977438 + 0.211221i \(0.932256\pi\)
\(132\) 3.00000 0.261116
\(133\) 0 0
\(134\) 1.00000 + 1.73205i 0.0863868 + 0.149626i
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 4.00000 0.342997
\(137\) 1.00000 + 1.73205i 0.0854358 + 0.147979i 0.905577 0.424182i \(-0.139438\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(138\) −3.00000 + 5.19615i −0.255377 + 0.442326i
\(139\) −1.00000 1.73205i −0.0848189 0.146911i 0.820495 0.571654i \(-0.193698\pi\)
−0.905314 + 0.424743i \(0.860365\pi\)
\(140\) −0.500000 + 0.866025i −0.0422577 + 0.0731925i
\(141\) −8.00000 −0.673722
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 0.500000 + 0.866025i 0.0415227 + 0.0719195i
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) −3.00000 5.19615i −0.247436 0.428571i
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) −2.00000 + 3.46410i −0.163299 + 0.282843i
\(151\) 8.50000 14.7224i 0.691720 1.19809i −0.279554 0.960130i \(-0.590186\pi\)
0.971274 0.237964i \(-0.0764802\pi\)
\(152\) 0 0
\(153\) −2.00000 + 3.46410i −0.161690 + 0.280056i
\(154\) 1.50000 2.59808i 0.120873 0.209359i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 5.50000 9.52628i 0.437557 0.757870i
\(159\) −11.0000 −0.872357
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 3.00000 + 5.19615i 0.236433 + 0.409514i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) −18.0000 −1.40987 −0.704934 0.709273i \(-0.749024\pi\)
−0.704934 + 0.709273i \(0.749024\pi\)
\(164\) 0 0
\(165\) −1.50000 + 2.59808i −0.116775 + 0.202260i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0.500000 + 0.866025i 0.0385758 + 0.0668153i
\(169\) −13.0000 −1.00000
\(170\) −2.00000 + 3.46410i −0.153393 + 0.265684i
\(171\) 0 0
\(172\) −3.00000 5.19615i −0.228748 0.396203i
\(173\) 3.50000 + 6.06218i 0.266100 + 0.460899i 0.967851 0.251523i \(-0.0809315\pi\)
−0.701751 + 0.712422i \(0.747598\pi\)
\(174\) 1.00000 0.0758098
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) 1.50000 2.59808i 0.113067 0.195837i
\(177\) −1.50000 2.59808i −0.112747 0.195283i
\(178\) 0 0
\(179\) 8.50000 14.7224i 0.635320 1.10041i −0.351127 0.936328i \(-0.614202\pi\)
0.986447 0.164079i \(-0.0524651\pi\)
\(180\) −0.500000 0.866025i −0.0372678 0.0645497i
\(181\) −8.00000 13.8564i −0.594635 1.02994i −0.993598 0.112972i \(-0.963963\pi\)
0.398963 0.916967i \(-0.369370\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) −2.00000 + 3.46410i −0.146647 + 0.254000i
\(187\) 6.00000 10.3923i 0.438763 0.759961i
\(188\) −4.00000 + 6.92820i −0.291730 + 0.505291i
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 4.50000 7.79423i 0.323081 0.559593i
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 1.50000 + 2.59808i 0.106600 + 0.184637i
\(199\) −1.50000 2.59808i −0.106332 0.184173i 0.807950 0.589252i \(-0.200577\pi\)
−0.914282 + 0.405079i \(0.867244\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) −1.00000 + 1.73205i −0.0705346 + 0.122169i
\(202\) −1.50000 2.59808i −0.105540 0.182800i
\(203\) 0.500000 0.866025i 0.0350931 0.0607831i
\(204\) 2.00000 + 3.46410i 0.140028 + 0.242536i
\(205\) 0 0
\(206\) −1.00000 −0.0696733
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) −1.00000 −0.0690066
\(211\) −10.0000 17.3205i −0.688428 1.19239i −0.972346 0.233544i \(-0.924968\pi\)
0.283918 0.958849i \(-0.408366\pi\)
\(212\) −5.50000 + 9.52628i −0.377742 + 0.654268i
\(213\) 3.00000 5.19615i 0.205557 0.356034i
\(214\) 5.50000 9.52628i 0.375972 0.651203i
\(215\) 6.00000 0.409197
\(216\) −1.00000 −0.0680414
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) 5.00000 8.66025i 0.338643 0.586546i
\(219\) 14.0000 0.946032
\(220\) 1.50000 + 2.59808i 0.101130 + 0.175162i
\(221\) 0 0
\(222\) 4.00000 0.268462
\(223\) −14.0000 5.19615i −0.937509 0.347960i
\(224\) 1.00000 0.0668153
\(225\) −4.00000 −0.266667
\(226\) −3.00000 5.19615i −0.199557 0.345643i
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) 7.00000 + 12.1244i 0.462573 + 0.801200i 0.999088 0.0426906i \(-0.0135930\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(230\) −6.00000 −0.395628
\(231\) 3.00000 0.197386
\(232\) 0.500000 0.866025i 0.0328266 0.0568574i
\(233\) −5.00000 + 8.66025i −0.327561 + 0.567352i −0.982027 0.188739i \(-0.939560\pi\)
0.654466 + 0.756091i \(0.272893\pi\)
\(234\) 0 0
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) −3.00000 −0.195283
\(237\) 11.0000 0.714527
\(238\) 4.00000 0.259281
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) −1.00000 −0.0645497
\(241\) −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i \(-0.982234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) −12.0000 −0.760469
\(250\) −9.00000 −0.569210
\(251\) 7.00000 0.441836 0.220918 0.975292i \(-0.429095\pi\)
0.220918 + 0.975292i \(0.429095\pi\)
\(252\) −0.500000 + 0.866025i −0.0314970 + 0.0545545i
\(253\) 18.0000 1.13165
\(254\) 0.500000 + 0.866025i 0.0313728 + 0.0543393i
\(255\) −4.00000 −0.250490
\(256\) 1.00000 0.0625000
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 3.00000 5.19615i 0.186772 0.323498i
\(259\) 2.00000 3.46410i 0.124274 0.215249i
\(260\) 0 0
\(261\) 0.500000 + 0.866025i 0.0309492 + 0.0536056i
\(262\) −3.50000 6.06218i −0.216231 0.374523i
\(263\) 5.00000 8.66025i 0.308313 0.534014i −0.669680 0.742650i \(-0.733569\pi\)
0.977993 + 0.208635i \(0.0669022\pi\)
\(264\) 3.00000 0.184637
\(265\) −5.50000 9.52628i −0.337862 0.585195i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i \(-0.265275\pi\)
−0.977229 + 0.212187i \(0.931941\pi\)
\(270\) 0.500000 0.866025i 0.0304290 0.0527046i
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 1.00000 + 1.73205i 0.0604122 + 0.104637i
\(275\) 12.0000 0.723627
\(276\) −3.00000 + 5.19615i −0.180579 + 0.312772i
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) −1.00000 1.73205i −0.0599760 0.103882i
\(279\) −4.00000 −0.239474
\(280\) −0.500000 + 0.866025i −0.0298807 + 0.0517549i
\(281\) −3.00000 + 5.19615i −0.178965 + 0.309976i −0.941526 0.336939i \(-0.890608\pi\)
0.762561 + 0.646916i \(0.223942\pi\)
\(282\) −8.00000 −0.476393
\(283\) 18.0000 1.06999 0.534994 0.844856i \(-0.320314\pi\)
0.534994 + 0.844856i \(0.320314\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −1.00000 −0.0588235
\(290\) 0.500000 + 0.866025i 0.0293610 + 0.0508548i
\(291\) 9.00000 0.527589
\(292\) 7.00000 12.1244i 0.409644 0.709524i
\(293\) −9.50000 + 16.4545i −0.554996 + 0.961281i 0.442908 + 0.896567i \(0.353947\pi\)
−0.997904 + 0.0647140i \(0.979386\pi\)
\(294\) −3.00000 5.19615i −0.174964 0.303046i
\(295\) 1.50000 2.59808i 0.0873334 0.151266i
\(296\) 2.00000 3.46410i 0.116248 0.201347i
\(297\) −1.50000 + 2.59808i −0.0870388 + 0.150756i
\(298\) −5.00000 + 8.66025i −0.289642 + 0.501675i
\(299\) 0 0
\(300\) −2.00000 + 3.46410i −0.115470 + 0.200000i
\(301\) −3.00000 5.19615i −0.172917 0.299501i
\(302\) 8.50000 14.7224i 0.489120 0.847181i
\(303\) 1.50000 2.59808i 0.0861727 0.149256i
\(304\) 0 0
\(305\) 0 0
\(306\) −2.00000 + 3.46410i −0.114332 + 0.198030i
\(307\) −8.00000 13.8564i −0.456584 0.790827i 0.542194 0.840254i \(-0.317594\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 1.50000 2.59808i 0.0854704 0.148039i
\(309\) −0.500000 0.866025i −0.0284440 0.0492665i
\(310\) −4.00000 −0.227185
\(311\) −14.0000 + 24.2487i −0.793867 + 1.37502i 0.129689 + 0.991555i \(0.458602\pi\)
−0.923556 + 0.383464i \(0.874731\pi\)
\(312\) 0 0
\(313\) 3.50000 + 6.06218i 0.197832 + 0.342655i 0.947825 0.318791i \(-0.103277\pi\)
−0.749993 + 0.661445i \(0.769943\pi\)
\(314\) 4.00000 0.225733
\(315\) −0.500000 0.866025i −0.0281718 0.0487950i
\(316\) 5.50000 9.52628i 0.309399 0.535895i
\(317\) −1.50000 + 2.59808i −0.0842484 + 0.145922i −0.905071 0.425261i \(-0.860182\pi\)
0.820822 + 0.571184i \(0.193516\pi\)
\(318\) −11.0000 −0.616849
\(319\) −1.50000 2.59808i −0.0839839 0.145464i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 11.0000 0.613960
\(322\) 3.00000 + 5.19615i 0.167183 + 0.289570i
\(323\) 0 0
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) −18.0000 −0.996928
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) −4.00000 + 6.92820i −0.220527 + 0.381964i
\(330\) −1.50000 + 2.59808i −0.0825723 + 0.143019i
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) −6.00000 + 10.3923i −0.329293 + 0.570352i
\(333\) 2.00000 + 3.46410i 0.109599 + 0.189832i
\(334\) 14.0000 0.766046
\(335\) −2.00000 −0.109272
\(336\) 0.500000 + 0.866025i 0.0272772 + 0.0472456i
\(337\) −6.50000 + 11.2583i −0.354078 + 0.613280i −0.986960 0.160968i \(-0.948538\pi\)
0.632882 + 0.774248i \(0.281872\pi\)
\(338\) −13.0000 −0.707107
\(339\) 3.00000 5.19615i 0.162938 0.282216i
\(340\) −2.00000 + 3.46410i −0.108465 + 0.187867i
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) −3.00000 5.19615i −0.161749 0.280158i
\(345\) −3.00000 5.19615i −0.161515 0.279751i
\(346\) 3.50000 + 6.06218i 0.188161 + 0.325905i
\(347\) −16.5000 28.5788i −0.885766 1.53419i −0.844833 0.535031i \(-0.820300\pi\)
−0.0409337 0.999162i \(-0.513033\pi\)
\(348\) 1.00000 0.0536056
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 2.00000 + 3.46410i 0.106904 + 0.185164i
\(351\) 0 0
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) −7.00000 + 12.1244i −0.372572 + 0.645314i −0.989960 0.141344i \(-0.954858\pi\)
0.617388 + 0.786659i \(0.288191\pi\)
\(354\) −1.50000 2.59808i −0.0797241 0.138086i
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 2.00000 + 3.46410i 0.105851 + 0.183340i
\(358\) 8.50000 14.7224i 0.449239 0.778105i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) −0.500000 0.866025i −0.0263523 0.0456435i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) −8.00000 13.8564i −0.420471 0.728277i
\(363\) −1.00000 + 1.73205i −0.0524864 + 0.0909091i
\(364\) 0 0
\(365\) 7.00000 + 12.1244i 0.366397 + 0.634618i
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 3.00000 + 5.19615i 0.156386 + 0.270868i
\(369\) 0 0
\(370\) 2.00000 + 3.46410i 0.103975 + 0.180090i
\(371\) −5.50000 + 9.52628i −0.285546 + 0.494580i
\(372\) −2.00000 + 3.46410i −0.103695 + 0.179605i
\(373\) 9.00000 15.5885i 0.466002 0.807140i −0.533244 0.845962i \(-0.679027\pi\)
0.999246 + 0.0388219i \(0.0123605\pi\)
\(374\) 6.00000 10.3923i 0.310253 0.537373i
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) 0 0
\(378\) −1.00000 −0.0514344
\(379\) −17.0000 29.4449i −0.873231 1.51248i −0.858635 0.512588i \(-0.828687\pi\)
−0.0145964 0.999893i \(-0.504646\pi\)
\(380\) 0 0
\(381\) −0.500000 + 0.866025i −0.0256158 + 0.0443678i
\(382\) −4.00000 −0.204658
\(383\) −4.00000 + 6.92820i −0.204390 + 0.354015i −0.949938 0.312437i \(-0.898855\pi\)
0.745548 + 0.666452i \(0.232188\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 1.50000 + 2.59808i 0.0764471 + 0.132410i
\(386\) 5.00000 0.254493
\(387\) 6.00000 0.304997
\(388\) 4.50000 7.79423i 0.228453 0.395692i
\(389\) −12.5000 + 21.6506i −0.633775 + 1.09773i 0.352998 + 0.935624i \(0.385162\pi\)
−0.986773 + 0.162107i \(0.948171\pi\)
\(390\) 0 0
\(391\) 12.0000 + 20.7846i 0.606866 + 1.05112i
\(392\) −6.00000 −0.303046
\(393\) 3.50000 6.06218i 0.176552 0.305796i
\(394\) 2.00000 0.100759
\(395\) 5.50000 + 9.52628i 0.276735 + 0.479319i
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) −1.50000 2.59808i −0.0751882 0.130230i
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 10.0000 + 17.3205i 0.499376 + 0.864945i 1.00000 0.000720188i \(-0.000229243\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(402\) −1.00000 + 1.73205i −0.0498755 + 0.0863868i
\(403\) 0 0
\(404\) −1.50000 2.59808i −0.0746278 0.129259i
\(405\) 1.00000 0.0496904
\(406\) 0.500000 0.866025i 0.0248146 0.0429801i
\(407\) −6.00000 10.3923i −0.297409 0.515127i
\(408\) 2.00000 + 3.46410i 0.0990148 + 0.171499i
\(409\) −3.50000 + 6.06218i −0.173064 + 0.299755i −0.939490 0.342578i \(-0.888700\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) −1.00000 + 1.73205i −0.0493264 + 0.0854358i
\(412\) −1.00000 −0.0492665
\(413\) −3.00000 −0.147620
\(414\) −6.00000 −0.294884
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) 0 0
\(417\) 1.00000 1.73205i 0.0489702 0.0848189i
\(418\) 0 0
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) −1.00000 −0.0487950
\(421\) 4.00000 + 6.92820i 0.194948 + 0.337660i 0.946883 0.321577i \(-0.104213\pi\)
−0.751935 + 0.659237i \(0.770879\pi\)
\(422\) −10.0000 17.3205i −0.486792 0.843149i
\(423\) −4.00000 6.92820i −0.194487 0.336861i
\(424\) −5.50000 + 9.52628i −0.267104 + 0.462637i
\(425\) 8.00000 + 13.8564i 0.388057 + 0.672134i
\(426\) 3.00000 5.19615i 0.145350 0.251754i
\(427\) 0 0
\(428\) 5.50000 9.52628i 0.265853 0.460470i
\(429\) 0 0
\(430\) 6.00000 0.289346
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 2.00000 + 3.46410i 0.0960031 + 0.166282i
\(435\) −0.500000 + 0.866025i −0.0239732 + 0.0415227i
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) 0 0
\(438\) 14.0000 0.668946
\(439\) −15.0000 −0.715911 −0.357955 0.933739i \(-0.616526\pi\)
−0.357955 + 0.933739i \(0.616526\pi\)
\(440\) 1.50000 + 2.59808i 0.0715097 + 0.123858i
\(441\) 3.00000 5.19615i 0.142857 0.247436i
\(442\) 0 0
\(443\) −14.5000 25.1147i −0.688916 1.19324i −0.972189 0.234198i \(-0.924754\pi\)
0.283273 0.959039i \(-0.408580\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) −14.0000 5.19615i −0.662919 0.246045i
\(447\) −10.0000 −0.472984
\(448\) 1.00000 0.0472456
\(449\) 18.0000 + 31.1769i 0.849473 + 1.47133i 0.881680 + 0.471848i \(0.156413\pi\)
−0.0322072 + 0.999481i \(0.510254\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) −3.00000 5.19615i −0.141108 0.244406i
\(453\) 17.0000 0.798730
\(454\) −24.0000 −1.12638
\(455\) 0 0
\(456\) 0 0
\(457\) 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i \(-0.695012\pi\)
0.996038 + 0.0889312i \(0.0283451\pi\)
\(458\) 7.00000 + 12.1244i 0.327089 + 0.566534i
\(459\) −4.00000 −0.186704
\(460\) −6.00000 −0.279751
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 3.00000 0.139573
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) 0.500000 0.866025i 0.0232119 0.0402042i
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) −5.00000 + 8.66025i −0.231621 + 0.401179i
\(467\) 10.5000 + 18.1865i 0.485882 + 0.841572i 0.999868 0.0162260i \(-0.00516512\pi\)
−0.513986 + 0.857798i \(0.671832\pi\)
\(468\) 0 0
\(469\) 1.00000 + 1.73205i 0.0461757 + 0.0799787i
\(470\) −4.00000 6.92820i −0.184506 0.319574i
\(471\) 2.00000 + 3.46410i 0.0921551 + 0.159617i
\(472\) −3.00000 −0.138086
\(473\) −18.0000 −0.827641
\(474\) 11.0000 0.505247
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) −5.50000 9.52628i −0.251828 0.436178i
\(478\) −12.0000 −0.548867
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 0 0
\(482\) −7.00000 + 12.1244i −0.318841 + 0.552249i
\(483\) −3.00000 + 5.19615i −0.136505 + 0.236433i
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 4.50000 + 7.79423i 0.204334 + 0.353918i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 5.00000 0.226572 0.113286 0.993562i \(-0.463862\pi\)
0.113286 + 0.993562i \(0.463862\pi\)
\(488\) 0 0
\(489\) −9.00000 15.5885i −0.406994 0.704934i
\(490\) 3.00000 5.19615i 0.135526 0.234738i
\(491\) −10.0000 17.3205i −0.451294 0.781664i 0.547173 0.837020i \(-0.315704\pi\)
−0.998467 + 0.0553560i \(0.982371\pi\)
\(492\) 0 0
\(493\) 2.00000 3.46410i 0.0900755 0.156015i
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 2.00000 + 3.46410i 0.0898027 + 0.155543i
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) −12.0000 −0.537733
\(499\) −5.00000 + 8.66025i −0.223831 + 0.387686i −0.955968 0.293471i \(-0.905190\pi\)
0.732137 + 0.681157i \(0.238523\pi\)
\(500\) −9.00000 −0.402492
\(501\) 7.00000 + 12.1244i 0.312737 + 0.541676i
\(502\) 7.00000 0.312425
\(503\) 1.00000 1.73205i 0.0445878 0.0772283i −0.842870 0.538117i \(-0.819136\pi\)
0.887458 + 0.460889i \(0.152469\pi\)
\(504\) −0.500000 + 0.866025i −0.0222718 + 0.0385758i
\(505\) 3.00000 0.133498
\(506\) 18.0000 0.800198
\(507\) −6.50000 11.2583i −0.288675 0.500000i
\(508\) 0.500000 + 0.866025i 0.0221839 + 0.0384237i
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) −4.00000 −0.177123
\(511\) 7.00000 12.1244i 0.309662 0.536350i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −8.00000 −0.352865
\(515\) 0.500000 0.866025i 0.0220326 0.0381616i
\(516\) 3.00000 5.19615i 0.132068 0.228748i
\(517\) 12.0000 + 20.7846i 0.527759 + 0.914106i
\(518\) 2.00000 3.46410i 0.0878750 0.152204i
\(519\) −3.50000 + 6.06218i −0.153633 + 0.266100i
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0.500000 + 0.866025i 0.0218844 + 0.0379049i
\(523\) −18.0000 + 31.1769i −0.787085 + 1.36327i 0.140660 + 0.990058i \(0.455077\pi\)
−0.927746 + 0.373213i \(0.878256\pi\)
\(524\) −3.50000 6.06218i −0.152898 0.264827i
\(525\) −2.00000 + 3.46410i −0.0872872 + 0.151186i
\(526\) 5.00000 8.66025i 0.218010 0.377605i
\(527\) 8.00000 + 13.8564i 0.348485 + 0.603595i
\(528\) 3.00000 0.130558
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −5.50000 9.52628i −0.238905 0.413795i
\(531\) 1.50000 2.59808i 0.0650945 0.112747i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 5.50000 + 9.52628i 0.237786 + 0.411857i
\(536\) 1.00000 + 1.73205i 0.0431934 + 0.0748132i
\(537\) 17.0000 0.733604
\(538\) −5.00000 8.66025i −0.215565 0.373370i
\(539\) −9.00000 + 15.5885i −0.387657 + 0.671442i
\(540\) 0.500000 0.866025i 0.0215166 0.0372678i
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 8.00000 13.8564i 0.343313 0.594635i
\(544\) 4.00000 0.171499
\(545\) 5.00000 + 8.66025i 0.214176 + 0.370965i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 1.00000 + 1.73205i 0.0427179 + 0.0739895i
\(549\) 0 0
\(550\) 12.0000 0.511682
\(551\) 0 0
\(552\) −3.00000 + 5.19615i −0.127688 + 0.221163i
\(553\) 5.50000 9.52628i 0.233884 0.405099i
\(554\) 26.0000 1.10463
\(555\) −2.00000 + 3.46410i −0.0848953 + 0.147043i
\(556\) −1.00000 1.73205i −0.0424094 0.0734553i
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) −4.00000 −0.169334
\(559\) 0 0
\(560\) −0.500000 + 0.866025i −0.0211289 + 0.0365963i
\(561\) 12.0000 0.506640
\(562\) −3.00000 + 5.19615i −0.126547 + 0.219186i
\(563\) −14.0000 + 24.2487i −0.590030 + 1.02196i 0.404198 + 0.914671i \(0.367551\pi\)
−0.994228 + 0.107290i \(0.965783\pi\)
\(564\) −8.00000 −0.336861
\(565\) 6.00000 0.252422
\(566\) 18.0000 0.756596
\(567\) −0.500000 0.866025i −0.0209980 0.0363696i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 0 0
\(573\) −2.00000 3.46410i −0.0835512 0.144715i
\(574\) 0 0
\(575\) −12.0000 + 20.7846i −0.500435 + 0.866778i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −1.50000 2.59808i −0.0624458 0.108159i 0.833112 0.553104i \(-0.186557\pi\)
−0.895558 + 0.444945i \(0.853223\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 2.50000 + 4.33013i 0.103896 + 0.179954i
\(580\) 0.500000 + 0.866025i 0.0207614 + 0.0359597i
\(581\) −6.00000 + 10.3923i −0.248922 + 0.431145i
\(582\) 9.00000 0.373062
\(583\) 16.5000 + 28.5788i 0.683360 + 1.18361i
\(584\) 7.00000 12.1244i 0.289662 0.501709i
\(585\) 0 0
\(586\) −9.50000 + 16.4545i −0.392441 + 0.679728i
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) −3.00000 5.19615i −0.123718 0.214286i
\(589\) 0 0
\(590\) 1.50000 2.59808i 0.0617540 0.106961i
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) 7.00000 + 12.1244i 0.287456 + 0.497888i 0.973202 0.229953i \(-0.0738573\pi\)
−0.685746 + 0.727841i \(0.740524\pi\)
\(594\) −1.50000 + 2.59808i −0.0615457 + 0.106600i
\(595\) −2.00000 + 3.46410i −0.0819920 + 0.142014i
\(596\) −5.00000 + 8.66025i −0.204808 + 0.354738i
\(597\) 1.50000 2.59808i 0.0613909 0.106332i
\(598\) 0 0
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) −2.00000 + 3.46410i −0.0816497 + 0.141421i
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) −3.00000 5.19615i −0.122271 0.211779i
\(603\) −2.00000 −0.0814463
\(604\) 8.50000 14.7224i 0.345860 0.599047i
\(605\) −2.00000 −0.0813116
\(606\) 1.50000 2.59808i 0.0609333 0.105540i
\(607\) 3.50000 + 6.06218i 0.142061 + 0.246056i 0.928272 0.371901i \(-0.121294\pi\)
−0.786212 + 0.617957i \(0.787961\pi\)
\(608\) 0 0
\(609\) 1.00000 0.0405220
\(610\) 0 0
\(611\) 0 0
\(612\) −2.00000 + 3.46410i −0.0808452 + 0.140028i
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) −8.00000 13.8564i −0.322854 0.559199i
\(615\) 0 0
\(616\) 1.50000 2.59808i 0.0604367 0.104679i
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) −0.500000 0.866025i −0.0201129 0.0348367i
\(619\) 2.00000 + 3.46410i 0.0803868 + 0.139234i 0.903416 0.428765i \(-0.141051\pi\)
−0.823029 + 0.567999i \(0.807718\pi\)
\(620\) −4.00000 −0.160644
\(621\) −3.00000 5.19615i −0.120386 0.208514i
\(622\) −14.0000 + 24.2487i −0.561349 + 0.972285i
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 3.50000 + 6.06218i 0.139888 + 0.242293i
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) 8.00000 13.8564i 0.318981 0.552491i
\(630\) −0.500000 0.866025i −0.0199205 0.0345033i
\(631\) 7.50000 + 12.9904i 0.298570 + 0.517139i 0.975809 0.218624i \(-0.0701569\pi\)
−0.677239 + 0.735763i \(0.736824\pi\)
\(632\) 5.50000 9.52628i 0.218778 0.378935i
\(633\) 10.0000 17.3205i 0.397464 0.688428i
\(634\) −1.50000 + 2.59808i −0.0595726 + 0.103183i
\(635\) −1.00000 −0.0396838
\(636\) −11.0000 −0.436178
\(637\) 0 0
\(638\) −1.50000 2.59808i −0.0593856 0.102859i
\(639\) 6.00000 0.237356
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 11.0000 0.434135
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 3.00000 + 5.19615i 0.118217 + 0.204757i
\(645\) 3.00000 + 5.19615i 0.118125 + 0.204598i
\(646\) 0 0
\(647\) 7.00000 12.1244i 0.275198 0.476658i −0.694987 0.719023i \(-0.744590\pi\)
0.970185 + 0.242365i \(0.0779231\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) −2.00000 + 3.46410i −0.0783862 + 0.135769i
\(652\) −18.0000 −0.704934
\(653\) 17.0000 0.665261 0.332631 0.943057i \(-0.392064\pi\)
0.332631 + 0.943057i \(0.392064\pi\)
\(654\) 10.0000 0.391031
\(655\) 7.00000 0.273513
\(656\) 0 0
\(657\) 7.00000 + 12.1244i 0.273096 + 0.473016i
\(658\) −4.00000 + 6.92820i −0.155936 + 0.270089i
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) −1.50000 + 2.59808i −0.0583874 + 0.101130i
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) −32.0000 −1.24372
\(663\) 0 0
\(664\) −6.00000 + 10.3923i −0.232845 + 0.403300i
\(665\) 0 0
\(666\) 2.00000 + 3.46410i 0.0774984 + 0.134231i
\(667\) 6.00000 0.232321
\(668\) 14.0000 0.541676
\(669\) −2.50000 14.7224i −0.0966556 0.569202i
\(670\) −2.00000 −0.0772667
\(671\) 0 0
\(672\) 0.500000 + 0.866025i 0.0192879 + 0.0334077i
\(673\) 9.00000 0.346925 0.173462 0.984841i \(-0.444505\pi\)
0.173462 + 0.984841i \(0.444505\pi\)
\(674\) −6.50000 + 11.2583i −0.250371 + 0.433655i
\(675\) −2.00000 3.46410i −0.0769800 0.133333i
\(676\) −13.0000 −0.500000
\(677\) 41.0000 1.57576 0.787879 0.615830i \(-0.211179\pi\)
0.787879 + 0.615830i \(0.211179\pi\)
\(678\) 3.00000 5.19615i 0.115214 0.199557i
\(679\) 4.50000 7.79423i 0.172694 0.299115i
\(680\) −2.00000 + 3.46410i −0.0766965 + 0.132842i
\(681\) −12.0000 20.7846i −0.459841 0.796468i
\(682\) 12.0000 0.459504
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) −13.0000 −0.496342
\(687\) −7.00000 + 12.1244i −0.267067 + 0.462573i
\(688\) −3.00000 5.19615i −0.114374 0.198101i
\(689\) 0 0
\(690\) −3.00000 5.19615i −0.114208 0.197814i
\(691\) −11.0000 + 19.0526i −0.418460 + 0.724793i −0.995785 0.0917209i \(-0.970763\pi\)
0.577325 + 0.816514i \(0.304097\pi\)
\(692\) 3.50000 + 6.06218i 0.133050 + 0.230449i
\(693\) 1.50000 + 2.59808i 0.0569803 + 0.0986928i
\(694\) −16.5000 28.5788i −0.626331 1.08484i
\(695\) 2.00000 0.0758643
\(696\) 1.00000 0.0379049
\(697\) 0 0
\(698\) 8.00000 13.8564i 0.302804 0.524473i
\(699\) −10.0000 −0.378235
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 4.00000 6.92820i 0.150649 0.260931i
\(706\) −7.00000 + 12.1244i −0.263448 + 0.456306i
\(707\) −1.50000 2.59808i −0.0564133 0.0977107i
\(708\) −1.50000 2.59808i −0.0563735 0.0976417i
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 6.00000 0.225176
\(711\) 5.50000 + 9.52628i 0.206266 + 0.357263i
\(712\) 0 0
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 2.00000 + 3.46410i 0.0748481 + 0.129641i
\(715\) 0 0
\(716\) 8.50000 14.7224i 0.317660 0.550203i
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) −4.00000 −0.149279
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −0.500000 0.866025i −0.0186339 0.0322749i
\(721\) −1.00000 −0.0372419
\(722\) 9.50000 16.4545i 0.353553 0.612372i
\(723\) −14.0000 −0.520666
\(724\) −8.00000 13.8564i −0.297318 0.514969i
\(725\) 4.00000 0.148556
\(726\) −1.00000 + 1.73205i −0.0371135 + 0.0642824i
\(727\) 8.00000 13.8564i 0.296704 0.513906i −0.678676 0.734438i \(-0.737446\pi\)
0.975380 + 0.220532i \(0.0707793\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 7.00000 + 12.1244i 0.259082 + 0.448743i
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 3.00000 + 5.19615i 0.110581 + 0.191533i
\(737\) 6.00000 0.221013
\(738\) 0 0
\(739\) 12.0000 20.7846i 0.441427 0.764574i −0.556369 0.830936i \(-0.687806\pi\)
0.997796 + 0.0663614i \(0.0211390\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) 0 0
\(742\) −5.50000 + 9.52628i −0.201911 + 0.349721i
\(743\) 18.0000 31.1769i 0.660356 1.14377i −0.320166 0.947361i \(-0.603739\pi\)
0.980522 0.196409i \(-0.0629279\pi\)
\(744\) −2.00000 + 3.46410i −0.0733236 + 0.127000i
\(745\) −5.00000 8.66025i −0.183186 0.317287i
\(746\) 9.00000 15.5885i 0.329513 0.570734i
\(747\) −6.00000 10.3923i −0.219529 0.380235i
\(748\) 6.00000 10.3923i 0.219382 0.379980i
\(749\) 5.50000 9.52628i 0.200966 0.348083i
\(750\) −4.50000 7.79423i −0.164317 0.284605i
\(751\) 17.0000 0.620339 0.310169 0.950681i \(-0.399614\pi\)
0.310169 + 0.950681i \(0.399614\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) 3.50000 + 6.06218i 0.127547 + 0.220918i
\(754\) 0 0
\(755\) 8.50000 + 14.7224i 0.309347 + 0.535804i
\(756\) −1.00000 −0.0363696
\(757\) 11.0000 19.0526i 0.399802 0.692477i −0.593899 0.804539i \(-0.702412\pi\)
0.993701 + 0.112062i \(0.0357456\pi\)
\(758\) −17.0000 29.4449i −0.617468 1.06949i
\(759\) 9.00000 + 15.5885i 0.326679 + 0.565825i
\(760\) 0 0
\(761\) −7.00000 12.1244i −0.253750 0.439508i 0.710805 0.703389i \(-0.248331\pi\)
−0.964555 + 0.263881i \(0.914997\pi\)
\(762\) −0.500000 + 0.866025i −0.0181131 + 0.0313728i
\(763\) 5.00000 8.66025i 0.181012 0.313522i
\(764\) −4.00000 −0.144715
\(765\) −2.00000 3.46410i −0.0723102 0.125245i
\(766\) −4.00000 + 6.92820i −0.144526 + 0.250326i
\(767\) 0 0
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 27.0000 + 46.7654i 0.973645 + 1.68640i 0.684336 + 0.729167i \(0.260092\pi\)
0.289309 + 0.957236i \(0.406575\pi\)
\(770\) 1.50000 + 2.59808i 0.0540562 + 0.0936282i
\(771\) −4.00000 6.92820i −0.144056 0.249513i
\(772\) 5.00000 0.179954
\(773\) 39.0000 1.40273 0.701366 0.712801i \(-0.252574\pi\)
0.701366 + 0.712801i \(0.252574\pi\)
\(774\) 6.00000 0.215666
\(775\) −8.00000 + 13.8564i −0.287368 + 0.497737i
\(776\) 4.50000 7.79423i 0.161541 0.279797i
\(777\) 4.00000 0.143499
\(778\) −12.5000 + 21.6506i −0.448147 + 0.776213i
\(779\) 0 0
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 12.0000 + 20.7846i 0.429119 + 0.743256i
\(783\) −0.500000 + 0.866025i −0.0178685 + 0.0309492i
\(784\) −6.00000 −0.214286
\(785\) −2.00000 + 3.46410i −0.0713831 + 0.123639i
\(786\) 3.50000 6.06218i 0.124841 0.216231i
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 2.00000 0.0712470
\(789\) 10.0000 0.356009
\(790\) 5.50000 + 9.52628i 0.195681 + 0.338930i
\(791\) −3.00000 5.19615i −0.106668 0.184754i
\(792\) 1.50000 + 2.59808i 0.0533002 + 0.0923186i
\(793\) 0 0
\(794\) −8.00000 −0.283909
\(795\) 5.50000 9.52628i 0.195065 0.337862i
\(796\) −1.50000 2.59808i −0.0531661 0.0920864i
\(797\) 21.0000 0.743858 0.371929 0.928261i \(-0.378696\pi\)
0.371929 + 0.928261i \(0.378696\pi\)
\(798\) 0 0
\(799\) −16.0000 + 27.7128i −0.566039 + 0.980409i
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 0 0
\(802\) 10.0000 + 17.3205i 0.353112 + 0.611608i
\(803\) −21.0000 36.3731i −0.741074 1.28358i
\(804\) −1.00000 + 1.73205i −0.0352673 + 0.0610847i
\(805\) −6.00000 −0.211472
\(806\) 0 0
\(807\) 5.00000 8.66025i 0.176008 0.304855i
\(808\) −1.50000 2.59808i −0.0527698 0.0914000i
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) 1.00000 0.0351364
\(811\) 13.0000 + 22.5167i 0.456492 + 0.790667i 0.998773 0.0495304i \(-0.0157725\pi\)
−0.542281 + 0.840197i \(0.682439\pi\)
\(812\) 0.500000 0.866025i 0.0175466 0.0303915i
\(813\) 0 0
\(814\) −6.00000 10.3923i −0.210300 0.364250i
\(815\) 9.00000 15.5885i 0.315256 0.546040i
\(816\) 2.00000 + 3.46410i 0.0700140 + 0.121268i
\(817\) 0 0
\(818\) −3.50000 + 6.06218i −0.122375 + 0.211959i
\(819\) 0 0
\(820\) 0 0
\(821\) 3.00000 + 5.19615i 0.104701 + 0.181347i 0.913616 0.406578i \(-0.133278\pi\)
−0.808915 + 0.587925i \(0.799945\pi\)
\(822\) −1.00000 + 1.73205i −0.0348790 + 0.0604122i
\(823\) −16.0000 + 27.7128i −0.557725 + 0.966008i 0.439961 + 0.898017i \(0.354992\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) −1.00000 −0.0348367
\(825\) 6.00000 + 10.3923i 0.208893 + 0.361814i
\(826\) −3.00000 −0.104383
\(827\) 0.500000 0.866025i 0.0173867 0.0301147i −0.857201 0.514982i \(-0.827799\pi\)
0.874588 + 0.484867i \(0.161132\pi\)
\(828\) −6.00000 −0.208514
\(829\) 14.0000 24.2487i 0.486240 0.842193i −0.513635 0.858009i \(-0.671701\pi\)
0.999875 + 0.0158163i \(0.00503471\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) 13.0000 + 22.5167i 0.450965 + 0.781094i
\(832\) 0 0
\(833\) −24.0000 −0.831551
\(834\) 1.00000 1.73205i 0.0346272 0.0599760i
\(835\) −7.00000 + 12.1244i −0.242245 + 0.419581i
\(836\) 0 0
\(837\) −2.00000 3.46410i −0.0691301 0.119737i
\(838\) 28.0000 0.967244
\(839\) −6.00000 + 10.3923i −0.207143 + 0.358782i −0.950813 0.309764i \(-0.899750\pi\)
0.743670 + 0.668546i \(0.233083\pi\)
\(840\) −1.00000 −0.0345033
\(841\) 14.0000 + 24.2487i 0.482759 + 0.836162i
\(842\) 4.00000 + 6.92820i 0.137849 + 0.238762i
\(843\) −6.00000 −0.206651
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) 6.50000 11.2583i 0.223607 0.387298i
\(846\) −4.00000 6.92820i −0.137523 0.238197i
\(847\) 1.00000 + 1.73205i 0.0343604 + 0.0595140i
\(848\) −5.50000 + 9.52628i −0.188871 + 0.327134i
\(849\) 9.00000 + 15.5885i 0.308879 + 0.534994i
\(850\) 8.00000 + 13.8564i 0.274398 + 0.475271i
\(851\) 24.0000 0.822709
\(852\) 3.00000 5.19615i 0.102778 0.178017i
\(853\) 13.0000 + 22.5167i 0.445112 + 0.770956i 0.998060 0.0622597i \(-0.0198307\pi\)
−0.552948 + 0.833215i \(0.686497\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 5.50000 9.52628i 0.187986 0.325602i
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 6.00000 0.204598
\(861\) 0 0
\(862\) −2.00000 −0.0681203
\(863\) −19.0000 + 32.9090i −0.646768 + 1.12023i 0.337123 + 0.941461i \(0.390546\pi\)
−0.983890 + 0.178774i \(0.942787\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −7.00000 −0.238007
\(866\) −7.00000 −0.237870
\(867\) −0.500000 0.866025i −0.0169809 0.0294118i
\(868\) 2.00000 + 3.46410i 0.0678844 + 0.117579i
\(869\) −16.5000 28.5788i −0.559724 0.969471i
\(870\) −0.500000 + 0.866025i −0.0169516 + 0.0293610i
\(871\) 0 0
\(872\) 5.00000 8.66025i 0.169321 0.293273i
\(873\) 4.50000 + 7.79423i 0.152302 + 0.263795i
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 14.0000 0.473016
\(877\) −4.00000 −0.135070 −0.0675352 0.997717i \(-0.521513\pi\)
−0.0675352 + 0.997717i \(0.521513\pi\)
\(878\) −15.0000 −0.506225
\(879\) −19.0000 −0.640854
\(880\) 1.50000 + 2.59808i 0.0505650 + 0.0875811i
\(881\) −27.0000 + 46.7654i −0.909653 + 1.57557i −0.0951067 + 0.995467i \(0.530319\pi\)
−0.814546 + 0.580098i \(0.803014\pi\)
\(882\) 3.00000 5.19615i 0.101015 0.174964i
\(883\) −10.0000 + 17.3205i −0.336527 + 0.582882i −0.983777 0.179396i \(-0.942586\pi\)
0.647250 + 0.762278i \(0.275919\pi\)
\(884\) 0 0
\(885\) 3.00000 0.100844
\(886\) −14.5000 25.1147i −0.487137 0.843746i
\(887\) 24.0000 41.5692i 0.805841 1.39576i −0.109881 0.993945i \(-0.535047\pi\)
0.915722 0.401813i \(-0.131620\pi\)
\(888\) 4.00000 0.134231
\(889\) 0.500000 + 0.866025i 0.0167695 + 0.0290456i
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) −14.0000 5.19615i −0.468755 0.173980i
\(893\) 0 0
\(894\) −10.0000 −0.334450
\(895\) 8.50000 + 14.7224i 0.284124 + 0.492117i
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 18.0000 + 31.1769i 0.600668 + 1.04039i
\(899\) 4.00000 0.133407
\(900\) −4.00000 −0.133333
\(901\) −22.0000 + 38.1051i −0.732926 + 1.26947i
\(902\) 0 0
\(903\) 3.00000 5.19615i 0.0998337 0.172917i
\(904\) −3.00000 5.19615i −0.0997785 0.172821i
\(905\) 16.0000 0.531858
\(906\) 17.0000 0.564787
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −24.0000 −0.796468
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) 11.0000 + 19.0526i 0.364446 + 0.631239i 0.988687 0.149992i \(-0.0479250\pi\)
−0.624241 + 0.781232i \(0.714592\pi\)
\(912\) 0 0
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) 9.00000 15.5885i 0.297694 0.515620i
\(915\) 0 0
\(916\) 7.00000 + 12.1244i 0.231287 + 0.400600i
\(917\) −3.50000 6.06218i −0.115580 0.200191i
\(918\) −4.00000 −0.132020
\(919\) −39.0000 −1.28649 −0.643246 0.765660i \(-0.722413\pi\)
−0.643246 + 0.765660i \(0.722413\pi\)
\(920\) −6.00000 −0.197814
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 14.0000 0.461065
\(923\) 0 0
\(924\) 3.00000 0.0986928
\(925\) 16.0000 0.526077
\(926\) 23.0000 0.755827
\(927\) 0.500000 0.866025i 0.0164222 0.0284440i
\(928\) 0.500000 0.866025i 0.0164133 0.0284287i
\(929\) 10.0000 17.3205i 0.328089 0.568267i −0.654043 0.756457i \(-0.726929\pi\)
0.982133 + 0.188190i \(0.0602620\pi\)
\(930\) −2.00000 3.46410i −0.0655826 0.113592i
\(931\) 0 0
\(932\) −5.00000 + 8.66025i −0.163780 + 0.283676i
\(933\) −28.0000 −0.916679
\(934\) 10.5000 + 18.1865i 0.343570 + 0.595082i
\(935\) 6.00000 + 10.3923i 0.196221 + 0.339865i
\(936\) 0 0
\(937\) 2.50000 + 4.33013i 0.0816714 + 0.141459i 0.903968 0.427600i \(-0.140641\pi\)
−0.822297 + 0.569059i \(0.807308\pi\)
\(938\) 1.00000 + 1.73205i 0.0326512 + 0.0565535i
\(939\) −3.50000 + 6.06218i −0.114218 + 0.197832i
\(940\) −4.00000 6.92820i −0.130466 0.225973i
\(941\) −3.00000 −0.0977972 −0.0488986 0.998804i \(-0.515571\pi\)
−0.0488986 + 0.998804i \(0.515571\pi\)
\(942\) 2.00000 + 3.46410i 0.0651635 + 0.112867i
\(943\) 0 0
\(944\) −3.00000 −0.0976417
\(945\) 0.500000 0.866025i 0.0162650 0.0281718i
\(946\) −18.0000 −0.585230
\(947\) −28.5000 49.3634i −0.926126 1.60410i −0.789741 0.613441i \(-0.789785\pi\)
−0.136385 0.990656i \(-0.543548\pi\)
\(948\) 11.0000 0.357263
\(949\) 0 0
\(950\) 0 0
\(951\) −3.00000 −0.0972817
\(952\) 4.00000 0.129641
\(953\) 18.0000 + 31.1769i 0.583077 + 1.00992i 0.995112 + 0.0987513i \(0.0314848\pi\)
−0.412035 + 0.911168i \(0.635182\pi\)
\(954\) −5.50000 9.52628i −0.178069 0.308425i
\(955\) 2.00000 3.46410i 0.0647185 0.112096i
\(956\) −12.0000 −0.388108
\(957\) 1.50000 2.59808i 0.0484881 0.0839839i
\(958\) −24.0000 −0.775405
\(959\) 1.00000 + 1.73205i 0.0322917 + 0.0559308i
\(960\) −1.00000 −0.0322749
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 0 0
\(963\) 5.50000 + 9.52628i 0.177235 + 0.306980i
\(964\) −7.00000 + 12.1244i −0.225455 + 0.390499i
\(965\) −2.50000 + 4.33013i −0.0804778 + 0.139392i
\(966\) −3.00000 + 5.19615i −0.0965234 + 0.167183i
\(967\) 4.00000 6.92820i 0.128631 0.222796i −0.794515 0.607244i \(-0.792275\pi\)
0.923147 + 0.384448i \(0.125608\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) 4.50000 + 7.79423i 0.144486 + 0.250258i
\(971\) 6.50000 11.2583i 0.208595 0.361297i −0.742677 0.669650i \(-0.766444\pi\)
0.951272 + 0.308353i \(0.0997776\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) −1.00000 1.73205i −0.0320585 0.0555270i
\(974\) 5.00000 0.160210
\(975\) 0 0
\(976\) 0 0
\(977\) 12.0000 20.7846i 0.383914 0.664959i −0.607704 0.794164i \(-0.707909\pi\)
0.991618 + 0.129205i \(0.0412426\pi\)
\(978\) −9.00000 15.5885i −0.287788 0.498464i
\(979\) 0 0
\(980\) 3.00000 5.19615i 0.0958315 0.165985i
\(981\) 5.00000 + 8.66025i 0.159638 + 0.276501i
\(982\) −10.0000 17.3205i −0.319113 0.552720i
\(983\) 18.0000 0.574111 0.287055 0.957914i \(-0.407324\pi\)
0.287055 + 0.957914i \(0.407324\pi\)
\(984\) 0 0
\(985\) −1.00000 + 1.73205i −0.0318626 + 0.0551877i
\(986\) 2.00000 3.46410i 0.0636930 0.110319i
\(987\) −8.00000 −0.254643
\(988\) 0 0
\(989\) 18.0000 31.1769i 0.572367 0.991368i
\(990\) −3.00000 −0.0953463
\(991\) 18.5000 + 32.0429i 0.587672 + 1.01788i 0.994537 + 0.104389i \(0.0332887\pi\)
−0.406865 + 0.913488i \(0.633378\pi\)
\(992\) 2.00000 + 3.46410i 0.0635001 + 0.109985i
\(993\) −16.0000 27.7128i −0.507745 0.879440i
\(994\) −3.00000 5.19615i −0.0951542 0.164812i
\(995\) 3.00000 0.0951064
\(996\) −12.0000 −0.380235
\(997\) 4.00000 0.126681 0.0633406 0.997992i \(-0.479825\pi\)
0.0633406 + 0.997992i \(0.479825\pi\)
\(998\) −5.00000 + 8.66025i −0.158272 + 0.274136i
\(999\) −2.00000 + 3.46410i −0.0632772 + 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.c.1075.1 yes 2
223.39 even 3 inner 1338.2.e.c.931.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.c.931.1 2 223.39 even 3 inner
1338.2.e.c.1075.1 yes 2 1.1 even 1 trivial