gp: [N,k,chi] = [1332,1,Mod(559,1332)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1332.559");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 1]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1332 Z ) × \left(\mathbb{Z}/1332\mathbb{Z}\right)^\times ( Z / 1 3 3 2 Z ) × .
n n n
667 667 6 6 7
1037 1037 1 0 3 7
1297 1297 1 2 9 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− ζ 36 8 -\zeta_{36}^{8} − ζ 3 6 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 1332 , [ χ ] ) S_{1}^{\mathrm{new}}(1332, [\chi]) S 1 n e w ( 1 3 3 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 − T 6 + 1 T^{12} - T^{6} + 1 T 1 2 − T 6 + 1
T^12 - T^6 + 1
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 − 3 T 10 + ⋯ + 1 T^{12} - 3 T^{10} + \cdots + 1 T 1 2 − 3 T 1 0 + ⋯ + 1
T^12 - 3*T^10 - 6*T^8 + 8*T^6 + 69*T^4 + 3*T^2 + 1
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
( T 6 − 9 T 3 + 27 ) 2 (T^{6} - 9 T^{3} + 27)^{2} ( T 6 − 9 T 3 + 2 7 ) 2
(T^6 - 9*T^3 + 27)^2
17 17 1 7
T 12 − 3 T 10 + ⋯ + 1 T^{12} - 3 T^{10} + \cdots + 1 T 1 2 − 3 T 1 0 + ⋯ + 1
T^12 - 3*T^10 - 6*T^8 + 8*T^6 + 69*T^4 + 3*T^2 + 1
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 − 6 T 10 + ⋯ + 1 T^{12} - 6 T^{10} + \cdots + 1 T 1 2 − 6 T 1 0 + ⋯ + 1
T^12 - 6*T^10 + 27*T^8 - 52*T^6 + 75*T^4 - 9*T^2 + 1
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
( T 6 − T 3 + 1 ) 2 (T^{6} - T^{3} + 1)^{2} ( T 6 − T 3 + 1 ) 2
(T^6 - T^3 + 1)^2
41 41 4 1
T 12 − 3 T 10 + ⋯ + 9 T^{12} - 3 T^{10} + \cdots + 9 T 1 2 − 3 T 1 0 + ⋯ + 9
T^12 - 3*T^10 + 18*T^8 - 24*T^6 + 9*T^4 + 27*T^2 + 9
43 43 4 3
T 12 T^{12} T 1 2
T^12
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 + 27 T 6 + 729 T^{12} + 27T^{6} + 729 T 1 2 + 2 7 T 6 + 7 2 9
T^12 + 27*T^6 + 729
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
( T 6 + 6 T 5 + 15 T 4 + ⋯ + 3 ) 2 (T^{6} + 6 T^{5} + 15 T^{4} + \cdots + 3)^{2} ( T 6 + 6 T 5 + 1 5 T 4 + ⋯ + 3 ) 2
(T^6 + 6*T^5 + 15*T^4 + 21*T^3 + 18*T^2 + 9*T + 3)^2
67 67 6 7
T 12 T^{12} T 1 2
T^12
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
( T + 1 ) 12 (T + 1)^{12} ( T + 1 ) 1 2
(T + 1)^12
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
T 12 + 6 T 10 + ⋯ + 1 T^{12} + 6 T^{10} + \cdots + 1 T 1 2 + 6 T 1 0 + ⋯ + 1
T^12 + 6*T^10 + 21*T^8 + 35*T^6 + 60*T^4 - 15*T^2 + 1
97 97 9 7
( T 6 − 3 T 4 + 9 T 2 + ⋯ + 3 ) 2 (T^{6} - 3 T^{4} + 9 T^{2} + \cdots + 3)^{2} ( T 6 − 3 T 4 + 9 T 2 + ⋯ + 3 ) 2
(T^6 - 3*T^4 + 9*T^2 + 9*T + 3)^2
show more
show less