Properties

Label 1332.1.cy.a
Level 13321332
Weight 11
Character orbit 1332.cy
Analytic conductor 0.6650.665
Analytic rank 00
Dimension 1212
Projective image D18D_{18}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1332,1,Mod(559,1332)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1332.559"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1332, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 1332=223237 1332 = 2^{2} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1332.cy (of order 1818, degree 66, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6647545968270.664754596827
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D18D_{18}
Projective field: Galois closure of Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ3613q2ζ368q4+(ζ3615ζ367)q5+ζ363q8+(ζ3610+ζ362)q10+(ζ3614+ζ362)q13++ζ3617q98+O(q100) q + \zeta_{36}^{13} q^{2} - \zeta_{36}^{8} q^{4} + ( - \zeta_{36}^{15} - \zeta_{36}^{7}) q^{5} + \zeta_{36}^{3} q^{8} + (\zeta_{36}^{10} + \zeta_{36}^{2}) q^{10} + ( - \zeta_{36}^{14} + \zeta_{36}^{2}) q^{13} + \cdots + \zeta_{36}^{17} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q25+6q34+12q406q5812q61+6q6412q736q85+O(q100) 12 q + 6 q^{25} + 6 q^{34} + 12 q^{40} - 6 q^{58} - 12 q^{61} + 6 q^{64} - 12 q^{73} - 6 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1332Z)×\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times.

nn 667667 10371037 12971297
χ(n)\chi(n) 1-1 11 ζ368-\zeta_{36}^{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
559.1
0.342020 + 0.939693i
−0.342020 0.939693i
0.984808 + 0.173648i
−0.984808 0.173648i
−0.642788 + 0.766044i
0.642788 0.766044i
0.342020 0.939693i
−0.342020 + 0.939693i
0.984808 0.173648i
−0.984808 + 0.173648i
−0.642788 0.766044i
0.642788 + 0.766044i
−0.984808 0.173648i 0 0.939693 + 0.342020i −0.223238 0.266044i 0 0 −0.866025 0.500000i 0 0.173648 + 0.300767i
559.2 0.984808 + 0.173648i 0 0.939693 + 0.342020i 0.223238 + 0.266044i 0 0 0.866025 + 0.500000i 0 0.173648 + 0.300767i
595.1 −0.642788 + 0.766044i 0 −0.173648 0.984808i 0.524005 1.43969i 0 0 0.866025 + 0.500000i 0 0.766044 + 1.32683i
595.2 0.642788 0.766044i 0 −0.173648 0.984808i −0.524005 + 1.43969i 0 0 −0.866025 0.500000i 0 0.766044 + 1.32683i
955.1 −0.342020 0.939693i 0 −0.766044 + 0.642788i 1.85083 0.326352i 0 0 0.866025 + 0.500000i 0 −0.939693 1.62760i
955.2 0.342020 + 0.939693i 0 −0.766044 + 0.642788i −1.85083 + 0.326352i 0 0 −0.866025 0.500000i 0 −0.939693 1.62760i
1027.1 −0.984808 + 0.173648i 0 0.939693 0.342020i −0.223238 + 0.266044i 0 0 −0.866025 + 0.500000i 0 0.173648 0.300767i
1027.2 0.984808 0.173648i 0 0.939693 0.342020i 0.223238 0.266044i 0 0 0.866025 0.500000i 0 0.173648 0.300767i
1135.1 −0.642788 0.766044i 0 −0.173648 + 0.984808i 0.524005 + 1.43969i 0 0 0.866025 0.500000i 0 0.766044 1.32683i
1135.2 0.642788 + 0.766044i 0 −0.173648 + 0.984808i −0.524005 1.43969i 0 0 −0.866025 + 0.500000i 0 0.766044 1.32683i
1279.1 −0.342020 + 0.939693i 0 −0.766044 0.642788i 1.85083 + 0.326352i 0 0 0.866025 0.500000i 0 −0.939693 + 1.62760i
1279.2 0.342020 0.939693i 0 −0.766044 0.642788i −1.85083 0.326352i 0 0 −0.866025 + 0.500000i 0 −0.939693 + 1.62760i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 559.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
3.b odd 2 1 inner
12.b even 2 1 inner
37.h even 18 1 inner
111.n odd 18 1 inner
148.o odd 18 1 inner
444.ba even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.1.cy.a 12
3.b odd 2 1 inner 1332.1.cy.a 12
4.b odd 2 1 CM 1332.1.cy.a 12
12.b even 2 1 inner 1332.1.cy.a 12
37.h even 18 1 inner 1332.1.cy.a 12
111.n odd 18 1 inner 1332.1.cy.a 12
148.o odd 18 1 inner 1332.1.cy.a 12
444.ba even 18 1 inner 1332.1.cy.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1332.1.cy.a 12 1.a even 1 1 trivial
1332.1.cy.a 12 3.b odd 2 1 inner
1332.1.cy.a 12 4.b odd 2 1 CM
1332.1.cy.a 12 12.b even 2 1 inner
1332.1.cy.a 12 37.h even 18 1 inner
1332.1.cy.a 12 111.n odd 18 1 inner
1332.1.cy.a 12 148.o odd 18 1 inner
1332.1.cy.a 12 444.ba even 18 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(1332,[χ])S_{1}^{\mathrm{new}}(1332, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 (T69T3+27)2 (T^{6} - 9 T^{3} + 27)^{2} Copy content Toggle raw display
1717 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T126T10++1 T^{12} - 6 T^{10} + \cdots + 1 Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 (T6T3+1)2 (T^{6} - T^{3} + 1)^{2} Copy content Toggle raw display
4141 T123T10++9 T^{12} - 3 T^{10} + \cdots + 9 Copy content Toggle raw display
4343 T12 T^{12} Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12+27T6+729 T^{12} + 27T^{6} + 729 Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 (T6+6T5+15T4++3)2 (T^{6} + 6 T^{5} + 15 T^{4} + \cdots + 3)^{2} Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12+6T10++1 T^{12} + 6 T^{10} + \cdots + 1 Copy content Toggle raw display
9797 (T63T4+9T2++3)2 (T^{6} - 3 T^{4} + 9 T^{2} + \cdots + 3)^{2} Copy content Toggle raw display
show more
show less