L(s) = 1 | + (0.342 + 0.939i)2-s + (−0.766 + 0.642i)4-s + (−1.85 + 0.326i)5-s + (−0.866 − 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (0.223 − 0.266i)17-s + (1.20 − 1.43i)20-s + (2.37 − 0.866i)25-s + (0.866 − 1.5i)26-s + (−1.32 − 0.766i)29-s + (0.984 − 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)2-s + (−0.766 + 0.642i)4-s + (−1.85 + 0.326i)5-s + (−0.866 − 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (0.223 − 0.266i)17-s + (1.20 − 1.43i)20-s + (2.37 − 0.866i)25-s + (0.866 − 1.5i)26-s + (−1.32 − 0.766i)29-s + (0.984 − 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1484776551\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1484776551\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
good | 5 | \( 1 + (1.85 - 0.326i)T + (0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.11 + 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.223 + 0.266i)T + (-0.173 - 0.984i)T^{2} \) |
| 19 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.32 + 0.766i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + (1.50 - 1.26i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.300 + 1.70i)T + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.826 + 0.984i)T + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (0.342 + 0.0603i)T + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (1.11 - 0.642i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.512800072926985457711790289823, −8.300614669374624654837375377130, −7.940813642335793391490244816411, −7.31174692871311190644834479971, −6.57099826215185232488450763123, −5.29610198675057389635128727874, −4.65808356905683576052580813405, −3.60737644772836552752057974466, −3.00727802675953916301937005507, −0.11103136883465495902577872729,
1.73088625354638740626264968758, 3.15157393074846093360962540061, 3.98224812108834810216967363424, 4.58043183149951077203414170309, 5.45617935181474961044265020713, 6.94973767003604753699512512426, 7.54968499494940213162913602180, 8.665087545804501766413381460945, 9.093190841098215696476844234403, 10.16011602300317674855038383064