Properties

Label 1332.955
Modulus $1332$
Conductor $148$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1332, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(955,1332))
 

Basic properties

Modulus: \(1332\)
Conductor: \(148\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{148}(67,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1332.cy

\(\chi_{1332}(559,\cdot)\) \(\chi_{1332}(595,\cdot)\) \(\chi_{1332}(955,\cdot)\) \(\chi_{1332}(1027,\cdot)\) \(\chi_{1332}(1135,\cdot)\) \(\chi_{1332}(1279,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.119665574759900159778264689410048.1

Values on generators

\((667,1037,1297)\) → \((-1,1,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1332 }(955, a) \) \(-1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1332 }(955,a) \;\) at \(\;a = \) e.g. 2