Properties

Label 133.2.s.d.103.1
Level $133$
Weight $2$
Character 133.103
Analytic conductor $1.062$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [133,2,Mod(31,133)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(133, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("133.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06201034688\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 26x^{14} + 265x^{12} + 1335x^{10} + 3450x^{8} + 4344x^{6} + 2376x^{4} + 423x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 103.1
Root \(2.69097i\) of defining polynomial
Character \(\chi\) \(=\) 133.103
Dual form 133.2.s.d.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.33045 + 1.34549i) q^{2} -1.67620 q^{3} +(2.62067 - 4.53913i) q^{4} +(0.109680 - 0.0633240i) q^{5} +(3.90630 - 2.25530i) q^{6} +(2.64467 - 0.0757760i) q^{7} +8.72235i q^{8} -0.190360 q^{9} +O(q^{10})\) \(q+(-2.33045 + 1.34549i) q^{2} -1.67620 q^{3} +(2.62067 - 4.53913i) q^{4} +(0.109680 - 0.0633240i) q^{5} +(3.90630 - 2.25530i) q^{6} +(2.64467 - 0.0757760i) q^{7} +8.72235i q^{8} -0.190360 q^{9} +(-0.170403 + 0.295147i) q^{10} +(-0.136041 - 0.235630i) q^{11} +(-4.39276 + 7.60848i) q^{12} +(2.09320 + 3.62554i) q^{13} +(-6.06131 + 3.73495i) q^{14} +(-0.183846 + 0.106144i) q^{15} +(-6.49447 - 11.2487i) q^{16} +3.99752i q^{17} +(0.443624 - 0.256127i) q^{18} +(4.28308 + 0.809469i) q^{19} -0.663805i q^{20} +(-4.43298 + 0.127016i) q^{21} +(0.634074 + 0.366083i) q^{22} +5.90199 q^{23} -14.6204i q^{24} +(-2.49198 + 4.31624i) q^{25} +(-9.75622 - 5.63276i) q^{26} +5.34768 q^{27} +(6.58683 - 12.2031i) q^{28} +(6.55245 - 3.78306i) q^{29} +(0.285630 - 0.494725i) q^{30} +(0.804591 + 1.39359i) q^{31} +(15.1625 + 8.75408i) q^{32} +(0.228032 + 0.394963i) q^{33} +(-5.37860 - 9.31601i) q^{34} +(0.285270 - 0.175782i) q^{35} +(-0.498870 + 0.864068i) q^{36} +(-8.34178 - 4.81613i) q^{37} +(-11.0706 + 3.87640i) q^{38} +(-3.50862 - 6.07712i) q^{39} +(0.552334 + 0.956671i) q^{40} +(-2.22506 + 3.85392i) q^{41} +(10.1600 - 6.26052i) q^{42} +(0.387957 - 0.671961i) q^{43} -1.42607 q^{44} +(-0.0208788 + 0.0120544i) q^{45} +(-13.7543 + 7.94105i) q^{46} +1.57697i q^{47} +(10.8860 + 18.8551i) q^{48} +(6.98852 - 0.400805i) q^{49} -13.4117i q^{50} -6.70063i q^{51} +21.9424 q^{52} +(-3.05534 - 1.76400i) q^{53} +(-12.4625 + 7.19522i) q^{54} +(-0.0298421 - 0.0172293i) q^{55} +(0.660945 + 23.0677i) q^{56} +(-7.17929 - 1.35683i) q^{57} +(-10.1801 + 17.6325i) q^{58} +4.88026 q^{59} +1.11267i q^{60} +0.160767i q^{61} +(-3.75012 - 2.16513i) q^{62} +(-0.503438 + 0.0144247i) q^{63} -21.1361 q^{64} +(0.459167 + 0.265100i) q^{65} +(-1.06283 - 0.613627i) q^{66} +(-5.79400 - 3.34517i) q^{67} +(18.1452 + 10.4762i) q^{68} -9.89291 q^{69} +(-0.428295 + 0.793478i) q^{70} +(-5.63464 - 3.25316i) q^{71} -1.66038i q^{72} +14.8619i q^{73} +25.9201 q^{74} +(4.17705 - 7.23487i) q^{75} +(14.8988 - 17.3201i) q^{76} +(-0.377638 - 0.612854i) q^{77} +(16.3534 + 9.44162i) q^{78} +(9.55897 - 5.51887i) q^{79} +(-1.42463 - 0.822512i) q^{80} -8.39268 q^{81} -11.9752i q^{82} -17.7150i q^{83} +(-11.0408 + 20.4548i) q^{84} +(0.253139 + 0.438449i) q^{85} +2.08796i q^{86} +(-10.9832 + 6.34116i) q^{87} +(2.05525 - 1.18660i) q^{88} +1.98873 q^{89} +(0.0324379 - 0.0561842i) q^{90} +(5.81055 + 9.42972i) q^{91} +(15.4672 - 26.7899i) q^{92} +(-1.34865 - 2.33594i) q^{93} +(-2.12179 - 3.67505i) q^{94} +(0.521029 - 0.182439i) q^{95} +(-25.4154 - 14.6736i) q^{96} +(-5.94274 + 10.2931i) q^{97} +(-15.7471 + 10.3370i) q^{98} +(0.0258967 + 0.0448545i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{3} + 10 q^{4} + 9 q^{5} - 6 q^{6} + 2 q^{7} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{3} + 10 q^{4} + 9 q^{5} - 6 q^{6} + 2 q^{7} + 16 q^{9} - 2 q^{10} - 9 q^{11} - 17 q^{12} + 15 q^{13} + 3 q^{14} - 12 q^{15} - 22 q^{16} - 3 q^{18} + 8 q^{19} - 10 q^{21} - 27 q^{22} + 30 q^{23} + 13 q^{25} - 9 q^{26} - 38 q^{27} + 35 q^{28} - 18 q^{29} - 32 q^{30} - 27 q^{31} + 27 q^{32} - 12 q^{33} - 16 q^{34} - 6 q^{35} + 4 q^{36} - 39 q^{37} + 27 q^{38} - 9 q^{39} + 9 q^{40} + 9 q^{41} + 48 q^{42} - 9 q^{43} + 18 q^{44} + 75 q^{45} - 36 q^{46} + 35 q^{48} - 8 q^{49} + 18 q^{53} - 18 q^{54} + 15 q^{56} - 22 q^{57} - 20 q^{58} + 18 q^{59} - 45 q^{62} - 46 q^{63} - 22 q^{64} - 36 q^{65} - 45 q^{66} + 18 q^{67} + 63 q^{68} + 30 q^{69} - 19 q^{70} - 9 q^{71} + 18 q^{74} + 10 q^{75} + 98 q^{76} + 30 q^{77} + 54 q^{78} + 21 q^{79} + 27 q^{80} + 40 q^{81} - 34 q^{84} + 31 q^{85} - 48 q^{87} + 18 q^{88} + 24 q^{89} + 28 q^{90} + 15 q^{91} + 54 q^{92} + 6 q^{93} - 49 q^{94} - 66 q^{95} - 69 q^{96} + q^{97} + 15 q^{98} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/133\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(115\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.33045 + 1.34549i −1.64788 + 0.951403i −0.669964 + 0.742394i \(0.733690\pi\)
−0.977914 + 0.209009i \(0.932976\pi\)
\(3\) −1.67620 −0.967753 −0.483877 0.875136i \(-0.660772\pi\)
−0.483877 + 0.875136i \(0.660772\pi\)
\(4\) 2.62067 4.53913i 1.31033 2.26957i
\(5\) 0.109680 0.0633240i 0.0490506 0.0283194i −0.475274 0.879838i \(-0.657651\pi\)
0.524325 + 0.851518i \(0.324318\pi\)
\(6\) 3.90630 2.25530i 1.59474 0.920723i
\(7\) 2.64467 0.0757760i 0.999590 0.0286406i
\(8\) 8.72235i 3.08382i
\(9\) −0.190360 −0.0634533
\(10\) −0.170403 + 0.295147i −0.0538863 + 0.0933337i
\(11\) −0.136041 0.235630i −0.0410179 0.0710451i 0.844788 0.535102i \(-0.179727\pi\)
−0.885806 + 0.464057i \(0.846393\pi\)
\(12\) −4.39276 + 7.60848i −1.26808 + 2.19638i
\(13\) 2.09320 + 3.62554i 0.580550 + 1.00554i 0.995414 + 0.0956592i \(0.0304959\pi\)
−0.414864 + 0.909884i \(0.636171\pi\)
\(14\) −6.06131 + 3.73495i −1.61995 + 0.998209i
\(15\) −0.183846 + 0.106144i −0.0474689 + 0.0274062i
\(16\) −6.49447 11.2487i −1.62362 2.81219i
\(17\) 3.99752i 0.969540i 0.874642 + 0.484770i \(0.161097\pi\)
−0.874642 + 0.484770i \(0.838903\pi\)
\(18\) 0.443624 0.256127i 0.104563 0.0603696i
\(19\) 4.28308 + 0.809469i 0.982606 + 0.185705i
\(20\) 0.663805i 0.148431i
\(21\) −4.43298 + 0.127016i −0.967356 + 0.0277171i
\(22\) 0.634074 + 0.366083i 0.135185 + 0.0780491i
\(23\) 5.90199 1.23065 0.615325 0.788273i \(-0.289025\pi\)
0.615325 + 0.788273i \(0.289025\pi\)
\(24\) 14.6204i 2.98437i
\(25\) −2.49198 + 4.31624i −0.498396 + 0.863247i
\(26\) −9.75622 5.63276i −1.91335 1.10467i
\(27\) 5.34768 1.02916
\(28\) 6.58683 12.2031i 1.24479 2.30616i
\(29\) 6.55245 3.78306i 1.21676 0.702497i 0.252537 0.967587i \(-0.418735\pi\)
0.964224 + 0.265091i \(0.0854019\pi\)
\(30\) 0.285630 0.494725i 0.0521486 0.0903240i
\(31\) 0.804591 + 1.39359i 0.144509 + 0.250297i 0.929190 0.369603i \(-0.120506\pi\)
−0.784681 + 0.619900i \(0.787173\pi\)
\(32\) 15.1625 + 8.75408i 2.68038 + 1.54752i
\(33\) 0.228032 + 0.394963i 0.0396952 + 0.0687542i
\(34\) −5.37860 9.31601i −0.922423 1.59768i
\(35\) 0.285270 0.175782i 0.0482194 0.0297126i
\(36\) −0.498870 + 0.864068i −0.0831450 + 0.144011i
\(37\) −8.34178 4.81613i −1.37138 0.791767i −0.380278 0.924872i \(-0.624172\pi\)
−0.991102 + 0.133105i \(0.957505\pi\)
\(38\) −11.0706 + 3.87640i −1.79589 + 0.628834i
\(39\) −3.50862 6.07712i −0.561830 0.973117i
\(40\) 0.552334 + 0.956671i 0.0873317 + 0.151263i
\(41\) −2.22506 + 3.85392i −0.347496 + 0.601882i −0.985804 0.167900i \(-0.946301\pi\)
0.638308 + 0.769781i \(0.279635\pi\)
\(42\) 10.1600 6.26052i 1.56772 0.966020i
\(43\) 0.387957 0.671961i 0.0591629 0.102473i −0.834927 0.550361i \(-0.814490\pi\)
0.894090 + 0.447888i \(0.147824\pi\)
\(44\) −1.42607 −0.214989
\(45\) −0.0208788 + 0.0120544i −0.00311242 + 0.00179696i
\(46\) −13.7543 + 7.94105i −2.02796 + 1.17084i
\(47\) 1.57697i 0.230024i 0.993364 + 0.115012i \(0.0366907\pi\)
−0.993364 + 0.115012i \(0.963309\pi\)
\(48\) 10.8860 + 18.8551i 1.57126 + 2.72150i
\(49\) 6.98852 0.400805i 0.998359 0.0572578i
\(50\) 13.4117i 1.89670i
\(51\) 6.70063i 0.938276i
\(52\) 21.9424 3.04286
\(53\) −3.05534 1.76400i −0.419683 0.242304i 0.275259 0.961370i \(-0.411236\pi\)
−0.694942 + 0.719066i \(0.744570\pi\)
\(54\) −12.4625 + 7.19522i −1.69593 + 0.979146i
\(55\) −0.0298421 0.0172293i −0.00402391 0.00232320i
\(56\) 0.660945 + 23.0677i 0.0883225 + 3.08255i
\(57\) −7.17929 1.35683i −0.950920 0.179717i
\(58\) −10.1801 + 17.6325i −1.33671 + 2.31526i
\(59\) 4.88026 0.635356 0.317678 0.948199i \(-0.397097\pi\)
0.317678 + 0.948199i \(0.397097\pi\)
\(60\) 1.11267i 0.143645i
\(61\) 0.160767i 0.0205841i 0.999947 + 0.0102920i \(0.00327612\pi\)
−0.999947 + 0.0102920i \(0.996724\pi\)
\(62\) −3.75012 2.16513i −0.476266 0.274972i
\(63\) −0.503438 + 0.0144247i −0.0634272 + 0.00181734i
\(64\) −21.1361 −2.64202
\(65\) 0.459167 + 0.265100i 0.0569527 + 0.0328816i
\(66\) −1.06283 0.613627i −0.130826 0.0755323i
\(67\) −5.79400 3.34517i −0.707849 0.408677i 0.102415 0.994742i \(-0.467343\pi\)
−0.810264 + 0.586065i \(0.800676\pi\)
\(68\) 18.1452 + 10.4762i 2.20043 + 1.27042i
\(69\) −9.89291 −1.19097
\(70\) −0.428295 + 0.793478i −0.0511910 + 0.0948388i
\(71\) −5.63464 3.25316i −0.668709 0.386079i 0.126878 0.991918i \(-0.459504\pi\)
−0.795587 + 0.605839i \(0.792838\pi\)
\(72\) 1.66038i 0.195678i
\(73\) 14.8619i 1.73946i 0.493529 + 0.869730i \(0.335707\pi\)
−0.493529 + 0.869730i \(0.664293\pi\)
\(74\) 25.9201 3.01316
\(75\) 4.17705 7.23487i 0.482324 0.835410i
\(76\) 14.8988 17.3201i 1.70901 1.98675i
\(77\) −0.377638 0.612854i −0.0430359 0.0698412i
\(78\) 16.3534 + 9.44162i 1.85165 + 1.06905i
\(79\) 9.55897 5.51887i 1.07547 0.620922i 0.145798 0.989314i \(-0.453425\pi\)
0.929670 + 0.368393i \(0.120092\pi\)
\(80\) −1.42463 0.822512i −0.159279 0.0919596i
\(81\) −8.39268 −0.932520
\(82\) 11.9752i 1.32244i
\(83\) 17.7150i 1.94447i −0.234006 0.972235i \(-0.575183\pi\)
0.234006 0.972235i \(-0.424817\pi\)
\(84\) −11.0408 + 20.4548i −1.20465 + 2.23180i
\(85\) 0.253139 + 0.438449i 0.0274568 + 0.0475565i
\(86\) 2.08796i 0.225151i
\(87\) −10.9832 + 6.34116i −1.17752 + 0.679844i
\(88\) 2.05525 1.18660i 0.219090 0.126492i
\(89\) 1.98873 0.210805 0.105402 0.994430i \(-0.466387\pi\)
0.105402 + 0.994430i \(0.466387\pi\)
\(90\) 0.0324379 0.0561842i 0.00341926 0.00592233i
\(91\) 5.81055 + 9.42972i 0.609112 + 0.988503i
\(92\) 15.4672 26.7899i 1.61256 2.79304i
\(93\) −1.34865 2.33594i −0.139849 0.242225i
\(94\) −2.12179 3.67505i −0.218846 0.379052i
\(95\) 0.521029 0.182439i 0.0534564 0.0187178i
\(96\) −25.4154 14.6736i −2.59395 1.49762i
\(97\) −5.94274 + 10.2931i −0.603394 + 1.04511i 0.388909 + 0.921276i \(0.372852\pi\)
−0.992303 + 0.123833i \(0.960481\pi\)
\(98\) −15.7471 + 10.3370i −1.59070 + 1.04420i
\(99\) 0.0258967 + 0.0448545i 0.00260272 + 0.00450805i
\(100\) 13.0613 + 22.6228i 1.30613 + 2.26228i
\(101\) −7.09443 4.09597i −0.705922 0.407564i 0.103627 0.994616i \(-0.466955\pi\)
−0.809549 + 0.587052i \(0.800288\pi\)
\(102\) 9.01560 + 15.6155i 0.892678 + 1.54616i
\(103\) 1.36143 2.35807i 0.134146 0.232347i −0.791125 0.611654i \(-0.790504\pi\)
0.925271 + 0.379307i \(0.123838\pi\)
\(104\) −31.6232 + 18.2577i −3.10091 + 1.79031i
\(105\) −0.478169 + 0.294646i −0.0466645 + 0.0287545i
\(106\) 9.49375 0.922114
\(107\) −3.99290 2.30530i −0.386008 0.222862i 0.294421 0.955676i \(-0.404873\pi\)
−0.680429 + 0.732814i \(0.738207\pi\)
\(108\) 14.0145 24.2738i 1.34854 2.33575i
\(109\) 3.99746i 0.382887i −0.981504 0.191443i \(-0.938683\pi\)
0.981504 0.191443i \(-0.0613168\pi\)
\(110\) 0.0927274 0.00884121
\(111\) 13.9825 + 8.07279i 1.32716 + 0.766235i
\(112\) −18.0281 29.2570i −1.70349 2.76453i
\(113\) 7.72422i 0.726633i 0.931666 + 0.363317i \(0.118356\pi\)
−0.931666 + 0.363317i \(0.881644\pi\)
\(114\) 18.5566 6.49761i 1.73798 0.608557i
\(115\) 0.647333 0.373738i 0.0603641 0.0348513i
\(116\) 39.6566i 3.68202i
\(117\) −0.398462 0.690156i −0.0368378 0.0638050i
\(118\) −11.3732 + 6.56633i −1.04699 + 0.604479i
\(119\) 0.302916 + 10.5721i 0.0277682 + 0.969142i
\(120\) −0.925822 1.60357i −0.0845156 0.146385i
\(121\) 5.46299 9.46217i 0.496635 0.860197i
\(122\) −0.216310 0.374659i −0.0195838 0.0339201i
\(123\) 3.72965 6.45994i 0.336291 0.582473i
\(124\) 8.43426 0.757419
\(125\) 1.26445i 0.113096i
\(126\) 1.15383 0.710985i 0.102791 0.0633396i
\(127\) −2.85316 + 1.64727i −0.253177 + 0.146172i −0.621218 0.783638i \(-0.713362\pi\)
0.368041 + 0.929809i \(0.380029\pi\)
\(128\) 18.9317 10.9302i 1.67334 0.966105i
\(129\) −0.650293 + 1.12634i −0.0572551 + 0.0991687i
\(130\) −1.42676 −0.125135
\(131\) −7.01331 + 4.04914i −0.612756 + 0.353775i −0.774043 0.633133i \(-0.781769\pi\)
0.161287 + 0.986908i \(0.448435\pi\)
\(132\) 2.39038 0.208056
\(133\) 11.3886 + 1.81622i 0.987521 + 0.157486i
\(134\) 18.0035 1.55527
\(135\) 0.586535 0.338636i 0.0504809 0.0291452i
\(136\) −34.8677 −2.98988
\(137\) 2.01967 3.49818i 0.172552 0.298870i −0.766759 0.641935i \(-0.778132\pi\)
0.939312 + 0.343065i \(0.111465\pi\)
\(138\) 23.0549 13.3108i 1.96257 1.13309i
\(139\) −14.3376 + 8.27784i −1.21610 + 0.702117i −0.964082 0.265605i \(-0.914428\pi\)
−0.252020 + 0.967722i \(0.581095\pi\)
\(140\) −0.0503005 1.75554i −0.00425117 0.148370i
\(141\) 2.64331i 0.222607i
\(142\) 17.5083 1.46927
\(143\) 0.569523 0.986443i 0.0476259 0.0824905i
\(144\) 1.23629 + 2.14131i 0.103024 + 0.178442i
\(145\) 0.479117 0.829856i 0.0397885 0.0689158i
\(146\) −19.9965 34.6350i −1.65493 2.86642i
\(147\) −11.7141 + 0.671828i −0.966166 + 0.0554114i
\(148\) −43.7221 + 25.2429i −3.59393 + 2.07496i
\(149\) 6.24327 + 10.8137i 0.511469 + 0.885890i 0.999912 + 0.0132943i \(0.00423183\pi\)
−0.488443 + 0.872596i \(0.662435\pi\)
\(150\) 22.4807i 1.83554i
\(151\) 0.736019 0.424941i 0.0598964 0.0345812i −0.469753 0.882798i \(-0.655657\pi\)
0.529649 + 0.848217i \(0.322324\pi\)
\(152\) −7.06047 + 37.3585i −0.572680 + 3.03017i
\(153\) 0.760966i 0.0615205i
\(154\) 1.70465 + 0.920119i 0.137365 + 0.0741453i
\(155\) 0.176496 + 0.101900i 0.0141765 + 0.00818480i
\(156\) −36.7798 −2.94474
\(157\) 13.6787i 1.09168i −0.837890 0.545839i \(-0.816211\pi\)
0.837890 0.545839i \(-0.183789\pi\)
\(158\) −14.8511 + 25.7229i −1.18149 + 2.04641i
\(159\) 5.12135 + 2.95681i 0.406149 + 0.234490i
\(160\) 2.21738 0.175299
\(161\) 15.6088 0.447230i 1.23015 0.0352466i
\(162\) 19.5587 11.2922i 1.53668 0.887202i
\(163\) −3.93840 + 6.82151i −0.308479 + 0.534302i −0.978030 0.208465i \(-0.933153\pi\)
0.669551 + 0.742766i \(0.266487\pi\)
\(164\) 11.6623 + 20.1997i 0.910673 + 1.57733i
\(165\) 0.0500213 + 0.0288798i 0.00389415 + 0.00224829i
\(166\) 23.8353 + 41.2839i 1.84997 + 3.20425i
\(167\) 4.81135 + 8.33351i 0.372314 + 0.644866i 0.989921 0.141620i \(-0.0452312\pi\)
−0.617607 + 0.786487i \(0.711898\pi\)
\(168\) −1.10787 38.6660i −0.0854744 2.98315i
\(169\) −2.26301 + 3.91964i −0.174077 + 0.301511i
\(170\) −1.17986 0.681190i −0.0904908 0.0522449i
\(171\) −0.815326 0.154090i −0.0623495 0.0117836i
\(172\) −2.03341 3.52197i −0.155046 0.268548i
\(173\) −6.72839 11.6539i −0.511550 0.886031i −0.999910 0.0133887i \(-0.995738\pi\)
0.488360 0.872642i \(-0.337595\pi\)
\(174\) 17.0639 29.5555i 1.29361 2.24060i
\(175\) −6.26339 + 11.6038i −0.473468 + 0.877167i
\(176\) −1.76703 + 3.06058i −0.133195 + 0.230700i
\(177\) −8.18029 −0.614868
\(178\) −4.63464 + 2.67581i −0.347381 + 0.200560i
\(179\) 5.83565 3.36921i 0.436177 0.251827i −0.265798 0.964029i \(-0.585635\pi\)
0.701975 + 0.712202i \(0.252302\pi\)
\(180\) 0.126362i 0.00941845i
\(181\) 2.72765 + 4.72443i 0.202745 + 0.351164i 0.949412 0.314034i \(-0.101681\pi\)
−0.746667 + 0.665198i \(0.768347\pi\)
\(182\) −26.2288 14.1575i −1.94421 1.04942i
\(183\) 0.269477i 0.0199203i
\(184\) 51.4792i 3.79510i
\(185\) −1.21991 −0.0896893
\(186\) 6.28594 + 3.62919i 0.460908 + 0.266105i
\(187\) 0.941935 0.543826i 0.0688811 0.0397685i
\(188\) 7.15806 + 4.13271i 0.522055 + 0.301409i
\(189\) 14.1428 0.405226i 1.02874 0.0294758i
\(190\) −0.968763 + 1.12620i −0.0702815 + 0.0817033i
\(191\) −0.00688022 + 0.0119169i −0.000497835 + 0.000862276i −0.866274 0.499569i \(-0.833492\pi\)
0.865776 + 0.500431i \(0.166825\pi\)
\(192\) 35.4284 2.55682
\(193\) 3.10690i 0.223640i −0.993728 0.111820i \(-0.964332\pi\)
0.993728 0.111820i \(-0.0356679\pi\)
\(194\) 31.9835i 2.29628i
\(195\) −0.769655 0.444361i −0.0551162 0.0318213i
\(196\) 16.4953 32.7722i 1.17823 2.34087i
\(197\) −5.99147 −0.426874 −0.213437 0.976957i \(-0.568466\pi\)
−0.213437 + 0.976957i \(0.568466\pi\)
\(198\) −0.120702 0.0696875i −0.00857793 0.00495247i
\(199\) 8.68412 + 5.01378i 0.615601 + 0.355417i 0.775154 0.631772i \(-0.217672\pi\)
−0.159553 + 0.987189i \(0.551005\pi\)
\(200\) −37.6477 21.7359i −2.66210 1.53696i
\(201\) 9.71189 + 5.60716i 0.685024 + 0.395499i
\(202\) 22.0443 1.55103
\(203\) 17.0424 10.5015i 1.19614 0.737057i
\(204\) −30.4150 17.5601i −2.12948 1.22945i
\(205\) 0.563600i 0.0393635i
\(206\) 7.32714i 0.510506i
\(207\) −1.12350 −0.0780888
\(208\) 27.1885 47.0918i 1.88518 3.26523i
\(209\) −0.391939 1.11934i −0.0271110 0.0774266i
\(210\) 0.717907 1.33003i 0.0495403 0.0917806i
\(211\) −2.83332 1.63582i −0.195054 0.112614i 0.399292 0.916824i \(-0.369256\pi\)
−0.594346 + 0.804209i \(0.702589\pi\)
\(212\) −16.0140 + 9.24571i −1.09985 + 0.634998i
\(213\) 9.44477 + 5.45294i 0.647145 + 0.373629i
\(214\) 12.4070 0.848126
\(215\) 0.0982680i 0.00670182i
\(216\) 46.6443i 3.17374i
\(217\) 2.23348 + 3.62462i 0.151618 + 0.246055i
\(218\) 5.37852 + 9.31587i 0.364279 + 0.630951i
\(219\) 24.9116i 1.68337i
\(220\) −0.156412 + 0.0903048i −0.0105453 + 0.00608835i
\(221\) −14.4931 + 8.36762i −0.974914 + 0.562867i
\(222\) −43.4473 −2.91599
\(223\) 10.4876 18.1651i 0.702305 1.21643i −0.265350 0.964152i \(-0.585488\pi\)
0.967655 0.252276i \(-0.0811790\pi\)
\(224\) 40.7631 + 22.0027i 2.72360 + 1.47012i
\(225\) 0.474373 0.821638i 0.0316249 0.0547759i
\(226\) −10.3928 18.0009i −0.691321 1.19740i
\(227\) −2.62739 4.55078i −0.174386 0.302046i 0.765563 0.643361i \(-0.222461\pi\)
−0.939949 + 0.341316i \(0.889127\pi\)
\(228\) −24.9734 + 29.0319i −1.65390 + 1.92269i
\(229\) −6.95308 4.01436i −0.459472 0.265276i 0.252350 0.967636i \(-0.418797\pi\)
−0.711822 + 0.702360i \(0.752130\pi\)
\(230\) −1.00572 + 1.74196i −0.0663151 + 0.114861i
\(231\) 0.632996 + 1.02726i 0.0416481 + 0.0675891i
\(232\) 32.9972 + 57.1528i 2.16637 + 3.75226i
\(233\) −10.2213 17.7039i −0.669623 1.15982i −0.978010 0.208560i \(-0.933122\pi\)
0.308387 0.951261i \(-0.400211\pi\)
\(234\) 1.85719 + 1.07225i 0.121408 + 0.0700952i
\(235\) 0.0998600 + 0.172963i 0.00651415 + 0.0112828i
\(236\) 12.7895 22.1521i 0.832529 1.44198i
\(237\) −16.0227 + 9.25073i −1.04079 + 0.600899i
\(238\) −14.9305 24.2302i −0.967803 1.57061i
\(239\) −10.4011 −0.672790 −0.336395 0.941721i \(-0.609208\pi\)
−0.336395 + 0.941721i \(0.609208\pi\)
\(240\) 2.38797 + 1.37869i 0.154142 + 0.0889942i
\(241\) 7.25492 12.5659i 0.467330 0.809440i −0.531973 0.846761i \(-0.678549\pi\)
0.999303 + 0.0373215i \(0.0118826\pi\)
\(242\) 29.4015i 1.89000i
\(243\) −1.97522 −0.126711
\(244\) 0.729742 + 0.421317i 0.0467169 + 0.0269720i
\(245\) 0.741123 0.486502i 0.0473486 0.0310814i
\(246\) 20.0728i 1.27979i
\(247\) 6.03060 + 17.2228i 0.383718 + 1.09586i
\(248\) −12.1554 + 7.01792i −0.771869 + 0.445639i
\(249\) 29.6938i 1.88177i
\(250\) −1.70130 2.94674i −0.107600 0.186368i
\(251\) 1.02258 0.590388i 0.0645448 0.0372649i −0.467380 0.884056i \(-0.654802\pi\)
0.531925 + 0.846791i \(0.321469\pi\)
\(252\) −1.25387 + 2.32297i −0.0789863 + 0.146334i
\(253\) −0.802913 1.39069i −0.0504787 0.0874317i
\(254\) 4.43276 7.67777i 0.278136 0.481746i
\(255\) −0.424311 0.734928i −0.0265714 0.0460230i
\(256\) −8.27681 + 14.3359i −0.517301 + 0.895991i
\(257\) −23.6050 −1.47244 −0.736220 0.676742i \(-0.763391\pi\)
−0.736220 + 0.676742i \(0.763391\pi\)
\(258\) 3.49984i 0.217891i
\(259\) −22.4262 12.1049i −1.39349 0.752165i
\(260\) 2.40665 1.38948i 0.149254 0.0861719i
\(261\) −1.24732 + 0.720143i −0.0772074 + 0.0445757i
\(262\) 10.8961 18.8726i 0.673165 1.16596i
\(263\) 2.01671 0.124356 0.0621779 0.998065i \(-0.480195\pi\)
0.0621779 + 0.998065i \(0.480195\pi\)
\(264\) −3.44500 + 1.98897i −0.212025 + 0.122413i
\(265\) −0.446814 −0.0274476
\(266\) −28.9844 + 11.0907i −1.77715 + 0.680012i
\(267\) −3.33350 −0.204007
\(268\) −30.3683 + 17.5331i −1.85504 + 1.07101i
\(269\) 27.0789 1.65103 0.825516 0.564379i \(-0.190884\pi\)
0.825516 + 0.564379i \(0.190884\pi\)
\(270\) −0.911261 + 1.57835i −0.0554576 + 0.0960554i
\(271\) −23.2068 + 13.3985i −1.40971 + 0.813898i −0.995360 0.0962186i \(-0.969325\pi\)
−0.414352 + 0.910117i \(0.635992\pi\)
\(272\) 44.9670 25.9617i 2.72653 1.57416i
\(273\) −9.73964 15.8061i −0.589470 0.956627i
\(274\) 10.8698i 0.656667i
\(275\) 1.35605 0.0817727
\(276\) −25.9260 + 44.9052i −1.56056 + 2.70298i
\(277\) −3.98141 6.89601i −0.239220 0.414341i 0.721271 0.692653i \(-0.243558\pi\)
−0.960491 + 0.278312i \(0.910225\pi\)
\(278\) 22.2754 38.5822i 1.33599 2.31401i
\(279\) −0.153162 0.265284i −0.00916956 0.0158821i
\(280\) 1.53323 + 2.48822i 0.0916282 + 0.148700i
\(281\) 24.3836 14.0779i 1.45460 0.839816i 0.455867 0.890048i \(-0.349329\pi\)
0.998738 + 0.0502319i \(0.0159960\pi\)
\(282\) 3.55654 + 6.16011i 0.211789 + 0.366829i
\(283\) 20.2050i 1.20106i −0.799601 0.600532i \(-0.794956\pi\)
0.799601 0.600532i \(-0.205044\pi\)
\(284\) −29.5330 + 17.0509i −1.75246 + 1.01179i
\(285\) −0.873348 + 0.305804i −0.0517326 + 0.0181142i
\(286\) 3.06514i 0.181246i
\(287\) −5.59251 + 10.3609i −0.330116 + 0.611587i
\(288\) −2.88633 1.66643i −0.170079 0.0981951i
\(289\) 1.01987 0.0599924
\(290\) 2.57858i 0.151420i
\(291\) 9.96121 17.2533i 0.583936 1.01141i
\(292\) 67.4603 + 38.9482i 3.94782 + 2.27927i
\(293\) 17.0035 0.993357 0.496678 0.867935i \(-0.334553\pi\)
0.496678 + 0.867935i \(0.334553\pi\)
\(294\) 26.3953 17.3269i 1.53940 1.01052i
\(295\) 0.535269 0.309038i 0.0311646 0.0179929i
\(296\) 42.0079 72.7599i 2.44166 4.22908i
\(297\) −0.727503 1.26007i −0.0422140 0.0731168i
\(298\) −29.0993 16.8005i −1.68568 0.973226i
\(299\) 12.3541 + 21.3979i 0.714455 + 1.23747i
\(300\) −21.8933 37.9204i −1.26401 2.18933i
\(301\) 0.975098 1.80651i 0.0562037 0.104126i
\(302\) −1.14350 + 1.98061i −0.0658013 + 0.113971i
\(303\) 11.8917 + 6.86566i 0.683159 + 0.394422i
\(304\) −18.7108 53.4363i −1.07314 3.06478i
\(305\) 0.0101804 + 0.0176330i 0.000582928 + 0.00100966i
\(306\) 1.02387 + 1.77339i 0.0585307 + 0.101378i
\(307\) 3.76338 6.51836i 0.214787 0.372023i −0.738419 0.674342i \(-0.764427\pi\)
0.953207 + 0.302319i \(0.0977608\pi\)
\(308\) −3.77149 + 0.108062i −0.214900 + 0.00615741i
\(309\) −2.28203 + 3.95259i −0.129820 + 0.224855i
\(310\) −0.548420 −0.0311482
\(311\) 0.826081 0.476938i 0.0468428 0.0270447i −0.476396 0.879231i \(-0.658057\pi\)
0.523238 + 0.852186i \(0.324724\pi\)
\(312\) 53.0067 30.6034i 3.00091 1.73258i
\(313\) 5.61998i 0.317660i −0.987306 0.158830i \(-0.949228\pi\)
0.987306 0.158830i \(-0.0507722\pi\)
\(314\) 18.4045 + 31.8775i 1.03863 + 1.79895i
\(315\) −0.0543039 + 0.0334618i −0.00305968 + 0.00188536i
\(316\) 57.8525i 3.25446i
\(317\) 21.6156i 1.21405i 0.794682 + 0.607026i \(0.207638\pi\)
−0.794682 + 0.607026i \(0.792362\pi\)
\(318\) −15.9134 −0.892379
\(319\) −1.78281 1.02930i −0.0998179 0.0576299i
\(320\) −2.31822 + 1.33843i −0.129593 + 0.0748203i
\(321\) 6.69289 + 3.86414i 0.373561 + 0.215676i
\(322\) −35.7738 + 22.0437i −1.99360 + 1.22845i
\(323\) −3.23587 + 17.1217i −0.180048 + 0.952675i
\(324\) −21.9944 + 38.0955i −1.22191 + 2.11642i
\(325\) −20.8649 −1.15738
\(326\) 21.1962i 1.17395i
\(327\) 6.70053i 0.370540i
\(328\) −33.6152 19.4078i −1.85609 1.07161i
\(329\) 0.119496 + 4.17055i 0.00658805 + 0.229930i
\(330\) −0.155429 −0.00855611
\(331\) 1.88643 + 1.08913i 0.103688 + 0.0598641i 0.550947 0.834540i \(-0.314267\pi\)
−0.447259 + 0.894404i \(0.647600\pi\)
\(332\) −80.4105 46.4251i −4.41310 2.54791i
\(333\) 1.58794 + 0.916797i 0.0870186 + 0.0502402i
\(334\) −22.4253 12.9472i −1.22706 0.708441i
\(335\) −0.847318 −0.0462939
\(336\) 30.2186 + 49.0406i 1.64856 + 2.67538i
\(337\) −27.6548 15.9665i −1.50645 0.869752i −0.999972 0.00750145i \(-0.997612\pi\)
−0.506482 0.862250i \(-0.669054\pi\)
\(338\) 12.1794i 0.662471i
\(339\) 12.9473i 0.703202i
\(340\) 2.65357 0.143910
\(341\) 0.218915 0.379172i 0.0118549 0.0205333i
\(342\) 2.10740 0.737910i 0.113955 0.0399016i
\(343\) 18.4519 1.58956i 0.996310 0.0858280i
\(344\) 5.86108 + 3.38390i 0.316008 + 0.182447i
\(345\) −1.08506 + 0.626459i −0.0584176 + 0.0337274i
\(346\) 31.3604 + 18.1059i 1.68594 + 0.973380i
\(347\) 31.1334 1.67133 0.835663 0.549242i \(-0.185083\pi\)
0.835663 + 0.549242i \(0.185083\pi\)
\(348\) 66.4723i 3.56329i
\(349\) 13.9720i 0.747906i 0.927448 + 0.373953i \(0.121998\pi\)
−0.927448 + 0.373953i \(0.878002\pi\)
\(350\) −1.01629 35.4695i −0.0543227 1.89592i
\(351\) 11.1938 + 19.3882i 0.597480 + 1.03486i
\(352\) 4.76366i 0.253904i
\(353\) 1.05903 0.611431i 0.0563665 0.0325432i −0.471552 0.881838i \(-0.656306\pi\)
0.527918 + 0.849295i \(0.322973\pi\)
\(354\) 19.0638 11.0065i 1.01323 0.584987i
\(355\) −0.824013 −0.0437341
\(356\) 5.21180 9.02710i 0.276225 0.478435i
\(357\) −0.507747 17.7209i −0.0268728 0.937891i
\(358\) −9.06646 + 15.7036i −0.479177 + 0.829959i
\(359\) 0.730326 + 1.26496i 0.0385452 + 0.0667622i 0.884654 0.466247i \(-0.154394\pi\)
−0.846109 + 0.533010i \(0.821061\pi\)
\(360\) −0.105142 0.182112i −0.00554148 0.00959813i
\(361\) 17.6895 + 6.93404i 0.931027 + 0.364949i
\(362\) −12.7133 7.34004i −0.668197 0.385784i
\(363\) −9.15705 + 15.8605i −0.480620 + 0.832459i
\(364\) 58.0302 1.66271i 3.04161 0.0871495i
\(365\) 0.941118 + 1.63007i 0.0492604 + 0.0853215i
\(366\) 0.362578 + 0.628003i 0.0189522 + 0.0328263i
\(367\) −6.65661 3.84319i −0.347472 0.200613i 0.316099 0.948726i \(-0.397627\pi\)
−0.663571 + 0.748113i \(0.730960\pi\)
\(368\) −38.3303 66.3900i −1.99810 3.46082i
\(369\) 0.423563 0.733632i 0.0220498 0.0381914i
\(370\) 2.84293 1.64137i 0.147797 0.0853307i
\(371\) −8.21401 4.43367i −0.426450 0.230184i
\(372\) −14.1375 −0.732995
\(373\) 26.0912 + 15.0638i 1.35095 + 0.779973i 0.988383 0.151983i \(-0.0485659\pi\)
0.362570 + 0.931956i \(0.381899\pi\)
\(374\) −1.46342 + 2.53472i −0.0756717 + 0.131067i
\(375\) 2.11947i 0.109449i
\(376\) −13.7549 −0.709353
\(377\) 27.4312 + 15.8374i 1.41278 + 0.815670i
\(378\) −32.4139 + 19.9733i −1.66719 + 1.02732i
\(379\) 9.59543i 0.492884i −0.969158 0.246442i \(-0.920739\pi\)
0.969158 0.246442i \(-0.0792615\pi\)
\(380\) 0.537330 2.84313i 0.0275644 0.145849i
\(381\) 4.78246 2.76115i 0.245013 0.141458i
\(382\) 0.0370290i 0.00189457i
\(383\) 8.11196 + 14.0503i 0.414502 + 0.717938i 0.995376 0.0960554i \(-0.0306226\pi\)
−0.580874 + 0.813993i \(0.697289\pi\)
\(384\) −31.7333 + 18.3212i −1.61938 + 0.934951i
\(385\) −0.0802279 0.0433045i −0.00408879 0.00220700i
\(386\) 4.18029 + 7.24048i 0.212771 + 0.368531i
\(387\) −0.0738514 + 0.127914i −0.00375408 + 0.00650225i
\(388\) 31.1479 + 53.9497i 1.58129 + 2.73888i
\(389\) −8.31716 + 14.4057i −0.421697 + 0.730400i −0.996106 0.0881683i \(-0.971899\pi\)
0.574409 + 0.818569i \(0.305232\pi\)
\(390\) 2.39152 0.121100
\(391\) 23.5933i 1.19316i
\(392\) 3.49596 + 60.9563i 0.176572 + 3.07876i
\(393\) 11.7557 6.78716i 0.592997 0.342367i
\(394\) 13.9628 8.06144i 0.703437 0.406129i
\(395\) 0.698955 1.21063i 0.0351682 0.0609132i
\(396\) 0.271467 0.0136417
\(397\) 21.9739 12.6866i 1.10284 0.636723i 0.165872 0.986147i \(-0.446956\pi\)
0.936964 + 0.349425i \(0.113623\pi\)
\(398\) −26.9839 −1.35258
\(399\) −19.0896 3.04435i −0.955677 0.152408i
\(400\) 64.7363 3.23682
\(401\) −21.3389 + 12.3200i −1.06561 + 0.615233i −0.926980 0.375111i \(-0.877605\pi\)
−0.138635 + 0.990344i \(0.544271\pi\)
\(402\) −30.1774 −1.50511
\(403\) −3.36835 + 5.83415i −0.167789 + 0.290620i
\(404\) −37.1843 + 21.4684i −1.84999 + 1.06809i
\(405\) −0.920513 + 0.531459i −0.0457407 + 0.0264084i
\(406\) −25.5869 + 47.4034i −1.26986 + 2.35259i
\(407\) 2.62076i 0.129906i
\(408\) 58.4452 2.89347
\(409\) 1.22087 2.11460i 0.0603679 0.104560i −0.834262 0.551368i \(-0.814106\pi\)
0.894630 + 0.446808i \(0.147439\pi\)
\(410\) −0.758316 1.31344i −0.0374506 0.0648663i
\(411\) −3.38537 + 5.86364i −0.166988 + 0.289232i
\(412\) −7.13571 12.3594i −0.351551 0.608905i
\(413\) 12.9067 0.369807i 0.635095 0.0181970i
\(414\) 2.61827 1.51166i 0.128681 0.0742939i
\(415\) −1.12178 1.94299i −0.0550662 0.0953774i
\(416\) 73.2963i 3.59365i
\(417\) 24.0327 13.8753i 1.17689 0.679476i
\(418\) 2.41946 + 2.08122i 0.118339 + 0.101796i
\(419\) 13.3026i 0.649873i −0.945736 0.324937i \(-0.894657\pi\)
0.945736 0.324937i \(-0.105343\pi\)
\(420\) 0.0843136 + 2.94264i 0.00411408 + 0.143586i
\(421\) −20.6049 11.8962i −1.00422 0.579787i −0.0947268 0.995503i \(-0.530198\pi\)
−0.909495 + 0.415716i \(0.863531\pi\)
\(422\) 8.80389 0.428567
\(423\) 0.300191i 0.0145958i
\(424\) 15.3862 26.6497i 0.747220 1.29422i
\(425\) −17.2542 9.96173i −0.836953 0.483215i
\(426\) −29.3474 −1.42189
\(427\) 0.0121823 + 0.425175i 0.000589542 + 0.0205756i
\(428\) −20.9281 + 12.0829i −1.01160 + 0.584047i
\(429\) −0.954634 + 1.65347i −0.0460902 + 0.0798305i
\(430\) 0.132218 + 0.229009i 0.00637613 + 0.0110438i
\(431\) 4.25689 + 2.45771i 0.205047 + 0.118384i 0.599007 0.800743i \(-0.295562\pi\)
−0.393960 + 0.919127i \(0.628895\pi\)
\(432\) −34.7303 60.1546i −1.67096 2.89419i
\(433\) −8.26480 14.3151i −0.397181 0.687937i 0.596196 0.802839i \(-0.296678\pi\)
−0.993377 + 0.114901i \(0.963345\pi\)
\(434\) −10.0819 5.44188i −0.483946 0.261219i
\(435\) −0.803096 + 1.39100i −0.0385055 + 0.0666935i
\(436\) −18.1450 10.4760i −0.868986 0.501710i
\(437\) 25.2787 + 4.77748i 1.20924 + 0.228538i
\(438\) 33.5182 + 58.0552i 1.60156 + 2.77398i
\(439\) −15.3534 26.5929i −0.732777 1.26921i −0.955692 0.294370i \(-0.904890\pi\)
0.222914 0.974838i \(-0.428443\pi\)
\(440\) 0.150280 0.260293i 0.00716433 0.0124090i
\(441\) −1.33033 + 0.0762971i −0.0633492 + 0.00363319i
\(442\) 22.5170 39.0006i 1.07103 1.85507i
\(443\) −5.20118 −0.247116 −0.123558 0.992337i \(-0.539430\pi\)
−0.123558 + 0.992337i \(0.539430\pi\)
\(444\) 73.2868 42.3122i 3.47804 2.00805i
\(445\) 0.218125 0.125934i 0.0103401 0.00596986i
\(446\) 56.4440i 2.67270i
\(447\) −10.4650 18.1259i −0.494976 0.857323i
\(448\) −55.8980 + 1.60161i −2.64093 + 0.0756691i
\(449\) 30.9166i 1.45904i 0.683958 + 0.729521i \(0.260257\pi\)
−0.683958 + 0.729521i \(0.739743\pi\)
\(450\) 2.55305i 0.120352i
\(451\) 1.21080 0.0570143
\(452\) 35.0612 + 20.2426i 1.64914 + 0.952132i
\(453\) −1.23371 + 0.712285i −0.0579649 + 0.0334661i
\(454\) 12.2460 + 7.07024i 0.574734 + 0.331823i
\(455\) 1.23443 + 0.666308i 0.0578711 + 0.0312370i
\(456\) 11.8347 62.6202i 0.554213 2.93246i
\(457\) 4.08985 7.08382i 0.191315 0.331367i −0.754371 0.656448i \(-0.772058\pi\)
0.945686 + 0.325081i \(0.105391\pi\)
\(458\) 21.6051 1.00954
\(459\) 21.3774i 0.997812i
\(460\) 3.91777i 0.182667i
\(461\) −21.9952 12.6990i −1.02442 0.591450i −0.109039 0.994037i \(-0.534777\pi\)
−0.915381 + 0.402588i \(0.868111\pi\)
\(462\) −2.85734 1.54230i −0.132935 0.0717544i
\(463\) −16.1315 −0.749696 −0.374848 0.927086i \(-0.622305\pi\)
−0.374848 + 0.927086i \(0.622305\pi\)
\(464\) −85.1094 49.1379i −3.95110 2.28117i
\(465\) −0.295842 0.170804i −0.0137193 0.00792087i
\(466\) 47.6407 + 27.5054i 2.20691 + 1.27416i
\(467\) 8.65065 + 4.99446i 0.400304 + 0.231116i 0.686615 0.727021i \(-0.259096\pi\)
−0.286311 + 0.958137i \(0.592429\pi\)
\(468\) −4.17695 −0.193079
\(469\) −15.5767 8.40780i −0.719264 0.388236i
\(470\) −0.465438 0.268721i −0.0214690 0.0123952i
\(471\) 22.9282i 1.05648i
\(472\) 42.5674i 1.95932i
\(473\) −0.211112 −0.00970695
\(474\) 24.8935 43.1167i 1.14339 1.98042i
\(475\) −14.1672 + 16.4696i −0.650036 + 0.755677i
\(476\) 48.7819 + 26.3310i 2.23592 + 1.20688i
\(477\) 0.581613 + 0.335794i 0.0266302 + 0.0153750i
\(478\) 24.2392 13.9945i 1.10868 0.640094i
\(479\) −32.7340 18.8990i −1.49565 0.863516i −0.495665 0.868514i \(-0.665076\pi\)
−0.999988 + 0.00499790i \(0.998409\pi\)
\(480\) −3.71676 −0.169646
\(481\) 40.3246i 1.83864i
\(482\) 39.0456i 1.77848i
\(483\) −26.1634 + 0.749645i −1.19048 + 0.0341100i
\(484\) −28.6333 49.5944i −1.30152 2.25429i
\(485\) 1.50527i 0.0683509i
\(486\) 4.60316 2.65764i 0.208804 0.120553i
\(487\) −26.5268 + 15.3153i −1.20205 + 0.694001i −0.961010 0.276515i \(-0.910820\pi\)
−0.241036 + 0.970516i \(0.577487\pi\)
\(488\) −1.40226 −0.0634775
\(489\) 6.60154 11.4342i 0.298532 0.517072i
\(490\) −1.07257 + 2.13094i −0.0484538 + 0.0962660i
\(491\) 9.20497 15.9435i 0.415415 0.719519i −0.580057 0.814576i \(-0.696970\pi\)
0.995472 + 0.0950565i \(0.0303032\pi\)
\(492\) −19.5483 33.8587i −0.881307 1.52647i
\(493\) 15.1228 + 26.1935i 0.681099 + 1.17970i
\(494\) −37.2271 32.0229i −1.67493 1.44078i
\(495\) 0.00568073 + 0.00327977i 0.000255330 + 0.000147415i
\(496\) 10.4508 18.1013i 0.469254 0.812771i
\(497\) −15.1483 8.17655i −0.679492 0.366769i
\(498\) −39.9526 69.1999i −1.79032 3.10092i
\(499\) −5.42264 9.39229i −0.242751 0.420457i 0.718746 0.695273i \(-0.244716\pi\)
−0.961497 + 0.274816i \(0.911383\pi\)
\(500\) 5.73950 + 3.31370i 0.256678 + 0.148193i
\(501\) −8.06478 13.9686i −0.360308 0.624072i
\(502\) −1.58872 + 2.75174i −0.0709079 + 0.122816i
\(503\) 25.0660 14.4719i 1.11764 0.645269i 0.176842 0.984239i \(-0.443412\pi\)
0.940797 + 0.338970i \(0.110079\pi\)
\(504\) −0.125817 4.39116i −0.00560435 0.195598i
\(505\) −1.03749 −0.0461679
\(506\) 3.74230 + 2.16062i 0.166366 + 0.0960512i
\(507\) 3.79325 6.57010i 0.168464 0.291788i
\(508\) 17.2678i 0.766135i
\(509\) −16.1379 −0.715299 −0.357650 0.933856i \(-0.616422\pi\)
−0.357650 + 0.933856i \(0.616422\pi\)
\(510\) 1.97767 + 1.14181i 0.0875728 + 0.0505602i
\(511\) 1.12618 + 39.3049i 0.0498192 + 1.73875i
\(512\) 0.824426i 0.0364348i
\(513\) 22.9045 + 4.32878i 1.01126 + 0.191120i
\(514\) 55.0103 31.7602i 2.42640 1.40088i
\(515\) 0.344845i 0.0151957i
\(516\) 3.40840 + 5.90353i 0.150047 + 0.259888i
\(517\) 0.371581 0.214532i 0.0163421 0.00943512i
\(518\) 68.5501 1.96413i 3.01192 0.0862987i
\(519\) 11.2781 + 19.5343i 0.495054 + 0.857459i
\(520\) −2.31230 + 4.00502i −0.101401 + 0.175632i
\(521\) 8.61550 + 14.9225i 0.377452 + 0.653766i 0.990691 0.136131i \(-0.0434670\pi\)
−0.613239 + 0.789898i \(0.710134\pi\)
\(522\) 1.93788 3.35651i 0.0848189 0.146911i
\(523\) 2.45138 0.107191 0.0535957 0.998563i \(-0.482932\pi\)
0.0535957 + 0.998563i \(0.482932\pi\)
\(524\) 42.4458i 1.85425i
\(525\) 10.4987 19.4503i 0.458200 0.848882i
\(526\) −4.69985 + 2.71346i −0.204923 + 0.118312i
\(527\) −5.57091 + 3.21637i −0.242673 + 0.140107i
\(528\) 2.96189 5.13014i 0.128900 0.223261i
\(529\) 11.8335 0.514501
\(530\) 1.04128 0.601182i 0.0452302 0.0261137i
\(531\) −0.929006 −0.0403154
\(532\) 38.0899 46.9349i 1.65141 2.03488i
\(533\) −18.6300 −0.806957
\(534\) 7.76857 4.48518i 0.336179 0.194093i
\(535\) −0.583924 −0.0252453
\(536\) 29.1777 50.5373i 1.26028 2.18288i
\(537\) −9.78170 + 5.64747i −0.422112 + 0.243706i
\(538\) −63.1061 + 36.4343i −2.72070 + 1.57080i
\(539\) −1.04517 1.59218i −0.0450185 0.0685800i
\(540\) 3.54981i 0.152760i
\(541\) −3.02526 −0.130066 −0.0650330 0.997883i \(-0.520715\pi\)
−0.0650330 + 0.997883i \(0.520715\pi\)
\(542\) 36.0549 62.4489i 1.54869 2.68241i
\(543\) −4.57208 7.91908i −0.196207 0.339840i
\(544\) −34.9946 + 60.6124i −1.50038 + 2.59874i
\(545\) −0.253135 0.438443i −0.0108431 0.0187808i
\(546\) 43.9646 + 23.7307i 1.88151 + 1.01558i
\(547\) −13.9695 + 8.06531i −0.597294 + 0.344848i −0.767976 0.640478i \(-0.778736\pi\)
0.170682 + 0.985326i \(0.445403\pi\)
\(548\) −10.5858 18.3351i −0.452203 0.783238i
\(549\) 0.0306036i 0.00130613i
\(550\) −3.16020 + 1.82454i −0.134751 + 0.0777987i
\(551\) 31.1269 10.8991i 1.32605 0.464319i
\(552\) 86.2894i 3.67272i
\(553\) 24.8621 15.3199i 1.05724 0.651469i
\(554\) 18.5570 + 10.7139i 0.788410 + 0.455189i
\(555\) 2.04481 0.0867972
\(556\) 86.7738i 3.68003i
\(557\) −5.07899 + 8.79708i −0.215204 + 0.372744i −0.953336 0.301913i \(-0.902375\pi\)
0.738132 + 0.674657i \(0.235708\pi\)
\(558\) 0.713872 + 0.412154i 0.0302206 + 0.0174479i
\(559\) 3.24829 0.137388
\(560\) −3.83000 2.06732i −0.161847 0.0873600i
\(561\) −1.57887 + 0.911560i −0.0666599 + 0.0384861i
\(562\) −37.8832 + 65.6156i −1.59801 + 2.76783i
\(563\) −17.3744 30.0933i −0.732243 1.26828i −0.955923 0.293619i \(-0.905140\pi\)
0.223680 0.974663i \(-0.428193\pi\)
\(564\) −11.9983 6.92724i −0.505221 0.291689i
\(565\) 0.489129 + 0.847196i 0.0205778 + 0.0356418i
\(566\) 27.1856 + 47.0868i 1.14270 + 1.97921i
\(567\) −22.1958 + 0.635964i −0.932138 + 0.0267080i
\(568\) 28.3752 49.1473i 1.19060 2.06217i
\(569\) −23.9526 13.8290i −1.00415 0.579744i −0.0946735 0.995508i \(-0.530181\pi\)
−0.909472 + 0.415765i \(0.863514\pi\)
\(570\) 1.62384 1.88774i 0.0680151 0.0790686i
\(571\) −17.5951 30.4755i −0.736330 1.27536i −0.954137 0.299369i \(-0.903224\pi\)
0.217807 0.975992i \(-0.430110\pi\)
\(572\) −2.98506 5.17028i −0.124812 0.216180i
\(573\) 0.0115326 0.0199751i 0.000481782 0.000834471i
\(574\) −0.907431 31.6703i −0.0378754 1.32189i
\(575\) −14.7076 + 25.4744i −0.613351 + 1.06236i
\(576\) 4.02347 0.167645
\(577\) 12.3184 7.11201i 0.512820 0.296077i −0.221172 0.975235i \(-0.570988\pi\)
0.733992 + 0.679158i \(0.237655\pi\)
\(578\) −2.37676 + 1.37222i −0.0988601 + 0.0570769i
\(579\) 5.20778i 0.216428i
\(580\) −2.51122 4.34955i −0.104273 0.180605i
\(581\) −1.34237 46.8502i −0.0556909 1.94367i
\(582\) 53.6107i 2.22223i
\(583\) 0.959905i 0.0397552i
\(584\) −129.631 −5.36417
\(585\) −0.0874070 0.0504644i −0.00361383 0.00208645i
\(586\) −39.6259 + 22.8780i −1.63693 + 0.945082i
\(587\) −28.9712 16.7265i −1.19577 0.690377i −0.236160 0.971714i \(-0.575889\pi\)
−0.959609 + 0.281337i \(0.909222\pi\)
\(588\) −27.6494 + 54.9326i −1.14024 + 2.26538i
\(589\) 2.31806 + 6.62016i 0.0955139 + 0.272779i
\(590\) −0.831613 + 1.44040i −0.0342370 + 0.0593002i
\(591\) 10.0429 0.413109
\(592\) 125.113i 5.14210i
\(593\) 46.1450i 1.89495i 0.319832 + 0.947474i \(0.396373\pi\)
−0.319832 + 0.947474i \(0.603627\pi\)
\(594\) 3.39082 + 1.95769i 0.139127 + 0.0803251i
\(595\) 0.702692 + 1.14037i 0.0288075 + 0.0467506i
\(596\) 65.4462 2.68078
\(597\) −14.5563 8.40409i −0.595750 0.343956i
\(598\) −57.5811 33.2445i −2.35467 1.35947i
\(599\) 19.5863 + 11.3081i 0.800273 + 0.462038i 0.843567 0.537024i \(-0.180452\pi\)
−0.0432933 + 0.999062i \(0.513785\pi\)
\(600\) 63.1050 + 36.4337i 2.57625 + 1.48740i
\(601\) −12.3958 −0.505633 −0.252817 0.967514i \(-0.581357\pi\)
−0.252817 + 0.967514i \(0.581357\pi\)
\(602\) 0.158218 + 5.52197i 0.00644847 + 0.225059i
\(603\) 1.10294 + 0.636785i 0.0449154 + 0.0259319i
\(604\) 4.45452i 0.181252i
\(605\) 1.38375i 0.0562576i
\(606\) −36.9506 −1.50102
\(607\) −8.64849 + 14.9796i −0.351031 + 0.608004i −0.986430 0.164180i \(-0.947502\pi\)
0.635399 + 0.772184i \(0.280836\pi\)
\(608\) 57.8561 + 49.7680i 2.34637 + 2.01836i
\(609\) −28.5664 + 17.6025i −1.15757 + 0.713290i
\(610\) −0.0474499 0.0273952i −0.00192119 0.00110920i
\(611\) −5.71735 + 3.30092i −0.231299 + 0.133541i
\(612\) −3.45412 1.99424i −0.139625 0.0806124i
\(613\) 22.6801 0.916041 0.458021 0.888942i \(-0.348559\pi\)
0.458021 + 0.888942i \(0.348559\pi\)
\(614\) 20.2543i 0.817397i
\(615\) 0.944705i 0.0380942i
\(616\) 5.34553 3.29389i 0.215377 0.132715i
\(617\) −11.2707 19.5215i −0.453742 0.785905i 0.544873 0.838519i \(-0.316578\pi\)
−0.998615 + 0.0526142i \(0.983245\pi\)
\(618\) 12.2817i 0.494044i
\(619\) −22.7017 + 13.1069i −0.912460 + 0.526809i −0.881222 0.472703i \(-0.843278\pi\)
−0.0312382 + 0.999512i \(0.509945\pi\)
\(620\) 0.925074 0.534092i 0.0371519 0.0214496i
\(621\) 31.5619 1.26654
\(622\) −1.28343 + 2.22296i −0.0514608 + 0.0891326i
\(623\) 5.25952 0.150698i 0.210718 0.00603759i
\(624\) −45.5733 + 78.9352i −1.82439 + 3.15994i
\(625\) −12.3798 21.4425i −0.495193 0.857700i
\(626\) 7.56161 + 13.0971i 0.302223 + 0.523465i
\(627\) 0.656968 + 1.87624i 0.0262368 + 0.0749298i
\(628\) −62.0893 35.8473i −2.47763 1.43046i
\(629\) 19.2525 33.3464i 0.767649 1.32961i
\(630\) 0.0815301 0.151046i 0.00324824 0.00601783i
\(631\) 7.89100 + 13.6676i 0.314136 + 0.544099i 0.979253 0.202639i \(-0.0649519\pi\)
−0.665118 + 0.746739i \(0.731619\pi\)
\(632\) 48.1375 + 83.3767i 1.91481 + 3.31655i
\(633\) 4.74921 + 2.74196i 0.188764 + 0.108983i
\(634\) −29.0835 50.3741i −1.15505 2.00061i
\(635\) −0.208624 + 0.361347i −0.00827898 + 0.0143396i
\(636\) 26.8427 15.4976i 1.06438 0.614521i
\(637\) 16.0815 + 24.4982i 0.637173 + 0.970652i
\(638\) 5.53965 0.219317
\(639\) 1.07261 + 0.619271i 0.0424318 + 0.0244980i
\(640\) 1.38429 2.39767i 0.0547190 0.0947760i
\(641\) 10.5735i 0.417628i −0.977955 0.208814i \(-0.933040\pi\)
0.977955 0.208814i \(-0.0669604\pi\)
\(642\) −20.7966 −0.820777
\(643\) −40.5307 23.4004i −1.59838 0.922822i −0.991800 0.127796i \(-0.959210\pi\)
−0.606575 0.795026i \(-0.707457\pi\)
\(644\) 38.8754 72.0224i 1.53191 2.83808i
\(645\) 0.164717i 0.00648571i
\(646\) −15.4960 44.2550i −0.609680 1.74119i
\(647\) −11.1187 + 6.41939i −0.437121 + 0.252372i −0.702376 0.711806i \(-0.747877\pi\)
0.265255 + 0.964178i \(0.414544\pi\)
\(648\) 73.2039i 2.87572i
\(649\) −0.663916 1.14994i −0.0260610 0.0451390i
\(650\) 48.6246 28.0734i 1.90721 1.10113i
\(651\) −3.74375 6.07558i −0.146729 0.238121i
\(652\) 20.6425 + 35.7538i 0.808421 + 1.40023i
\(653\) 1.49515 2.58968i 0.0585098 0.101342i −0.835287 0.549814i \(-0.814698\pi\)
0.893797 + 0.448472i \(0.148032\pi\)
\(654\) −9.01547 15.6153i −0.352533 0.610605i
\(655\) −0.512816 + 0.888223i −0.0200374 + 0.0347057i
\(656\) 57.8024 2.25680
\(657\) 2.82912i 0.110374i
\(658\) −5.88990 9.55849i −0.229612 0.372629i
\(659\) 29.4316 16.9924i 1.14649 0.661928i 0.198463 0.980108i \(-0.436405\pi\)
0.948030 + 0.318180i \(0.103072\pi\)
\(660\) 0.262178 0.151369i 0.0102053 0.00589202i
\(661\) 0.999203 1.73067i 0.0388645 0.0673153i −0.845939 0.533280i \(-0.820959\pi\)
0.884803 + 0.465965i \(0.154293\pi\)
\(662\) −5.86165 −0.227819
\(663\) 24.2934 14.0258i 0.943476 0.544716i
\(664\) 154.516 5.99639
\(665\) 1.36412 0.521971i 0.0528984 0.0202412i
\(666\) −4.93415 −0.191195
\(667\) 38.6725 22.3276i 1.49741 0.864528i
\(668\) 50.4358 1.95142
\(669\) −17.5794 + 30.4484i −0.679658 + 1.17720i
\(670\) 1.97463 1.14005i 0.0762867 0.0440441i
\(671\) 0.0378815 0.0218709i 0.00146240 0.000844316i
\(672\) −68.3271 36.8808i −2.63578 1.42271i
\(673\) 29.4453i 1.13503i −0.823362 0.567517i \(-0.807904\pi\)
0.823362 0.567517i \(-0.192096\pi\)
\(674\) 85.9309 3.30994
\(675\) −13.3263 + 23.0818i −0.512930 + 0.888420i
\(676\) 11.8612 + 20.5442i 0.456199 + 0.790160i
\(677\) 11.2661 19.5134i 0.432991 0.749963i −0.564138 0.825680i \(-0.690791\pi\)
0.997129 + 0.0757178i \(0.0241248\pi\)
\(678\) 17.4204 + 30.1731i 0.669028 + 1.15879i
\(679\) −14.9366 + 27.6722i −0.573214 + 1.06196i
\(680\) −3.82431 + 2.20796i −0.146655 + 0.0846716i
\(681\) 4.40403 + 7.62800i 0.168763 + 0.292306i
\(682\) 1.17819i 0.0451151i
\(683\) 29.4817 17.0212i 1.12808 0.651300i 0.184632 0.982808i \(-0.440891\pi\)
0.943452 + 0.331508i \(0.107557\pi\)
\(684\) −2.83614 + 3.29705i −0.108442 + 0.126066i
\(685\) 0.511576i 0.0195463i
\(686\) −40.8626 + 28.5312i −1.56014 + 1.08933i
\(687\) 11.6547 + 6.72886i 0.444656 + 0.256722i
\(688\) −10.0783 −0.384231
\(689\) 14.7696i 0.562678i
\(690\) 1.68578 2.91986i 0.0641767 0.111157i
\(691\) −24.8441 14.3437i −0.945113 0.545661i −0.0535535 0.998565i \(-0.517055\pi\)
−0.891559 + 0.452904i \(0.850388\pi\)
\(692\) −70.5315 −2.68121
\(693\) 0.0718871 + 0.116663i 0.00273077 + 0.00443165i
\(694\) −72.5548 + 41.8895i −2.75414 + 1.59010i
\(695\) −1.04837 + 1.81583i −0.0397670 + 0.0688785i
\(696\) −55.3098 95.7994i −2.09651 3.63127i
\(697\) −15.4061 8.89472i −0.583548 0.336912i
\(698\) −18.7992 32.5612i −0.711560 1.23246i
\(699\) 17.1330 + 29.6752i 0.648030 + 1.12242i
\(700\) 36.2571 + 58.8401i 1.37039 + 2.22395i
\(701\) −15.8211 + 27.4030i −0.597555 + 1.03500i 0.395626 + 0.918412i \(0.370528\pi\)
−0.993181 + 0.116584i \(0.962806\pi\)
\(702\) −52.1731 30.1221i −1.96915 1.13689i
\(703\) −31.8300 27.3803i −1.20049 1.03267i
\(704\) 2.87538 + 4.98031i 0.108370 + 0.187702i
\(705\) −0.167385 0.289920i −0.00630409 0.0109190i
\(706\) −1.64534 + 2.84982i −0.0619234 + 0.107254i
\(707\) −19.0728 10.2949i −0.717305 0.387179i
\(708\) −21.4378 + 37.1314i −0.805683 + 1.39548i
\(709\) 21.5060 0.807676 0.403838 0.914830i \(-0.367676\pi\)
0.403838 + 0.914830i \(0.367676\pi\)
\(710\) 1.92032 1.10870i 0.0720684 0.0416087i
\(711\) −1.81964 + 1.05057i −0.0682420 + 0.0393995i
\(712\) 17.3464i 0.650083i
\(713\) 4.74869 + 8.22497i 0.177840 + 0.308028i
\(714\) 25.0265 + 40.6146i 0.936595 + 1.51996i
\(715\) 0.144258i 0.00539495i
\(716\) 35.3183i 1.31991i
\(717\) 17.4343 0.651095
\(718\) −3.40398 1.96529i −0.127035 0.0733439i
\(719\) 8.40991 4.85547i 0.313637 0.181078i −0.334916 0.942248i \(-0.608708\pi\)
0.648553 + 0.761170i \(0.275375\pi\)
\(720\) 0.271193 + 0.156573i 0.0101068 + 0.00583514i
\(721\) 3.42184 6.33946i 0.127436 0.236094i
\(722\) −50.5542 + 7.64157i −1.88143 + 0.284390i
\(723\) −12.1607 + 21.0629i −0.452261 + 0.783338i
\(724\) 28.5931 1.06265
\(725\) 37.7093i 1.40049i
\(726\) 49.2827i 1.82905i
\(727\) 34.1447 + 19.7135i 1.26636 + 0.731132i 0.974297 0.225268i \(-0.0723258\pi\)
0.292060 + 0.956400i \(0.405659\pi\)
\(728\) −82.2493 + 50.6817i −3.04836 + 1.87839i
\(729\) 28.4889 1.05515
\(730\) −4.38646 2.53252i −0.162350 0.0937329i
\(731\) 2.68617 + 1.55086i 0.0993518 + 0.0573608i
\(732\) −1.22319 0.706210i −0.0452105 0.0261023i
\(733\) 22.2094 + 12.8226i 0.820325 + 0.473615i 0.850528 0.525929i \(-0.176282\pi\)
−0.0302038 + 0.999544i \(0.509616\pi\)
\(734\) 20.6839 0.763455
\(735\) −1.24227 + 0.815473i −0.0458218 + 0.0300792i
\(736\) 89.4891 + 51.6665i 3.29861 + 1.90445i
\(737\) 1.82032i 0.0670523i
\(738\) 2.27959i 0.0839129i
\(739\) 29.6252 1.08978 0.544890 0.838508i \(-0.316572\pi\)
0.544890 + 0.838508i \(0.316572\pi\)
\(740\) −3.19697 + 5.53732i −0.117523 + 0.203556i
\(741\) −10.1085 28.8689i −0.371344 1.06053i
\(742\) 25.1078 0.719398i 0.921736 0.0264099i
\(743\) 33.2909 + 19.2205i 1.22133 + 0.705133i 0.965201 0.261511i \(-0.0842207\pi\)
0.256125 + 0.966644i \(0.417554\pi\)
\(744\) 20.3749 11.7634i 0.746979 0.431268i
\(745\) 1.36953 + 0.790699i 0.0501757 + 0.0289690i
\(746\) −81.0725 −2.96827
\(747\) 3.37222i 0.123383i
\(748\) 5.70075i 0.208440i
\(749\) −10.7346 5.79419i −0.392233 0.211715i
\(750\) 2.85172 + 4.93932i 0.104130 + 0.180358i
\(751\) 5.86604i 0.214055i −0.994256 0.107027i \(-0.965867\pi\)
0.994256 0.107027i \(-0.0341333\pi\)
\(752\) 17.7389 10.2416i 0.646872 0.373471i
\(753\) −1.71405 + 0.989607i −0.0624634 + 0.0360633i
\(754\) −85.2362 −3.10412
\(755\) 0.0538179 0.0932154i 0.00195864 0.00339246i
\(756\) 35.2242 65.2580i 1.28109 2.37341i
\(757\) −6.95292 + 12.0428i −0.252708 + 0.437704i −0.964271 0.264919i \(-0.914655\pi\)
0.711562 + 0.702623i \(0.247988\pi\)
\(758\) 12.9105 + 22.3617i 0.468931 + 0.812212i
\(759\) 1.34584 + 2.33107i 0.0488510 + 0.0846123i
\(760\) 1.59130 + 4.54459i 0.0577224 + 0.164850i
\(761\) 27.6597 + 15.9693i 1.00266 + 0.578888i 0.909035 0.416719i \(-0.136820\pi\)
0.0936283 + 0.995607i \(0.470153\pi\)
\(762\) −7.43019 + 12.8695i −0.269167 + 0.466211i
\(763\) −0.302911 10.5719i −0.0109661 0.382730i
\(764\) 0.0360616 + 0.0624604i 0.00130466 + 0.00225974i
\(765\) −0.0481875 0.0834631i −0.00174222 0.00301762i
\(766\) −37.8090 21.8291i −1.36610 0.788716i
\(767\) 10.2154 + 17.6936i 0.368856 + 0.638878i
\(768\) 13.8736 24.0297i 0.500619 0.867098i
\(769\) −10.9992 + 6.35037i −0.396640 + 0.229000i −0.685033 0.728512i \(-0.740212\pi\)
0.288393 + 0.957512i \(0.406879\pi\)
\(770\) 0.245233 0.00702651i 0.00883758 0.000253218i
\(771\) 39.5667 1.42496
\(772\) −14.1026 8.14216i −0.507565 0.293043i
\(773\) −27.3436 + 47.3605i −0.983481 + 1.70344i −0.334982 + 0.942225i \(0.608730\pi\)
−0.648500 + 0.761215i \(0.724603\pi\)
\(774\) 0.397464i 0.0142866i
\(775\) −8.02010 −0.288091
\(776\) −89.7802 51.8346i −3.22292 1.86076i
\(777\) 37.5907 + 20.2903i 1.34856 + 0.727910i
\(778\) 44.7625i 1.60481i
\(779\) −12.6497 + 14.7055i −0.453224 + 0.526880i
\(780\) −4.03402 + 2.32904i −0.144441 + 0.0833931i
\(781\) 1.77025i 0.0633447i
\(782\) −31.7445 54.9830i −1.13518 1.96619i
\(783\) 35.0404 20.2306i 1.25224 0.722982i
\(784\) −49.8952 76.0090i −1.78197 2.71461i
\(785\) −0.866190 1.50028i −0.0309156 0.0535475i
\(786\) −18.2641 + 31.6343i −0.651458 + 1.12836i
\(787\) 23.3167 + 40.3858i 0.831152 + 1.43960i 0.897126 + 0.441775i \(0.145651\pi\)
−0.0659741 + 0.997821i \(0.521015\pi\)
\(788\) −15.7016 + 27.1960i −0.559348 + 0.968819i
\(789\) −3.38041 −0.120346
\(790\) 3.76174i 0.133837i
\(791\) 0.585310 + 20.4280i 0.0208112 + 0.726335i
\(792\) −0.391236 + 0.225880i −0.0139020 + 0.00802631i
\(793\) −0.582866 + 0.336518i −0.0206982 + 0.0119501i
\(794\) −34.1393 + 59.1311i −1.21156 + 2.09848i
\(795\) 0.748949 0.0265625
\(796\) 45.5164 26.2789i 1.61329 0.931431i
\(797\) −1.22513 −0.0433965 −0.0216982 0.999765i \(-0.506907\pi\)
−0.0216982 + 0.999765i \(0.506907\pi\)
\(798\) 48.5836 18.5901i 1.71984 0.658084i
\(799\) −6.30395 −0.223018
\(800\) −75.5694 + 43.6300i −2.67178 + 1.54255i
\(801\) −0.378574 −0.0133763
\(802\) 33.1529 57.4225i 1.17067 2.02766i
\(803\) 3.50192 2.02183i 0.123580 0.0713490i
\(804\) 50.9033 29.3890i 1.79522 1.03647i
\(805\) 1.68366 1.03746i 0.0593412 0.0365658i
\(806\) 18.1283i 0.638541i
\(807\) −45.3896 −1.59779
\(808\) 35.7265 61.8801i 1.25685 2.17693i
\(809\) −7.17891 12.4342i −0.252397 0.437164i 0.711788 0.702394i \(-0.247886\pi\)
−0.964185 + 0.265230i \(0.914552\pi\)
\(810\) 1.43014 2.47708i 0.0502500 0.0870356i
\(811\) 21.9700 + 38.0532i 0.771473 + 1.33623i 0.936756 + 0.349984i \(0.113813\pi\)
−0.165283 + 0.986246i \(0.552854\pi\)
\(812\) −3.00502 104.878i −0.105455 3.68051i
\(813\) 38.8992 22.4585i 1.36425 0.787653i
\(814\) −3.52620 6.10756i −0.123593 0.214070i
\(815\) 0.997581i 0.0349437i
\(816\) −75.3736 + 43.5170i −2.63861 + 1.52340i
\(817\) 2.20558 2.56402i 0.0771635 0.0897038i
\(818\) 6.57063i 0.229737i
\(819\) −1.10610 1.79504i −0.0386501 0.0627237i
\(820\) 2.55825 + 1.47701i 0.0893381 + 0.0515794i
\(821\) −26.5661 −0.927162 −0.463581 0.886055i \(-0.653436\pi\)
−0.463581 + 0.886055i \(0.653436\pi\)
\(822\) 18.2199i 0.635492i
\(823\) 14.3654 24.8815i 0.500745 0.867316i −0.499255 0.866455i \(-0.666393\pi\)
1.00000 0.000860496i \(-0.000273905\pi\)
\(824\) 20.5679 + 11.8749i 0.716516 + 0.413681i
\(825\) −2.27300 −0.0791358
\(826\) −29.5808 + 18.2276i −1.02925 + 0.634218i
\(827\) 34.5971 19.9746i 1.20306 0.694586i 0.241824 0.970320i \(-0.422254\pi\)
0.961234 + 0.275735i \(0.0889211\pi\)
\(828\) −2.94433 + 5.09972i −0.102322 + 0.177228i
\(829\) 16.6735 + 28.8794i 0.579096 + 1.00302i 0.995583 + 0.0938824i \(0.0299278\pi\)
−0.416487 + 0.909142i \(0.636739\pi\)
\(830\) 5.22852 + 3.01869i 0.181485 + 0.104780i
\(831\) 6.67363 + 11.5591i 0.231506 + 0.400980i
\(832\) −44.2423 76.6298i −1.53382 2.65666i
\(833\) 1.60222 + 27.9367i 0.0555137 + 0.967949i
\(834\) −37.3380 + 64.6714i −1.29291 + 2.23939i
\(835\) 1.05542 + 0.609349i 0.0365244 + 0.0210874i
\(836\) −6.10799 1.15436i −0.211249 0.0399245i
\(837\) 4.30269 + 7.45248i 0.148723 + 0.257595i
\(838\) 17.8984 + 31.0010i 0.618291 + 1.07091i
\(839\) −7.43354 + 12.8753i −0.256634 + 0.444504i −0.965338 0.261002i \(-0.915947\pi\)
0.708704 + 0.705506i \(0.249280\pi\)
\(840\) −2.57000 4.17075i −0.0886735 0.143905i
\(841\) 14.1231 24.4619i 0.487003 0.843515i
\(842\) 64.0249 2.20645
\(843\) −40.8718 + 23.5973i −1.40770 + 0.812735i
\(844\) −14.8504 + 8.57388i −0.511172 + 0.295125i
\(845\) 0.573211i 0.0197191i
\(846\) 0.403903 + 0.699581i 0.0138865 + 0.0240521i
\(847\) 13.7308 25.4382i 0.471795 0.874068i
\(848\) 45.8249i 1.57363i
\(849\) 33.8676i 1.16233i
\(850\) 53.6135 1.83893
\(851\) −49.2331 28.4248i −1.68769 0.974388i
\(852\) 49.5032 28.5807i 1.69595 0.979159i
\(853\) −7.84936 4.53183i −0.268757 0.155167i 0.359566 0.933120i \(-0.382925\pi\)
−0.628323 + 0.777953i \(0.716258\pi\)
\(854\) −0.600457 0.974458i −0.0205472 0.0333453i
\(855\) −0.0991830 + 0.0347290i −0.00339199 + 0.00118771i
\(856\) 20.1077 34.8275i 0.687265 1.19038i
\(857\) 23.9678 0.818723 0.409362 0.912372i \(-0.365751\pi\)
0.409362 + 0.912372i \(0.365751\pi\)
\(858\) 5.13779i 0.175401i
\(859\) 26.9123i 0.918236i 0.888375 + 0.459118i \(0.151834\pi\)
−0.888375 + 0.459118i \(0.848166\pi\)
\(860\) −0.446051 0.257528i −0.0152102 0.00878163i
\(861\) 9.37416 17.3670i 0.319471 0.591866i
\(862\) −13.2273 −0.450523
\(863\) 6.58569 + 3.80225i 0.224179 + 0.129430i 0.607884 0.794026i \(-0.292019\pi\)
−0.383705 + 0.923456i \(0.625352\pi\)
\(864\) 81.0842 + 46.8140i 2.75854 + 1.59264i
\(865\) −1.47595 0.852138i −0.0501837 0.0289736i
\(866\) 38.5214 + 22.2404i 1.30901 + 0.755758i
\(867\) −1.70951 −0.0580578
\(868\) 22.3058 0.639115i 0.757109 0.0216930i
\(869\) −2.60082 1.50159i −0.0882269 0.0509378i
\(870\) 4.32222i 0.146537i
\(871\) 28.0085i 0.949030i
\(872\) 34.8672 1.18075
\(873\) 1.13126 1.95940i 0.0382873 0.0663156i
\(874\) −65.3388 + 22.8785i −2.21012 + 0.773876i
\(875\) 0.0958149 + 3.34405i 0.00323914 + 0.113049i
\(876\) −113.077 65.2849i −3.82051 2.20577i
\(877\) −12.5573 + 7.24994i −0.424029 + 0.244813i −0.696800 0.717266i \(-0.745393\pi\)
0.272771 + 0.962079i \(0.412060\pi\)
\(878\) 71.5607 + 41.3156i 2.41506 + 1.39433i
\(879\) −28.5013 −0.961324
\(880\) 0.447581i 0.0150880i
\(881\) 4.60281i 0.155073i 0.996990 + 0.0775363i \(0.0247054\pi\)
−0.996990 + 0.0775363i \(0.975295\pi\)
\(882\) 2.99762 1.96775i 0.100935 0.0662576i
\(883\) 1.55869 + 2.69974i 0.0524543 + 0.0908534i 0.891060 0.453885i \(-0.149962\pi\)
−0.838606 + 0.544738i \(0.816629\pi\)
\(884\) 87.7150i 2.95017i
\(885\) −0.897218 + 0.518009i −0.0301596 + 0.0174127i
\(886\) 12.1211 6.99812i 0.407216 0.235107i
\(887\) −6.75321 −0.226751 −0.113375 0.993552i \(-0.536166\pi\)
−0.113375 + 0.993552i \(0.536166\pi\)
\(888\) −70.4136 + 121.960i −2.36293 + 4.09271i
\(889\) −7.42082 + 4.57268i −0.248886 + 0.153363i
\(890\) −0.338886 + 0.586968i −0.0113595 + 0.0196752i
\(891\) 1.14175 + 1.97757i 0.0382500 + 0.0662510i
\(892\) −54.9693 95.2096i −1.84051 3.18785i
\(893\) −1.27651 + 6.75428i −0.0427167 + 0.226023i
\(894\) 48.7762 + 28.1609i 1.63132 + 0.941843i
\(895\) 0.426704 0.739073i 0.0142632 0.0247045i
\(896\) 49.2398 30.3414i 1.64499 1.01363i
\(897\) −20.7079 35.8671i −0.691416 1.19757i
\(898\) −41.5978 72.0495i −1.38814 2.40432i
\(899\) 10.5441 + 6.08763i 0.351665 + 0.203034i
\(900\) −2.48635 4.30648i −0.0828783 0.143549i
\(901\) 7.05161 12.2138i 0.234923 0.406899i
\(902\) −2.82171 + 1.62911i −0.0939526 + 0.0542436i
\(903\) −1.63446 + 3.02807i −0.0543913 + 0.100768i
\(904\) −67.3733 −2.24080
\(905\) 0.598340 + 0.345452i 0.0198895 + 0.0114832i
\(906\) 1.91674 3.31989i 0.0636794 0.110296i
\(907\) 13.3638i 0.443736i −0.975077 0.221868i \(-0.928785\pi\)
0.975077 0.221868i \(-0.0712154\pi\)
\(908\) −27.5421 −0.914016
\(909\) 1.35049 + 0.779708i 0.0447931 + 0.0258613i
\(910\) −3.77329 + 0.108114i −0.125083 + 0.00358394i
\(911\) 43.1749i 1.43045i −0.698895 0.715224i \(-0.746325\pi\)
0.698895 0.715224i \(-0.253675\pi\)
\(912\) 31.3630 + 89.5699i 1.03853 + 2.96595i
\(913\) −4.17418 + 2.40996i −0.138145 + 0.0797581i
\(914\) 22.0113i 0.728070i
\(915\) −0.0170644 0.0295564i −0.000564131 0.000977104i
\(916\) −36.4434 + 21.0406i −1.20412 + 0.695201i
\(917\) −18.2410 + 11.2401i −0.602372 + 0.371180i
\(918\) −28.7630 49.8190i −0.949321 1.64427i
\(919\) 23.0514 39.9262i 0.760396 1.31704i −0.182251 0.983252i \(-0.558338\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(920\) 3.25987 + 5.64627i 0.107475 + 0.186152i
\(921\) −6.30817 + 10.9261i −0.207861 + 0.360026i
\(922\) 68.3451 2.25083
\(923\) 27.2381i 0.896554i
\(924\) 6.32176 0.181134i 0.207971 0.00595886i
\(925\) 41.5751 24.0034i 1.36698 0.789227i
\(926\) 37.5937 21.7048i 1.23541 0.713262i
\(927\) −0.259162 + 0.448881i −0.00851198 + 0.0147432i
\(928\) 132.469 4.34851
\(929\) −23.1452 + 13.3629i −0.759369 + 0.438422i −0.829069 0.559146i \(-0.811129\pi\)
0.0697003 + 0.997568i \(0.477796\pi\)
\(930\) 0.919260 0.0301437
\(931\) 30.2568 + 3.94031i 0.991627 + 0.129138i
\(932\) −107.147 −3.50972
\(933\) −1.38468 + 0.799443i −0.0453322 + 0.0261726i
\(934\) −26.8799 −0.879537
\(935\) 0.0688745 0.119294i 0.00225244 0.00390134i
\(936\) 6.01978 3.47552i 0.196763 0.113601i
\(937\) −10.5920 + 6.11528i −0.346025 + 0.199778i −0.662933 0.748679i \(-0.730689\pi\)
0.316908 + 0.948456i \(0.397355\pi\)
\(938\) 47.6132 1.36423i 1.55463 0.0445438i
\(939\) 9.42021i 0.307417i
\(940\) 1.04680 0.0341428
\(941\) −12.3506 + 21.3919i −0.402619 + 0.697356i −0.994041 0.109006i \(-0.965233\pi\)
0.591422 + 0.806362i \(0.298567\pi\)
\(942\) −30.8496 53.4330i −1.00513 1.74094i
\(943\) −13.1323 + 22.7458i −0.427647 + 0.740706i
\(944\) −31.6947 54.8968i −1.03157 1.78674i
\(945\) 1.52553 0.940026i 0.0496255 0.0305790i
\(946\) 0.491987 0.284049i 0.0159959 0.00923522i
\(947\) −25.5341 44.2264i −0.829748 1.43716i −0.898236 0.439513i \(-0.855151\pi\)
0.0684887 0.997652i \(-0.478182\pi\)
\(948\) 96.9723i 3.14951i
\(949\) −53.8825 + 31.1091i −1.74910 + 1.00984i
\(950\) 10.8564 57.4434i 0.352227 1.86371i
\(951\) 36.2320i 1.17490i
\(952\) −92.2135 + 2.64214i −2.98866 + 0.0856322i
\(953\) −33.4935 19.3375i −1.08496 0.626402i −0.152729 0.988268i \(-0.548806\pi\)
−0.932230 + 0.361866i \(0.882140\pi\)
\(954\) −1.80723 −0.0585112
\(955\) 0.00174273i 5.63935e-5i
\(956\) −27.2578 + 47.2118i −0.881579 + 1.52694i
\(957\) 2.98833 + 1.72532i 0.0965992 + 0.0557715i
\(958\) 101.713 3.28620
\(959\) 5.07629 9.40456i 0.163922 0.303689i
\(960\) 3.88580 2.24347i 0.125414 0.0724076i
\(961\) 14.2053 24.6042i 0.458234 0.793685i
\(962\) 54.2562 + 93.9744i 1.74929 + 3.02986i
\(963\) 0.760088 + 0.438837i 0.0244935 + 0.0141413i
\(964\) −38.0255 65.8620i −1.22472 2.12127i
\(965\) −0.196742 0.340766i −0.00633333 0.0109697i
\(966\) 59.9640 36.9496i 1.92931 1.18883i
\(967\) 2.60618 4.51404i 0.0838092 0.145162i −0.821074 0.570822i \(-0.806625\pi\)
0.904883 + 0.425660i \(0.139958\pi\)
\(968\) 82.5323 + 47.6501i 2.65269 + 1.53153i
\(969\) 5.42395 28.6993i 0.174242 0.921955i
\(970\) −2.02532 3.50797i −0.0650293 0.112634i
\(971\) −16.1434 27.9612i −0.518066 0.897317i −0.999780 0.0209884i \(-0.993319\pi\)
0.481713 0.876329i \(-0.340015\pi\)
\(972\) −5.17641 + 8.96580i −0.166033 + 0.287578i
\(973\) −37.2910 + 22.9786i −1.19549 + 0.736659i
\(974\) 41.2130 71.3830i 1.32055 2.28726i
\(975\) 34.9737 1.12005
\(976\) 1.80843 1.04409i 0.0578863 0.0334207i
\(977\) −29.7229 + 17.1605i −0.950918 + 0.549013i −0.893366 0.449330i \(-0.851663\pi\)
−0.0575522 + 0.998342i \(0.518330\pi\)
\(978\) 35.5291i 1.13610i
\(979\) −0.270549 0.468604i −0.00864678 0.0149767i
\(980\) −0.266056 4.63901i −0.00849885 0.148188i
\(981\) 0.760955i 0.0242954i
\(982\) 49.5407i 1.58091i
\(983\) −44.4390 −1.41739 −0.708693 0.705517i \(-0.750715\pi\)
−0.708693 + 0.705517i \(0.750715\pi\)
\(984\) 56.3458 + 32.5313i 1.79624 + 1.03706i
\(985\) −0.657147 + 0.379404i −0.0209384 + 0.0120888i
\(986\) −70.4861 40.6952i −2.24473 1.29600i
\(987\) −0.200300 6.99067i −0.00637561 0.222516i
\(988\) 93.9809 + 17.7617i 2.98993 + 0.565074i
\(989\) 2.28972 3.96591i 0.0728088 0.126109i
\(990\) −0.0176516 −0.000561004
\(991\) 13.6035i 0.432129i −0.976379 0.216065i \(-0.930678\pi\)
0.976379 0.216065i \(-0.0693222\pi\)
\(992\) 28.1738i 0.894520i
\(993\) −3.16203 1.82560i −0.100344 0.0579337i
\(994\) 46.3037 1.32671i 1.46866 0.0420807i
\(995\) 1.26997 0.0402608
\(996\) 134.784 + 77.8176i 4.27079 + 2.46574i
\(997\) 9.44958 + 5.45572i 0.299271 + 0.172784i 0.642115 0.766608i \(-0.278057\pi\)
−0.342844 + 0.939392i \(0.611390\pi\)
\(998\) 25.2744 + 14.5922i 0.800047 + 0.461907i
\(999\) −44.6091 25.7551i −1.41137 0.814855i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.s.d.103.1 yes 16
7.2 even 3 931.2.p.h.293.8 16
7.3 odd 6 133.2.i.d.122.1 yes 16
7.4 even 3 931.2.i.g.521.1 16
7.5 odd 6 931.2.p.g.293.8 16
7.6 odd 2 931.2.s.g.901.1 16
19.12 odd 6 133.2.i.d.12.8 16
133.12 even 6 931.2.p.h.734.8 16
133.31 even 6 inner 133.2.s.d.31.1 yes 16
133.69 even 6 931.2.i.g.411.8 16
133.88 odd 6 931.2.s.g.31.1 16
133.107 odd 6 931.2.p.g.734.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.i.d.12.8 16 19.12 odd 6
133.2.i.d.122.1 yes 16 7.3 odd 6
133.2.s.d.31.1 yes 16 133.31 even 6 inner
133.2.s.d.103.1 yes 16 1.1 even 1 trivial
931.2.i.g.411.8 16 133.69 even 6
931.2.i.g.521.1 16 7.4 even 3
931.2.p.g.293.8 16 7.5 odd 6
931.2.p.g.734.8 16 133.107 odd 6
931.2.p.h.293.8 16 7.2 even 3
931.2.p.h.734.8 16 133.12 even 6
931.2.s.g.31.1 16 133.88 odd 6
931.2.s.g.901.1 16 7.6 odd 2