Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
Image |
CM |
RM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Fricke sign |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
133.1.m.a |
$133$ |
$1$ |
133.m |
133.m |
$6$ |
$4$ |
$2$ |
$0.066$ |
\(\Q(\zeta_{12})\) |
$A_{4}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.1.m.a |
$4$ |
$0$ |
\(-2\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
|
\(q-\zeta_{12}^{2}q^{2}+\zeta_{12}^{5}q^{3}-\zeta_{12}^{5}q^{5}+\cdots\) |
133.1.r.a |
$133$ |
$1$ |
133.r |
133.r |
$6$ |
$2$ |
$1$ |
$0.066$ |
\(\Q(\sqrt{-3}) \) |
$D_{3}$ |
\(\Q(\sqrt{-19}) \) |
None |
|
✓ |
✓ |
✓ |
133.1.r.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(1\) |
\(-1\) |
|
$1$ |
|
\(q-\zeta_{6}q^{4}-\zeta_{6}^{2}q^{5}+\zeta_{6}^{2}q^{7}+\zeta_{6}^{2}q^{9}+\cdots\) |
133.2.a.a |
$133$ |
$2$ |
133.a |
1.a |
$1$ |
$2$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{5}) \) |
$_{}$ |
None |
None |
✓ |
✓ |
✓ |
✓ |
133.2.a.a |
$1$ |
$1$ |
\(-3\) |
\(-3\) |
\(0\) |
\(-2\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(-1-\beta )q^{2}+(-1-\beta )q^{3}+3\beta q^{4}+\cdots\) |
133.2.a.b |
$133$ |
$2$ |
133.a |
1.a |
$1$ |
$2$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{13}) \) |
$_{}$ |
None |
None |
✓ |
✓ |
✓ |
✓ |
133.2.a.b |
$1$ |
$1$ |
\(-1\) |
\(-3\) |
\(-6\) |
\(2\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-\beta q^{2}+(-2+\beta )q^{3}+(1+\beta )q^{4}-3q^{5}+\cdots\) |
133.2.a.c |
$133$ |
$2$ |
133.a |
1.a |
$1$ |
$2$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{5}) \) |
$_{}$ |
None |
None |
✓ |
✓ |
✓ |
✓ |
133.2.a.c |
$1$ |
$0$ |
\(1\) |
\(3\) |
\(2\) |
\(2\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+\beta q^{2}+(2-\beta )q^{3}+(-1+\beta )q^{4}+q^{5}+\cdots\) |
133.2.a.d |
$133$ |
$2$ |
133.a |
1.a |
$1$ |
$3$ |
$3$ |
$1.062$ |
3.3.229.1 |
$_{}$ |
None |
None |
✓ |
✓ |
✓ |
✓ |
133.2.a.d |
$1$ |
$0$ |
\(2\) |
\(3\) |
\(-2\) |
\(-3\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(1+\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\) |
133.2.c.a |
$133$ |
$2$ |
133.c |
133.c |
$2$ |
$2$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-19}) \) |
$_{}$ |
\(\Q(\sqrt{-19}) \) |
None |
|
✓ |
|
|
133.2.c.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-3\) |
|
$1$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q+2q^{4}+(-1+2\beta )q^{5}+(-1-\beta )q^{7}+\cdots\) |
133.2.c.b |
$133$ |
$2$ |
133.c |
133.c |
$2$ |
$4$ |
$4$ |
$1.062$ |
\(\Q(i, \sqrt{13})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.c.b |
$2$ |
$0$ |
\(0\) |
\(-2\) |
\(0\) |
\(-2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(-2+\beta _{3})q^{4}+\cdots\) |
133.2.c.c |
$133$ |
$2$ |
133.c |
133.c |
$2$ |
$4$ |
$4$ |
$1.062$ |
\(\Q(i, \sqrt{13})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.c.b |
$2$ |
$0$ |
\(0\) |
\(2\) |
\(0\) |
\(-2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(-2+\beta _{3})q^{4}+\cdots\) |
133.2.e.a |
$133$ |
$2$ |
133.e |
19.c |
$3$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.e.a |
$2$ |
$0$ |
\(-1\) |
\(0\) |
\(-2\) |
\(4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-\beta _{1}q^{2}+(1-2\beta _{1}+\beta _{3})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
133.2.e.b |
$133$ |
$2$ |
133.e |
19.c |
$3$ |
$6$ |
$3$ |
$1.062$ |
6.0.309123.1 |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.e.b |
$2$ |
$0$ |
\(-2\) |
\(-1\) |
\(3\) |
\(6\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-\beta _{1}-\beta _{4}+\beta _{5})q^{2}+(\beta _{1}-\beta _{5})q^{3}+\cdots\) |
133.2.e.c |
$133$ |
$2$ |
133.e |
19.c |
$3$ |
$10$ |
$5$ |
$1.062$ |
\(\mathbb{Q}[x]/(x^{10} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.2.e.c |
$2$ |
$0$ |
\(1\) |
\(3\) |
\(-1\) |
\(-10\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{1}q^{2}+(\beta _{6}+\beta _{7})q^{3}+(-1+\beta _{6}+\cdots)q^{4}+\cdots\) |
133.2.f.a |
$133$ |
$2$ |
133.f |
7.c |
$3$ |
$2$ |
$1$ |
$1.062$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.f.a |
$2$ |
$1$ |
\(-2\) |
\(-2\) |
\(-3\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-2\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\) |
133.2.f.b |
$133$ |
$2$ |
133.f |
7.c |
$3$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.f.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}-2\beta _{1}q^{5}+\cdots\) |
133.2.f.c |
$133$ |
$2$ |
133.f |
7.c |
$3$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.f.c |
$2$ |
$0$ |
\(2\) |
\(0\) |
\(-2\) |
\(-2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(1+\beta _{1}+\beta _{2})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(2\beta _{1}+\cdots)q^{4}+\cdots\) |
133.2.f.d |
$133$ |
$2$ |
133.f |
7.c |
$3$ |
$14$ |
$7$ |
$1.062$ |
\(\mathbb{Q}[x]/(x^{14} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.2.f.d |
$2$ |
$0$ |
\(-2\) |
\(2\) |
\(2\) |
\(-1\) |
|
$2^{2}\cdot 3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{10}q^{2}+\beta _{8}q^{3}+(-2-\beta _{5}-\beta _{6}+\cdots)q^{4}+\cdots\) |
133.2.g.a |
$133$ |
$2$ |
133.g |
133.g |
$3$ |
$24$ |
$12$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.g.a |
$2$ |
$0$ |
\(1\) |
\(-6\) |
\(0\) |
\(-2\) |
|
|
$\mathrm{SU}(2)[C_{3}]$ |
|
133.2.h.a |
$133$ |
$2$ |
133.h |
133.h |
$3$ |
$24$ |
$12$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.g.a |
$2$ |
$0$ |
\(-2\) |
\(3\) |
\(0\) |
\(-2\) |
|
|
$\mathrm{SU}(2)[C_{3}]$ |
|
133.2.i.a |
$133$ |
$2$ |
133.i |
133.i |
$6$ |
$2$ |
$1$ |
$1.062$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.a |
$2$ |
$0$ |
\(0\) |
\(-1\) |
\(0\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(1-2\zeta_{6})q^{2}-\zeta_{6}q^{3}-q^{4}+(-2+\cdots)q^{6}+\cdots\) |
133.2.i.b |
$133$ |
$2$ |
133.i |
133.i |
$6$ |
$2$ |
$1$ |
$1.062$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.b |
$2$ |
$0$ |
\(0\) |
\(1\) |
\(0\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+2\zeta_{6})q^{2}+\zeta_{6}q^{3}-q^{4}+(-2+\cdots)q^{6}+\cdots\) |
133.2.i.c |
$133$ |
$2$ |
133.i |
133.i |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.c |
$2$ |
$0$ |
\(0\) |
\(1\) |
\(0\) |
\(2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(\beta _{1}-\beta _{3})q^{2}+(1-2\beta _{1}-\beta _{2}+\beta _{3})q^{3}+\cdots\) |
133.2.i.d |
$133$ |
$2$ |
133.i |
133.i |
$6$ |
$16$ |
$8$ |
$1.062$ |
\(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.2.i.d |
$2$ |
$0$ |
\(0\) |
\(-4\) |
\(0\) |
\(2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{1}q^{2}+(1+\beta _{4}-\beta _{6}+\beta _{9})q^{3}+(-2+\cdots)q^{4}+\cdots\) |
133.2.o.a |
$133$ |
$2$ |
133.o |
133.o |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\zeta_{12})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.o.a |
$2$ |
$0$ |
\(-6\) |
\(-2\) |
\(0\) |
\(-10\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\) |
133.2.o.b |
$133$ |
$2$ |
133.o |
133.o |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
$_{}$ |
\(\Q(\sqrt{-19}) \) |
None |
|
✓ |
|
|
133.2.o.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-3\) |
\(3\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q+(-2+2\beta _{2})q^{4}+(-1+\beta _{2}+\beta _{3})q^{5}+\cdots\) |
133.2.o.c |
$133$ |
$2$ |
133.o |
133.o |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\zeta_{12})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.o.a |
$2$ |
$0$ |
\(6\) |
\(2\) |
\(0\) |
\(-10\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(2-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(1+\cdots)q^{3}+\cdots\) |
133.2.o.d |
$133$ |
$2$ |
133.o |
133.o |
$6$ |
$6$ |
$3$ |
$1.062$ |
6.0.6967728.1 |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.o.d |
$2$ |
$0$ |
\(-9\) |
\(2\) |
\(-3\) |
\(5\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+\beta _{3})q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{3}+\cdots\) |
133.2.o.e |
$133$ |
$2$ |
133.o |
133.o |
$6$ |
$6$ |
$3$ |
$1.062$ |
6.0.6967728.1 |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.o.d |
$2$ |
$0$ |
\(9\) |
\(-2\) |
\(-3\) |
\(5\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(1-\beta _{3})q^{2}+(-\beta _{1}-\beta _{2}+\beta _{3})q^{3}+\cdots\) |
133.2.p.a |
$133$ |
$2$ |
133.p |
133.p |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.p.a |
$2$ |
$0$ |
\(-3\) |
\(-2\) |
\(0\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+\beta _{3})q^{2}-\beta _{2}q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
133.2.p.b |
$133$ |
$2$ |
133.p |
133.p |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.p.a |
$2$ |
$0$ |
\(-3\) |
\(2\) |
\(0\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+\beta _{3})q^{2}+\beta _{2}q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
133.2.p.c |
$133$ |
$2$ |
133.p |
133.p |
$6$ |
$12$ |
$6$ |
$1.062$ |
\(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.2.p.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-12\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-\beta _{2}+\beta _{6}+\beta _{11})q^{2}+(-\beta _{7}-\beta _{8}+\cdots)q^{3}+\cdots\) |
133.2.s.a |
$133$ |
$2$ |
133.s |
133.s |
$6$ |
$2$ |
$1$ |
$1.062$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.a |
$2$ |
$1$ |
\(-3\) |
\(-2\) |
\(0\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-2+\zeta_{6})q^{2}-q^{3}+(1-\zeta_{6})q^{4}+\cdots\) |
133.2.s.b |
$133$ |
$2$ |
133.s |
133.s |
$6$ |
$2$ |
$1$ |
$1.062$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.b |
$2$ |
$0$ |
\(3\) |
\(2\) |
\(0\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(2-\zeta_{6})q^{2}+q^{3}+(1-\zeta_{6})q^{4}+(2+\cdots)q^{6}+\cdots\) |
133.2.s.c |
$133$ |
$2$ |
133.s |
133.s |
$6$ |
$4$ |
$2$ |
$1.062$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.i.c |
$2$ |
$0$ |
\(-3\) |
\(2\) |
\(-9\) |
\(2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-1+\beta _{3})q^{2}+(1-\beta _{1}-\beta _{3})q^{3}+\cdots\) |
133.2.s.d |
$133$ |
$2$ |
133.s |
133.s |
$6$ |
$16$ |
$8$ |
$1.062$ |
\(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.2.i.d |
$2$ |
$0$ |
\(0\) |
\(-8\) |
\(9\) |
\(2\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(\beta _{1}+\beta _{2})q^{2}+\beta _{4}q^{3}+(4-\beta _{2}-3\beta _{6}+\cdots)q^{4}+\cdots\) |
133.2.u.a |
$133$ |
$2$ |
133.u |
133.u |
$9$ |
$66$ |
$11$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.u.a |
$2$ |
$0$ |
\(-3\) |
\(-3\) |
\(-3\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|
133.2.v.a |
$133$ |
$2$ |
133.v |
19.e |
$9$ |
$30$ |
$5$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.v.a |
$2$ |
$0$ |
\(0\) |
\(-3\) |
\(-3\) |
\(-15\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|
133.2.v.b |
$133$ |
$2$ |
133.v |
19.e |
$9$ |
$30$ |
$5$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
|
|
133.2.v.b |
$2$ |
$0$ |
\(0\) |
\(-3\) |
\(3\) |
\(15\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|
133.2.w.a |
$133$ |
$2$ |
133.w |
133.w |
$9$ |
$66$ |
$11$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.u.a |
$2$ |
$0$ |
\(-3\) |
\(-3\) |
\(-3\) |
\(-9\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|
133.2.ba.a |
$133$ |
$2$ |
133.ba |
133.aa |
$18$ |
$72$ |
$12$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.ba.a |
$4$ |
$0$ |
\(-12\) |
\(0\) |
\(0\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{18}]$ |
|
133.2.bb.a |
$133$ |
$2$ |
133.bb |
133.ab |
$18$ |
$66$ |
$11$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.bb.a |
$2$ |
$0$ |
\(-3\) |
\(-9\) |
\(-9\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{18}]$ |
|
133.2.bf.a |
$133$ |
$2$ |
133.bf |
133.af |
$18$ |
$66$ |
$11$ |
$1.062$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.2.bb.a |
$2$ |
$0$ |
\(-3\) |
\(-9\) |
\(-9\) |
\(3\) |
|
|
$\mathrm{SU}(2)[C_{18}]$ |
|
133.3.b.a |
$133$ |
$3$ |
133.b |
19.b |
$2$ |
$20$ |
$20$ |
$3.624$ |
\(\mathbb{Q}[x]/(x^{20} + \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.b.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{6}\cdot 3$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(-2+\beta _{2})q^{4}-\beta _{6}q^{5}+\cdots\) |
133.3.d.a |
$133$ |
$3$ |
133.d |
7.b |
$2$ |
$4$ |
$4$ |
$3.624$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
133.3.d.a |
$2$ |
$0$ |
\(4\) |
\(0\) |
\(0\) |
\(3\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+q^{2}+(\beta _{1}-\beta _{3})q^{3}-3q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\) |
133.3.d.b |
$133$ |
$3$ |
133.d |
7.b |
$2$ |
$20$ |
$20$ |
$3.624$ |
\(\mathbb{Q}[x]/(x^{20} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
133.3.d.b |
$2$ |
$0$ |
\(-2\) |
\(0\) |
\(0\) |
\(2\) |
|
$2^{8}\cdot 7^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{2}q^{2}-\beta _{9}q^{3}+(3+\beta _{1})q^{4}+\beta _{15}q^{5}+\cdots\) |
133.3.j.a |
$133$ |
$3$ |
133.j |
133.j |
$6$ |
$48$ |
$24$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.j.a |
$2$ |
$0$ |
\(0\) |
\(-3\) |
\(-4\) |
\(-2\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
133.3.k.a |
$133$ |
$3$ |
133.k |
133.k |
$6$ |
$48$ |
$24$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.k.a |
$2$ |
$0$ |
\(1\) |
\(0\) |
\(-6\) |
\(-8\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
133.3.l.a |
$133$ |
$3$ |
133.l |
7.d |
$6$ |
$48$ |
$24$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.l.a |
$2$ |
$0$ |
\(-2\) |
\(0\) |
\(-3\) |
\(-5\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
133.3.m.a |
$133$ |
$3$ |
133.m |
133.m |
$6$ |
$52$ |
$26$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.m.a |
$4$ |
$0$ |
\(-2\) |
\(0\) |
\(0\) |
\(12\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
133.3.n.a |
$133$ |
$3$ |
133.n |
133.n |
$6$ |
$48$ |
$24$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.j.a |
$2$ |
$0$ |
\(-3\) |
\(0\) |
\(2\) |
\(-2\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
133.3.q.a |
$133$ |
$3$ |
133.q |
19.d |
$6$ |
$40$ |
$20$ |
$3.624$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
133.3.q.a |
$2$ |
$0$ |
\(0\) |
\(12\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|