Properties

Label 133.2.bf.a.10.5
Level $133$
Weight $2$
Character 133.10
Analytic conductor $1.062$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [133,2,Mod(10,133)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(133, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([3, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("133.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 133 = 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 133.bf (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06201034688\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 10.5
Character \(\chi\) \(=\) 133.10
Dual form 133.2.bf.a.40.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.432162 - 0.515031i) q^{2} +(-0.514014 - 2.91512i) q^{3} +(0.268804 - 1.52446i) q^{4} +(0.960858 - 0.169425i) q^{5} +(-1.27924 + 1.52454i) q^{6} +(-0.595102 + 2.57796i) q^{7} +(-2.06581 + 1.19270i) q^{8} +(-5.41462 + 1.97076i) q^{9} +O(q^{10})\) \(q+(-0.432162 - 0.515031i) q^{2} +(-0.514014 - 2.91512i) q^{3} +(0.268804 - 1.52446i) q^{4} +(0.960858 - 0.169425i) q^{5} +(-1.27924 + 1.52454i) q^{6} +(-0.595102 + 2.57796i) q^{7} +(-2.06581 + 1.19270i) q^{8} +(-5.41462 + 1.97076i) q^{9} +(-0.502506 - 0.421652i) q^{10} +5.38077 q^{11} -4.58215 q^{12} +(-0.689632 - 0.578670i) q^{13} +(1.58491 - 0.807599i) q^{14} +(-0.987788 - 2.71393i) q^{15} +(-1.40221 - 0.510362i) q^{16} +(0.422070 - 1.15963i) q^{17} +(3.35499 + 1.93701i) q^{18} +(1.71809 - 4.00602i) q^{19} -1.51033i q^{20} +(7.82093 + 0.409687i) q^{21} +(-2.32537 - 2.77126i) q^{22} +(2.99395 + 2.51223i) q^{23} +(4.53871 + 5.40902i) q^{24} +(-3.80392 + 1.38451i) q^{25} +0.605261i q^{26} +(4.08805 + 7.08071i) q^{27} +(3.77003 + 1.60017i) q^{28} +(1.10369 + 0.194610i) q^{29} +(-0.970871 + 1.68160i) q^{30} +(-2.12005 - 3.67204i) q^{31} +(1.97484 + 5.42582i) q^{32} +(-2.76579 - 15.6856i) q^{33} +(-0.779646 + 0.283768i) q^{34} +(-0.135038 + 2.57787i) q^{35} +(1.54888 + 8.78412i) q^{36} +(-6.56438 + 3.78994i) q^{37} +(-2.80572 + 0.846380i) q^{38} +(-1.33241 + 2.30780i) q^{39} +(-1.78288 + 1.49601i) q^{40} +(5.67466 - 4.76161i) q^{41} +(-3.16891 - 4.20507i) q^{42} +(10.7063 + 3.89676i) q^{43} +(1.44637 - 8.20278i) q^{44} +(-4.86878 + 2.81099i) q^{45} -2.62767i q^{46} +(2.42268 + 6.65627i) q^{47} +(-0.767010 + 4.34993i) q^{48} +(-6.29171 - 3.06829i) q^{49} +(2.35698 + 1.36080i) q^{50} +(-3.59740 - 0.634318i) q^{51} +(-1.06754 + 0.895769i) q^{52} +(-1.25845 - 0.221898i) q^{53} +(1.88008 - 5.16549i) q^{54} +(5.17016 - 0.911638i) q^{55} +(-1.84535 - 6.03535i) q^{56} +(-12.5611 - 2.94928i) q^{57} +(-0.376743 - 0.652538i) q^{58} +(7.87914 + 2.86777i) q^{59} +(-4.40280 + 0.776332i) q^{60} +(0.846652 - 1.00900i) q^{61} +(-0.975008 + 2.67881i) q^{62} +(-1.85828 - 15.1314i) q^{63} +(0.448815 - 0.777371i) q^{64} +(-0.760679 - 0.439178i) q^{65} +(-6.88329 + 8.20318i) q^{66} +(-1.94340 + 2.31606i) q^{67} +(-1.65435 - 0.955141i) q^{68} +(5.78450 - 10.0190i) q^{69} +(1.38604 - 1.04451i) q^{70} +(1.40774 - 3.86775i) q^{71} +(8.83507 - 10.5292i) q^{72} +(-5.92975 + 1.04558i) q^{73} +(4.78881 + 1.74299i) q^{74} +(5.99129 + 10.3772i) q^{75} +(-5.64519 - 3.69599i) q^{76} +(-3.20211 + 13.8714i) q^{77} +(1.76441 - 0.311112i) q^{78} +(-4.77215 + 13.1114i) q^{79} +(-1.43379 - 0.252816i) q^{80} +(5.29768 - 4.44528i) q^{81} +(-4.90475 - 0.864839i) q^{82} +(-7.30853 - 4.21958i) q^{83} +(2.72685 - 11.8126i) q^{84} +(0.209079 - 1.18575i) q^{85} +(-2.61989 - 7.19810i) q^{86} -3.31742i q^{87} +(-11.1157 + 6.41764i) q^{88} +(-0.824161 + 4.67405i) q^{89} +(3.55185 + 1.29277i) q^{90} +(1.90219 - 1.43347i) q^{91} +(4.63458 - 3.88887i) q^{92} +(-9.61470 + 8.06769i) q^{93} +(2.38119 - 4.12434i) q^{94} +(0.972119 - 4.14030i) q^{95} +(14.8018 - 8.54582i) q^{96} +(-2.12450 - 12.0486i) q^{97} +(1.13877 + 4.56642i) q^{98} +(-29.1348 + 10.6042i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 18 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 18 q^{8} - 3 q^{9} - 9 q^{10} - 12 q^{11} + 6 q^{12} - 30 q^{13} - 15 q^{14} + 9 q^{15} - 15 q^{16} + 18 q^{17} + 36 q^{18} + 12 q^{19} - 30 q^{21} - 3 q^{23} - 36 q^{24} - 27 q^{25} + 12 q^{27} - 33 q^{28} - 6 q^{29} + 3 q^{30} - 9 q^{31} + 60 q^{32} - 9 q^{33} - 36 q^{34} + 9 q^{35} + 27 q^{36} - 36 q^{37} + 18 q^{38} + 12 q^{39} + 9 q^{40} + 54 q^{41} - 9 q^{42} + 12 q^{43} + 18 q^{44} - 27 q^{45} + 45 q^{47} + 63 q^{48} - 45 q^{49} - 63 q^{50} - 3 q^{51} + 57 q^{52} + 27 q^{53} - 9 q^{54} - 45 q^{55} - 54 q^{56} - 54 q^{57} + 30 q^{58} + 36 q^{59} - 78 q^{60} - 42 q^{61} - 45 q^{62} + 57 q^{63} - 36 q^{64} + 45 q^{65} + 9 q^{66} + 30 q^{67} - 9 q^{68} + 69 q^{70} - 6 q^{71} - 6 q^{72} + 60 q^{73} + 9 q^{74} - 21 q^{75} + 54 q^{76} - 18 q^{77} + 3 q^{78} + 27 q^{79} - 45 q^{80} + 24 q^{81} - 9 q^{82} + 36 q^{83} + 99 q^{84} - 48 q^{85} - 48 q^{86} - 9 q^{88} - 9 q^{89} - 18 q^{90} + 24 q^{91} + 48 q^{92} - 3 q^{93} + 90 q^{94} - 75 q^{95} + 63 q^{96} - 27 q^{97} + 96 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/133\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(115\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.432162 0.515031i −0.305585 0.364182i 0.591296 0.806455i \(-0.298617\pi\)
−0.896880 + 0.442273i \(0.854172\pi\)
\(3\) −0.514014 2.91512i −0.296766 1.68304i −0.659937 0.751321i \(-0.729417\pi\)
0.363171 0.931722i \(-0.381694\pi\)
\(4\) 0.268804 1.52446i 0.134402 0.762231i
\(5\) 0.960858 0.169425i 0.429709 0.0757692i 0.0453891 0.998969i \(-0.485547\pi\)
0.384319 + 0.923200i \(0.374436\pi\)
\(6\) −1.27924 + 1.52454i −0.522247 + 0.622389i
\(7\) −0.595102 + 2.57796i −0.224927 + 0.974376i
\(8\) −2.06581 + 1.19270i −0.730375 + 0.421682i
\(9\) −5.41462 + 1.97076i −1.80487 + 0.656920i
\(10\) −0.502506 0.421652i −0.158906 0.133338i
\(11\) 5.38077 1.62236 0.811182 0.584794i \(-0.198825\pi\)
0.811182 + 0.584794i \(0.198825\pi\)
\(12\) −4.58215 −1.32275
\(13\) −0.689632 0.578670i −0.191269 0.160494i 0.542124 0.840298i \(-0.317620\pi\)
−0.733394 + 0.679804i \(0.762065\pi\)
\(14\) 1.58491 0.807599i 0.423584 0.215840i
\(15\) −0.987788 2.71393i −0.255046 0.700733i
\(16\) −1.40221 0.510362i −0.350552 0.127590i
\(17\) 0.422070 1.15963i 0.102367 0.281251i −0.877927 0.478794i \(-0.841074\pi\)
0.980294 + 0.197543i \(0.0632963\pi\)
\(18\) 3.35499 + 1.93701i 0.790780 + 0.456557i
\(19\) 1.71809 4.00602i 0.394157 0.919043i
\(20\) 1.51033i 0.337721i
\(21\) 7.82093 + 0.409687i 1.70667 + 0.0894010i
\(22\) −2.32537 2.77126i −0.495770 0.590836i
\(23\) 2.99395 + 2.51223i 0.624282 + 0.523835i 0.899146 0.437648i \(-0.144188\pi\)
−0.274864 + 0.961483i \(0.588633\pi\)
\(24\) 4.53871 + 5.40902i 0.926460 + 1.10411i
\(25\) −3.80392 + 1.38451i −0.760784 + 0.276903i
\(26\) 0.605261i 0.118701i
\(27\) 4.08805 + 7.08071i 0.786746 + 1.36268i
\(28\) 3.77003 + 1.60017i 0.712468 + 0.302404i
\(29\) 1.10369 + 0.194610i 0.204950 + 0.0361382i 0.275181 0.961393i \(-0.411262\pi\)
−0.0702305 + 0.997531i \(0.522373\pi\)
\(30\) −0.970871 + 1.68160i −0.177256 + 0.307016i
\(31\) −2.12005 3.67204i −0.380773 0.659518i 0.610400 0.792093i \(-0.291009\pi\)
−0.991173 + 0.132575i \(0.957675\pi\)
\(32\) 1.97484 + 5.42582i 0.349105 + 0.959158i
\(33\) −2.76579 15.6856i −0.481462 2.73051i
\(34\) −0.779646 + 0.283768i −0.133708 + 0.0486658i
\(35\) −0.135038 + 2.57787i −0.0228255 + 0.435740i
\(36\) 1.54888 + 8.78412i 0.258146 + 1.46402i
\(37\) −6.56438 + 3.78994i −1.07918 + 0.623063i −0.930674 0.365849i \(-0.880779\pi\)
−0.148503 + 0.988912i \(0.547445\pi\)
\(38\) −2.80572 + 0.846380i −0.455147 + 0.137301i
\(39\) −1.33241 + 2.30780i −0.213356 + 0.369544i
\(40\) −1.78288 + 1.49601i −0.281898 + 0.236540i
\(41\) 5.67466 4.76161i 0.886233 0.743638i −0.0812179 0.996696i \(-0.525881\pi\)
0.967451 + 0.253059i \(0.0814365\pi\)
\(42\) −3.16891 4.20507i −0.488973 0.648857i
\(43\) 10.7063 + 3.89676i 1.63269 + 0.594251i 0.985739 0.168280i \(-0.0538211\pi\)
0.646952 + 0.762531i \(0.276043\pi\)
\(44\) 1.44637 8.20278i 0.218049 1.23662i
\(45\) −4.86878 + 2.81099i −0.725795 + 0.419038i
\(46\) 2.62767i 0.387428i
\(47\) 2.42268 + 6.65627i 0.353385 + 0.970916i 0.981275 + 0.192614i \(0.0616966\pi\)
−0.627890 + 0.778302i \(0.716081\pi\)
\(48\) −0.767010 + 4.34993i −0.110708 + 0.627858i
\(49\) −6.29171 3.06829i −0.898815 0.438327i
\(50\) 2.35698 + 1.36080i 0.333327 + 0.192446i
\(51\) −3.59740 0.634318i −0.503737 0.0888223i
\(52\) −1.06754 + 0.895769i −0.148041 + 0.124221i
\(53\) −1.25845 0.221898i −0.172861 0.0304801i 0.0865476 0.996248i \(-0.472417\pi\)
−0.259409 + 0.965768i \(0.583528\pi\)
\(54\) 1.88008 5.16549i 0.255847 0.702934i
\(55\) 5.17016 0.911638i 0.697144 0.122925i
\(56\) −1.84535 6.03535i −0.246596 0.806507i
\(57\) −12.5611 2.94928i −1.66376 0.390642i
\(58\) −0.376743 0.652538i −0.0494688 0.0856824i
\(59\) 7.87914 + 2.86777i 1.02578 + 0.373352i 0.799471 0.600704i \(-0.205113\pi\)
0.226305 + 0.974056i \(0.427335\pi\)
\(60\) −4.40280 + 0.776332i −0.568399 + 0.100224i
\(61\) 0.846652 1.00900i 0.108403 0.129189i −0.709115 0.705093i \(-0.750905\pi\)
0.817518 + 0.575904i \(0.195350\pi\)
\(62\) −0.975008 + 2.67881i −0.123826 + 0.340209i
\(63\) −1.85828 15.1314i −0.234121 1.90638i
\(64\) 0.448815 0.777371i 0.0561019 0.0971714i
\(65\) −0.760679 0.439178i −0.0943506 0.0544734i
\(66\) −6.88329 + 8.20318i −0.847274 + 1.00974i
\(67\) −1.94340 + 2.31606i −0.237425 + 0.282952i −0.871579 0.490255i \(-0.836904\pi\)
0.634155 + 0.773206i \(0.281348\pi\)
\(68\) −1.65435 0.955141i −0.200620 0.115828i
\(69\) 5.78450 10.0190i 0.696372 1.20615i
\(70\) 1.38604 1.04451i 0.165664 0.124843i
\(71\) 1.40774 3.86775i 0.167068 0.459017i −0.827700 0.561171i \(-0.810351\pi\)
0.994769 + 0.102154i \(0.0325734\pi\)
\(72\) 8.83507 10.5292i 1.04122 1.24088i
\(73\) −5.92975 + 1.04558i −0.694025 + 0.122375i −0.509523 0.860457i \(-0.670178\pi\)
−0.184502 + 0.982832i \(0.559067\pi\)
\(74\) 4.78881 + 1.74299i 0.556688 + 0.202618i
\(75\) 5.99129 + 10.3772i 0.691814 + 1.19826i
\(76\) −5.64519 3.69599i −0.647548 0.423960i
\(77\) −3.20211 + 13.8714i −0.364914 + 1.58079i
\(78\) 1.76441 0.311112i 0.199780 0.0352265i
\(79\) −4.77215 + 13.1114i −0.536909 + 1.47515i 0.313790 + 0.949492i \(0.398401\pi\)
−0.850699 + 0.525653i \(0.823821\pi\)
\(80\) −1.43379 0.252816i −0.160303 0.0282657i
\(81\) 5.29768 4.44528i 0.588631 0.493920i
\(82\) −4.90475 0.864839i −0.541639 0.0955055i
\(83\) −7.30853 4.21958i −0.802216 0.463159i 0.0420296 0.999116i \(-0.486618\pi\)
−0.844245 + 0.535957i \(0.819951\pi\)
\(84\) 2.72685 11.8126i 0.297523 1.28886i
\(85\) 0.209079 1.18575i 0.0226778 0.128612i
\(86\) −2.61989 7.19810i −0.282510 0.776191i
\(87\) 3.31742i 0.355665i
\(88\) −11.1157 + 6.41764i −1.18493 + 0.684122i
\(89\) −0.824161 + 4.67405i −0.0873609 + 0.495448i 0.909461 + 0.415789i \(0.136494\pi\)
−0.996822 + 0.0796595i \(0.974617\pi\)
\(90\) 3.55185 + 1.29277i 0.374398 + 0.136270i
\(91\) 1.90219 1.43347i 0.199403 0.150269i
\(92\) 4.63458 3.88887i 0.483188 0.405443i
\(93\) −9.61470 + 8.06769i −0.996998 + 0.836580i
\(94\) 2.38119 4.12434i 0.245601 0.425394i
\(95\) 0.972119 4.14030i 0.0997374 0.424786i
\(96\) 14.8018 8.54582i 1.51070 0.872204i
\(97\) −2.12450 12.0486i −0.215710 1.22335i −0.879670 0.475585i \(-0.842236\pi\)
0.663959 0.747769i \(-0.268875\pi\)
\(98\) 1.13877 + 4.56642i 0.115033 + 0.461278i
\(99\) −29.1348 + 10.6042i −2.92816 + 1.06576i
\(100\) 1.08813 + 6.17109i 0.108813 + 0.617109i
\(101\) 6.35643 + 17.4642i 0.632489 + 1.73775i 0.674127 + 0.738615i \(0.264520\pi\)
−0.0416384 + 0.999133i \(0.513258\pi\)
\(102\) 1.22797 + 2.12690i 0.121587 + 0.210594i
\(103\) −3.13042 + 5.42205i −0.308450 + 0.534250i −0.978023 0.208495i \(-0.933143\pi\)
0.669574 + 0.742746i \(0.266477\pi\)
\(104\) 2.11483 + 0.372901i 0.207376 + 0.0365660i
\(105\) 7.58421 0.931411i 0.740143 0.0908965i
\(106\) 0.429569 + 0.744036i 0.0417234 + 0.0722671i
\(107\) 10.0002i 0.966754i −0.875412 0.483377i \(-0.839410\pi\)
0.875412 0.483377i \(-0.160590\pi\)
\(108\) 11.8932 4.32876i 1.14442 0.416535i
\(109\) 4.50773 + 5.37210i 0.431762 + 0.514554i 0.937430 0.348174i \(-0.113198\pi\)
−0.505668 + 0.862728i \(0.668754\pi\)
\(110\) −2.70387 2.26881i −0.257804 0.216323i
\(111\) 14.4223 + 17.1878i 1.36891 + 1.63140i
\(112\) 2.15015 3.31111i 0.203170 0.312870i
\(113\) 12.0079i 1.12960i 0.825226 + 0.564802i \(0.191048\pi\)
−0.825226 + 0.564802i \(0.808952\pi\)
\(114\) 3.90947 + 7.74394i 0.366156 + 0.725286i
\(115\) 3.30240 + 1.90664i 0.307950 + 0.177795i
\(116\) 0.593352 1.63022i 0.0550914 0.151362i
\(117\) 4.87451 + 1.77418i 0.450649 + 0.164023i
\(118\) −1.92808 5.29734i −0.177494 0.487660i
\(119\) 2.73829 + 1.77817i 0.251019 + 0.163005i
\(120\) 5.27748 + 4.42833i 0.481766 + 0.404249i
\(121\) 17.9527 1.63207
\(122\) −0.885557 −0.0801746
\(123\) −16.7975 14.0948i −1.51458 1.27088i
\(124\) −6.16777 + 2.24488i −0.553882 + 0.201597i
\(125\) −7.64528 + 4.41400i −0.683814 + 0.394800i
\(126\) −6.99008 + 7.49631i −0.622726 + 0.667824i
\(127\) 8.08727 9.63803i 0.717629 0.855237i −0.276769 0.960936i \(-0.589264\pi\)
0.994398 + 0.105699i \(0.0337081\pi\)
\(128\) 10.7783 1.90050i 0.952675 0.167982i
\(129\) 5.85635 33.2130i 0.515623 2.92424i
\(130\) 0.102546 + 0.581569i 0.00899391 + 0.0510070i
\(131\) −7.42454 8.84822i −0.648685 0.773073i 0.337030 0.941494i \(-0.390578\pi\)
−0.985715 + 0.168421i \(0.946133\pi\)
\(132\) −24.6555 −2.14599
\(133\) 9.30489 + 6.81315i 0.806837 + 0.590775i
\(134\) 2.03271 0.175599
\(135\) 5.12769 + 6.11094i 0.441321 + 0.525946i
\(136\) 0.511167 + 2.89897i 0.0438322 + 0.248585i
\(137\) −0.879631 + 4.98863i −0.0751519 + 0.426208i 0.923898 + 0.382638i \(0.124984\pi\)
−0.999050 + 0.0435699i \(0.986127\pi\)
\(138\) −7.65996 + 1.35066i −0.652059 + 0.114976i
\(139\) −3.06915 + 3.65767i −0.260322 + 0.310240i −0.880336 0.474351i \(-0.842683\pi\)
0.620014 + 0.784591i \(0.287127\pi\)
\(140\) 3.89357 + 0.898802i 0.329067 + 0.0759626i
\(141\) 18.1585 10.4838i 1.52922 0.882897i
\(142\) −2.60038 + 0.946462i −0.218219 + 0.0794253i
\(143\) −3.71075 3.11369i −0.310309 0.260380i
\(144\) 8.59821 0.716518
\(145\) 1.09346 0.0908070
\(146\) 3.10112 + 2.60215i 0.256650 + 0.215355i
\(147\) −5.71041 + 19.9182i −0.470986 + 1.64283i
\(148\) 4.01310 + 11.0259i 0.329875 + 0.906323i
\(149\) −14.0256 5.10490i −1.14902 0.418209i −0.303857 0.952717i \(-0.598275\pi\)
−0.845163 + 0.534508i \(0.820497\pi\)
\(150\) 2.75538 7.57034i 0.224976 0.618115i
\(151\) 11.2899 + 6.51822i 0.918758 + 0.530445i 0.883239 0.468924i \(-0.155358\pi\)
0.0355195 + 0.999369i \(0.488691\pi\)
\(152\) 1.22872 + 10.3248i 0.0996620 + 0.837455i
\(153\) 7.11074i 0.574869i
\(154\) 8.52803 4.34551i 0.687208 0.350171i
\(155\) −2.65921 3.16912i −0.213593 0.254550i
\(156\) 3.16000 + 2.65155i 0.253002 + 0.212294i
\(157\) −5.66581 6.75225i −0.452181 0.538888i 0.491004 0.871157i \(-0.336630\pi\)
−0.943185 + 0.332269i \(0.892186\pi\)
\(158\) 8.81511 3.20844i 0.701292 0.255250i
\(159\) 3.78258i 0.299978i
\(160\) 2.81681 + 4.87885i 0.222688 + 0.385707i
\(161\) −8.25811 + 6.22325i −0.650830 + 0.490461i
\(162\) −4.57891 0.807386i −0.359753 0.0634342i
\(163\) 4.07343 7.05538i 0.319055 0.552620i −0.661236 0.750178i \(-0.729968\pi\)
0.980291 + 0.197558i \(0.0633011\pi\)
\(164\) −5.73352 9.93074i −0.447712 0.775461i
\(165\) −5.31506 14.6030i −0.413777 1.13684i
\(166\) 0.985256 + 5.58766i 0.0764707 + 0.433687i
\(167\) −23.2908 + 8.47715i −1.80229 + 0.655981i −0.804194 + 0.594367i \(0.797403\pi\)
−0.998100 + 0.0616149i \(0.980375\pi\)
\(168\) −16.6452 + 8.48167i −1.28421 + 0.654375i
\(169\) −2.11669 12.0044i −0.162823 0.923413i
\(170\) −0.701052 + 0.404752i −0.0537682 + 0.0310431i
\(171\) −1.40790 + 25.0770i −0.107665 + 1.91769i
\(172\) 8.81836 15.2738i 0.672393 1.16462i
\(173\) −5.54337 + 4.65144i −0.421455 + 0.353642i −0.828716 0.559669i \(-0.810928\pi\)
0.407261 + 0.913312i \(0.366484\pi\)
\(174\) −1.70857 + 1.43366i −0.129527 + 0.108686i
\(175\) −1.30549 10.6303i −0.0986861 0.803572i
\(176\) −7.54496 2.74614i −0.568723 0.206998i
\(177\) 4.30991 24.4427i 0.323952 1.83723i
\(178\) 2.76345 1.59548i 0.207129 0.119586i
\(179\) 1.87430i 0.140092i −0.997544 0.0700460i \(-0.977685\pi\)
0.997544 0.0700460i \(-0.0223146\pi\)
\(180\) 2.97650 + 8.17788i 0.221855 + 0.609543i
\(181\) 0.677074 3.83988i 0.0503265 0.285416i −0.949250 0.314523i \(-0.898155\pi\)
0.999576 + 0.0291074i \(0.00926647\pi\)
\(182\) −1.56034 0.360192i −0.115660 0.0266992i
\(183\) −3.37654 1.94945i −0.249601 0.144107i
\(184\) −9.18127 1.61891i −0.676852 0.119347i
\(185\) −5.66532 + 4.75377i −0.416523 + 0.349504i
\(186\) 8.31022 + 1.46532i 0.609335 + 0.107442i
\(187\) 2.27106 6.23969i 0.166076 0.456291i
\(188\) 10.7985 1.90406i 0.787558 0.138868i
\(189\) −20.6866 + 6.32507i −1.50473 + 0.460081i
\(190\) −2.55250 + 1.28861i −0.185177 + 0.0934855i
\(191\) 4.10210 + 7.10504i 0.296817 + 0.514102i 0.975406 0.220416i \(-0.0707415\pi\)
−0.678589 + 0.734518i \(0.737408\pi\)
\(192\) −2.49683 0.908770i −0.180193 0.0655848i
\(193\) −1.94971 + 0.343786i −0.140343 + 0.0247463i −0.243378 0.969931i \(-0.578256\pi\)
0.103035 + 0.994678i \(0.467145\pi\)
\(194\) −5.28729 + 6.30115i −0.379605 + 0.452396i
\(195\) −0.889256 + 2.44321i −0.0636810 + 0.174962i
\(196\) −6.36873 + 8.76670i −0.454909 + 0.626193i
\(197\) 9.72142 16.8380i 0.692623 1.19966i −0.278353 0.960479i \(-0.589788\pi\)
0.970976 0.239179i \(-0.0768782\pi\)
\(198\) 18.0525 + 10.4226i 1.28293 + 0.740702i
\(199\) 1.42527 1.69857i 0.101035 0.120409i −0.713158 0.701004i \(-0.752736\pi\)
0.814192 + 0.580595i \(0.197180\pi\)
\(200\) 6.20688 7.39707i 0.438893 0.523052i
\(201\) 7.75052 + 4.47476i 0.546680 + 0.315626i
\(202\) 6.24757 10.8211i 0.439577 0.761370i
\(203\) −1.15850 + 2.72945i −0.0813111 + 0.191570i
\(204\) −1.93399 + 5.31359i −0.135406 + 0.372026i
\(205\) 4.64581 5.53666i 0.324477 0.386697i
\(206\) 4.14537 0.730941i 0.288822 0.0509271i
\(207\) −21.1621 7.70238i −1.47087 0.535352i
\(208\) 0.671676 + 1.16338i 0.0465723 + 0.0806656i
\(209\) 9.24465 21.5555i 0.639466 1.49102i
\(210\) −3.75732 3.50358i −0.259279 0.241770i
\(211\) −18.6256 + 3.28420i −1.28224 + 0.226094i −0.772931 0.634490i \(-0.781210\pi\)
−0.509310 + 0.860583i \(0.670099\pi\)
\(212\) −0.676551 + 1.85881i −0.0464657 + 0.127664i
\(213\) −11.9985 2.11566i −0.822126 0.144963i
\(214\) −5.15040 + 4.32170i −0.352074 + 0.295425i
\(215\) 10.9474 + 1.93032i 0.746608 + 0.131647i
\(216\) −16.8903 9.75162i −1.14924 0.663513i
\(217\) 10.7280 3.28017i 0.728265 0.222672i
\(218\) 0.818728 4.64324i 0.0554513 0.314480i
\(219\) 6.09595 + 16.7485i 0.411926 + 1.13176i
\(220\) 8.12676i 0.547906i
\(221\) −0.962114 + 0.555477i −0.0647188 + 0.0373654i
\(222\) 2.61949 14.8559i 0.175809 0.997061i
\(223\) 2.95629 + 1.07600i 0.197968 + 0.0720545i 0.439101 0.898438i \(-0.355297\pi\)
−0.241133 + 0.970492i \(0.577519\pi\)
\(224\) −15.1627 + 1.86212i −1.01310 + 0.124418i
\(225\) 17.8682 14.9932i 1.19122 0.999548i
\(226\) 6.18442 5.18934i 0.411381 0.345190i
\(227\) 4.98731 8.63828i 0.331019 0.573343i −0.651693 0.758483i \(-0.725941\pi\)
0.982712 + 0.185141i \(0.0592741\pi\)
\(228\) −7.87255 + 18.3562i −0.521372 + 1.21567i
\(229\) −21.9450 + 12.6699i −1.45017 + 0.837253i −0.998490 0.0549290i \(-0.982507\pi\)
−0.451675 + 0.892182i \(0.649173\pi\)
\(230\) −0.445193 2.52481i −0.0293551 0.166481i
\(231\) 42.0827 + 2.20443i 2.76884 + 0.145041i
\(232\) −2.51213 + 0.914340i −0.164929 + 0.0600294i
\(233\) −0.721538 4.09204i −0.0472695 0.268079i 0.952008 0.306072i \(-0.0990147\pi\)
−0.999278 + 0.0379929i \(0.987904\pi\)
\(234\) −1.19282 3.27726i −0.0779773 0.214241i
\(235\) 3.45559 + 5.98526i 0.225418 + 0.390436i
\(236\) 6.48975 11.2406i 0.422447 0.731700i
\(237\) 40.6742 + 7.17195i 2.64207 + 0.465868i
\(238\) −0.267572 2.17876i −0.0173441 0.141228i
\(239\) −7.34008 12.7134i −0.474791 0.822361i 0.524793 0.851230i \(-0.324143\pi\)
−0.999583 + 0.0288686i \(0.990810\pi\)
\(240\) 4.30961i 0.278184i
\(241\) −3.64330 + 1.32605i −0.234686 + 0.0854186i −0.456686 0.889628i \(-0.650964\pi\)
0.222000 + 0.975047i \(0.428741\pi\)
\(242\) −7.75849 9.24621i −0.498734 0.594369i
\(243\) 3.10818 + 2.60808i 0.199390 + 0.167308i
\(244\) −1.31060 1.56191i −0.0839025 0.0999911i
\(245\) −6.56528 1.88222i −0.419440 0.120251i
\(246\) 14.7424i 0.939944i
\(247\) −3.50301 + 1.76847i −0.222891 + 0.112525i
\(248\) 8.75927 + 5.05717i 0.556214 + 0.321131i
\(249\) −8.54389 + 23.4742i −0.541447 + 1.48761i
\(250\) 5.57735 + 2.02999i 0.352742 + 0.128388i
\(251\) −1.30689 3.59065i −0.0824901 0.226640i 0.891590 0.452844i \(-0.149591\pi\)
−0.974080 + 0.226204i \(0.927368\pi\)
\(252\) −23.5668 1.23451i −1.48457 0.0777668i
\(253\) 16.1098 + 13.5177i 1.01281 + 0.849851i
\(254\) −8.45890 −0.530758
\(255\) −3.56406 −0.223190
\(256\) −7.01204 5.88380i −0.438252 0.367737i
\(257\) −10.9048 + 3.96903i −0.680224 + 0.247581i −0.658944 0.752192i \(-0.728996\pi\)
−0.0212803 + 0.999774i \(0.506774\pi\)
\(258\) −19.6366 + 11.3372i −1.22252 + 0.705824i
\(259\) −5.86383 19.1781i −0.364361 1.19167i
\(260\) −0.873984 + 1.04157i −0.0542022 + 0.0645956i
\(261\) −6.35959 + 1.12137i −0.393649 + 0.0694109i
\(262\) −1.34850 + 7.64774i −0.0833107 + 0.472479i
\(263\) −3.05653 17.3344i −0.188473 1.06889i −0.921411 0.388590i \(-0.872962\pi\)
0.732937 0.680296i \(-0.238149\pi\)
\(264\) 24.4218 + 29.1047i 1.50306 + 1.79127i
\(265\) −1.24678 −0.0765894
\(266\) −0.512243 7.73669i −0.0314076 0.474367i
\(267\) 14.0490 0.859786
\(268\) 3.00835 + 3.58521i 0.183764 + 0.219002i
\(269\) 3.41151 + 19.3476i 0.208003 + 1.17965i 0.892643 + 0.450764i \(0.148848\pi\)
−0.684640 + 0.728882i \(0.740040\pi\)
\(270\) 0.931330 5.28183i 0.0566789 0.321442i
\(271\) 12.8903 2.27292i 0.783033 0.138070i 0.232181 0.972673i \(-0.425414\pi\)
0.550852 + 0.834603i \(0.314303\pi\)
\(272\) −1.18366 + 1.41063i −0.0717698 + 0.0855320i
\(273\) −5.15649 4.80827i −0.312085 0.291010i
\(274\) 2.94944 1.70286i 0.178182 0.102874i
\(275\) −20.4680 + 7.44976i −1.23427 + 0.449237i
\(276\) −13.7188 11.5114i −0.825772 0.692905i
\(277\) 0.442632 0.0265952 0.0132976 0.999912i \(-0.495767\pi\)
0.0132976 + 0.999912i \(0.495767\pi\)
\(278\) 3.21019 0.192534
\(279\) 18.7160 + 15.7046i 1.12050 + 0.940209i
\(280\) −2.79566 5.48646i −0.167073 0.327879i
\(281\) 1.16804 + 3.20916i 0.0696793 + 0.191442i 0.969644 0.244520i \(-0.0786304\pi\)
−0.899965 + 0.435962i \(0.856408\pi\)
\(282\) −13.2469 4.82148i −0.788842 0.287115i
\(283\) −4.62844 + 12.7165i −0.275132 + 0.755919i 0.722765 + 0.691094i \(0.242871\pi\)
−0.997897 + 0.0648249i \(0.979351\pi\)
\(284\) −5.51782 3.18572i −0.327423 0.189037i
\(285\) −12.5691 0.705671i −0.744532 0.0418003i
\(286\) 3.25677i 0.192577i
\(287\) 8.89821 + 17.4627i 0.525244 + 1.03079i
\(288\) −21.3860 25.4868i −1.26018 1.50182i
\(289\) 11.8562 + 9.94850i 0.697421 + 0.585206i
\(290\) −0.472553 0.563166i −0.0277492 0.0330703i
\(291\) −34.0312 + 12.3863i −1.99494 + 0.726100i
\(292\) 9.32073i 0.545455i
\(293\) −2.05942 3.56701i −0.120312 0.208387i 0.799578 0.600562i \(-0.205056\pi\)
−0.919891 + 0.392174i \(0.871723\pi\)
\(294\) 12.7263 5.66686i 0.742214 0.330498i
\(295\) 8.05661 + 1.42060i 0.469074 + 0.0827104i
\(296\) 9.04051 15.6586i 0.525469 0.910139i
\(297\) 21.9969 + 38.0997i 1.27639 + 2.21077i
\(298\) 3.43215 + 9.42975i 0.198819 + 0.546251i
\(299\) −0.610977 3.46502i −0.0353337 0.200387i
\(300\) 17.4301 6.34405i 1.00633 0.366274i
\(301\) −16.4170 + 25.2813i −0.946261 + 1.45719i
\(302\) −1.52198 8.63157i −0.0875800 0.496691i
\(303\) 47.6428 27.5066i 2.73700 1.58021i
\(304\) −4.45363 + 4.74042i −0.255433 + 0.271882i
\(305\) 0.642562 1.11295i 0.0367930 0.0637273i
\(306\) 3.66225 3.07299i 0.209357 0.175671i
\(307\) −1.89802 + 1.59263i −0.108326 + 0.0908960i −0.695342 0.718679i \(-0.744747\pi\)
0.587016 + 0.809575i \(0.300303\pi\)
\(308\) 20.2857 + 8.61017i 1.15588 + 0.490610i
\(309\) 17.4150 + 6.33854i 0.990704 + 0.360587i
\(310\) −0.482986 + 2.73915i −0.0274317 + 0.155573i
\(311\) 11.4970 6.63778i 0.651934 0.376394i −0.137263 0.990535i \(-0.543831\pi\)
0.789197 + 0.614141i \(0.210497\pi\)
\(312\) 6.35665i 0.359874i
\(313\) −0.314524 0.864147i −0.0177779 0.0488445i 0.930486 0.366327i \(-0.119385\pi\)
−0.948264 + 0.317482i \(0.897163\pi\)
\(314\) −1.02907 + 5.83613i −0.0580736 + 0.329352i
\(315\) −4.34919 14.2243i −0.245049 0.801450i
\(316\) 18.7050 + 10.7994i 1.05224 + 0.607511i
\(317\) 10.9347 + 1.92808i 0.614153 + 0.108292i 0.472067 0.881563i \(-0.343508\pi\)
0.142086 + 0.989854i \(0.454619\pi\)
\(318\) 1.94815 1.63469i 0.109247 0.0916688i
\(319\) 5.93871 + 1.04715i 0.332504 + 0.0586294i
\(320\) 0.299542 0.822984i 0.0167449 0.0460062i
\(321\) −29.1517 + 5.14023i −1.62709 + 0.286900i
\(322\) 6.77401 + 1.56373i 0.377501 + 0.0871432i
\(323\) −3.92033 3.68316i −0.218133 0.204937i
\(324\) −5.35262 9.27102i −0.297368 0.515056i
\(325\) 3.42448 + 1.24641i 0.189956 + 0.0691383i
\(326\) −5.39412 + 0.951129i −0.298753 + 0.0526782i
\(327\) 13.3433 15.9019i 0.737885 0.879377i
\(328\) −6.04363 + 16.6047i −0.333704 + 0.916843i
\(329\) −18.6013 + 2.28441i −1.02552 + 0.125944i
\(330\) −5.22403 + 9.04829i −0.287574 + 0.498092i
\(331\) −28.1236 16.2372i −1.54581 0.892476i −0.998454 0.0555787i \(-0.982300\pi\)
−0.547360 0.836897i \(-0.684367\pi\)
\(332\) −8.39716 + 10.0073i −0.460854 + 0.549224i
\(333\) 28.0745 33.4579i 1.53847 1.83348i
\(334\) 14.4314 + 8.33196i 0.789650 + 0.455905i
\(335\) −1.47494 + 2.55467i −0.0805844 + 0.139576i
\(336\) −10.7575 4.56597i −0.586868 0.249094i
\(337\) 4.41763 12.1373i 0.240644 0.661163i −0.759302 0.650738i \(-0.774460\pi\)
0.999946 0.0104244i \(-0.00331824\pi\)
\(338\) −5.26786 + 6.27799i −0.286534 + 0.341478i
\(339\) 35.0043 6.17221i 1.90117 0.335228i
\(340\) −1.75142 0.637466i −0.0949843 0.0345714i
\(341\) −11.4075 19.7584i −0.617753 1.06998i
\(342\) 13.5239 10.1122i 0.731287 0.546806i
\(343\) 11.6541 14.3938i 0.629264 0.777192i
\(344\) −26.7648 + 4.71936i −1.44306 + 0.254451i
\(345\) 3.86060 10.6069i 0.207848 0.571057i
\(346\) 4.79127 + 0.844830i 0.257580 + 0.0454184i
\(347\) 10.7138 8.98996i 0.575148 0.482606i −0.308202 0.951321i \(-0.599727\pi\)
0.883350 + 0.468715i \(0.155283\pi\)
\(348\) −5.05728 0.891734i −0.271099 0.0478020i
\(349\) 15.5386 + 8.97121i 0.831762 + 0.480218i 0.854456 0.519525i \(-0.173891\pi\)
−0.0226937 + 0.999742i \(0.507224\pi\)
\(350\) −4.91073 + 5.26637i −0.262489 + 0.281499i
\(351\) 1.27814 7.24871i 0.0682223 0.386908i
\(352\) 10.6261 + 29.1951i 0.566375 + 1.55610i
\(353\) 26.1591i 1.39231i 0.717893 + 0.696153i \(0.245107\pi\)
−0.717893 + 0.696153i \(0.754893\pi\)
\(354\) −14.4513 + 8.34347i −0.768079 + 0.443451i
\(355\) 0.697349 3.95486i 0.0370114 0.209902i
\(356\) 6.90387 + 2.51280i 0.365904 + 0.133178i
\(357\) 3.77606 8.89645i 0.199850 0.470850i
\(358\) −0.965324 + 0.810003i −0.0510190 + 0.0428100i
\(359\) 8.20897 6.88815i 0.433253 0.363543i −0.399924 0.916548i \(-0.630964\pi\)
0.833178 + 0.553006i \(0.186519\pi\)
\(360\) 6.70533 11.6140i 0.353402 0.612110i
\(361\) −13.0963 13.7654i −0.689281 0.724494i
\(362\) −2.27026 + 1.31074i −0.119322 + 0.0688908i
\(363\) −9.22795 52.3343i −0.484342 2.74684i
\(364\) −1.67396 3.28513i −0.0877393 0.172188i
\(365\) −5.52050 + 2.00930i −0.288956 + 0.105171i
\(366\) 0.455188 + 2.58150i 0.0237931 + 0.134937i
\(367\) −7.02316 19.2960i −0.366606 1.00724i −0.976643 0.214869i \(-0.931068\pi\)
0.610037 0.792373i \(-0.291155\pi\)
\(368\) −2.91600 5.05066i −0.152007 0.263284i
\(369\) −21.3421 + 36.9657i −1.11103 + 1.92436i
\(370\) 4.89667 + 0.863416i 0.254566 + 0.0448868i
\(371\) 1.32095 3.11217i 0.0685802 0.161576i
\(372\) 9.71442 + 16.8259i 0.503669 + 0.872380i
\(373\) 0.636127i 0.0329374i 0.999864 + 0.0164687i \(0.00524239\pi\)
−0.999864 + 0.0164687i \(0.994758\pi\)
\(374\) −4.19510 + 1.52689i −0.216923 + 0.0789537i
\(375\) 16.7971 + 20.0180i 0.867399 + 1.03373i
\(376\) −12.9437 10.8611i −0.667522 0.560117i
\(377\) −0.648525 0.772882i −0.0334007 0.0398054i
\(378\) 12.1976 + 7.92076i 0.627375 + 0.407400i
\(379\) 22.9830i 1.18056i 0.807200 + 0.590278i \(0.200982\pi\)
−0.807200 + 0.590278i \(0.799018\pi\)
\(380\) −6.05042 2.59489i −0.310380 0.133115i
\(381\) −32.2530 18.6213i −1.65237 0.953996i
\(382\) 1.88654 5.18323i 0.0965239 0.265197i
\(383\) −33.1798 12.0765i −1.69541 0.617078i −0.700119 0.714026i \(-0.746870\pi\)
−0.995289 + 0.0969484i \(0.969092\pi\)
\(384\) −11.0804 30.4431i −0.565443 1.55354i
\(385\) −0.726608 + 13.8710i −0.0370314 + 0.706929i
\(386\) 1.01965 + 0.855589i 0.0518989 + 0.0435483i
\(387\) −65.6500 −3.33718
\(388\) −18.9388 −0.961470
\(389\) −5.71344 4.79414i −0.289683 0.243073i 0.486352 0.873763i \(-0.338327\pi\)
−0.776035 + 0.630690i \(0.782772\pi\)
\(390\) 1.64263 0.597869i 0.0831779 0.0302743i
\(391\) 4.17690 2.41154i 0.211235 0.121957i
\(392\) 16.6570 1.16559i 0.841307 0.0588710i
\(393\) −21.9773 + 26.1915i −1.10861 + 1.32119i
\(394\) −12.8733 + 2.26991i −0.648549 + 0.114357i
\(395\) −2.36396 + 13.4067i −0.118944 + 0.674564i
\(396\) 8.33416 + 47.2654i 0.418807 + 2.37517i
\(397\) −17.3630 20.6924i −0.871425 1.03852i −0.998910 0.0466837i \(-0.985135\pi\)
0.127484 0.991841i \(-0.459310\pi\)
\(398\) −1.49077 −0.0747253
\(399\) 15.0783 30.6269i 0.754858 1.53326i
\(400\) 6.04049 0.302024
\(401\) 21.5699 + 25.7060i 1.07715 + 1.28370i 0.956731 + 0.290975i \(0.0939795\pi\)
0.120420 + 0.992723i \(0.461576\pi\)
\(402\) −1.04484 5.92558i −0.0521119 0.295541i
\(403\) −0.662843 + 3.75917i −0.0330186 + 0.187258i
\(404\) 28.3321 4.99571i 1.40957 0.248546i
\(405\) 4.33717 5.16884i 0.215516 0.256842i
\(406\) 1.90641 0.582900i 0.0946137 0.0289288i
\(407\) −35.3214 + 20.3928i −1.75082 + 1.01084i
\(408\) 8.18810 2.98023i 0.405371 0.147543i
\(409\) −8.53318 7.16019i −0.421939 0.354049i 0.406961 0.913445i \(-0.366588\pi\)
−0.828900 + 0.559397i \(0.811033\pi\)
\(410\) −4.85929 −0.239983
\(411\) 14.9946 0.739629
\(412\) 7.42424 + 6.22968i 0.365766 + 0.306914i
\(413\) −12.0819 + 18.6055i −0.594511 + 0.915515i
\(414\) 5.17850 + 14.2278i 0.254509 + 0.699259i
\(415\) −7.73736 2.81617i −0.379812 0.138240i
\(416\) 1.77785 4.88459i 0.0871661 0.239487i
\(417\) 12.2401 + 7.06684i 0.599402 + 0.346065i
\(418\) −15.0969 + 4.55418i −0.738414 + 0.222752i
\(419\) 2.18170i 0.106583i −0.998579 0.0532914i \(-0.983029\pi\)
0.998579 0.0532914i \(-0.0169712\pi\)
\(420\) 0.618764 11.8122i 0.0301926 0.576377i
\(421\) −12.0344 14.3421i −0.586523 0.698990i 0.388411 0.921486i \(-0.373024\pi\)
−0.974934 + 0.222496i \(0.928580\pi\)
\(422\) 9.74076 + 8.17347i 0.474173 + 0.397878i
\(423\) −26.2358 31.2666i −1.27563 1.52023i
\(424\) 2.86438 1.04255i 0.139106 0.0506306i
\(425\) 4.99549i 0.242317i
\(426\) 4.09568 + 7.09392i 0.198436 + 0.343702i
\(427\) 2.09731 + 2.78309i 0.101496 + 0.134683i
\(428\) −15.2449 2.68809i −0.736890 0.129934i
\(429\) −7.16939 + 12.4178i −0.346142 + 0.599535i
\(430\) −3.73688 6.47247i −0.180208 0.312130i
\(431\) 1.47380 + 4.04924i 0.0709905 + 0.195045i 0.970114 0.242651i \(-0.0780169\pi\)
−0.899123 + 0.437696i \(0.855795\pi\)
\(432\) −2.11857 12.0150i −0.101930 0.578072i
\(433\) −29.0851 + 10.5861i −1.39774 + 0.508737i −0.927508 0.373804i \(-0.878053\pi\)
−0.470235 + 0.882541i \(0.655831\pi\)
\(434\) −6.32563 4.10769i −0.303640 0.197176i
\(435\) −0.562054 3.18757i −0.0269484 0.152832i
\(436\) 9.40126 5.42782i 0.450239 0.259945i
\(437\) 15.2079 7.67760i 0.727492 0.367269i
\(438\) 5.99154 10.3777i 0.286287 0.495864i
\(439\) 14.5429 12.2030i 0.694097 0.582416i −0.225991 0.974129i \(-0.572562\pi\)
0.920087 + 0.391713i \(0.128117\pi\)
\(440\) −9.59327 + 8.04971i −0.457341 + 0.383755i
\(441\) 40.1141 + 4.21418i 1.91019 + 0.200675i
\(442\) 0.701877 + 0.255462i 0.0333849 + 0.0121511i
\(443\) −0.845949 + 4.79762i −0.0401923 + 0.227942i −0.998287 0.0585106i \(-0.981365\pi\)
0.958095 + 0.286452i \(0.0924760\pi\)
\(444\) 30.0790 17.3661i 1.42749 0.824159i
\(445\) 4.63073i 0.219518i
\(446\) −0.723424 1.98759i −0.0342551 0.0941151i
\(447\) −7.67202 + 43.5102i −0.362874 + 2.05796i
\(448\) 1.73694 + 1.61964i 0.0820626 + 0.0765209i
\(449\) −14.0978 8.13935i −0.665314 0.384119i 0.128984 0.991647i \(-0.458828\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(450\) −15.4439 2.72318i −0.728035 0.128372i
\(451\) 30.5341 25.6211i 1.43779 1.20645i
\(452\) 18.3055 + 3.22776i 0.861020 + 0.151821i
\(453\) 13.1982 36.2618i 0.620106 1.70373i
\(454\) −6.60431 + 1.16452i −0.309955 + 0.0546535i
\(455\) 1.58486 1.69964i 0.0742996 0.0796804i
\(456\) 29.4665 8.88896i 1.37990 0.416264i
\(457\) −14.8865 25.7843i −0.696363 1.20614i −0.969719 0.244223i \(-0.921467\pi\)
0.273356 0.961913i \(-0.411866\pi\)
\(458\) 16.0092 + 5.82687i 0.748061 + 0.272272i
\(459\) 9.93643 1.75206i 0.463793 0.0817792i
\(460\) 3.79430 4.52187i 0.176910 0.210833i
\(461\) 8.26215 22.7001i 0.384807 1.05725i −0.584500 0.811394i \(-0.698709\pi\)
0.969307 0.245854i \(-0.0790685\pi\)
\(462\) −17.0512 22.6265i −0.793293 1.05268i
\(463\) −0.371652 + 0.643720i −0.0172721 + 0.0299162i −0.874532 0.484967i \(-0.838831\pi\)
0.857260 + 0.514884i \(0.172165\pi\)
\(464\) −1.44828 0.836165i −0.0672347 0.0388180i
\(465\) −7.87149 + 9.38087i −0.365031 + 0.435028i
\(466\) −1.79571 + 2.14004i −0.0831845 + 0.0991355i
\(467\) 13.6182 + 7.86249i 0.630176 + 0.363833i 0.780820 0.624756i \(-0.214801\pi\)
−0.150644 + 0.988588i \(0.548135\pi\)
\(468\) 4.01495 6.95410i 0.185591 0.321453i
\(469\) −4.81417 6.38830i −0.222298 0.294984i
\(470\) 1.58922 4.36634i 0.0733052 0.201404i
\(471\) −16.7713 + 19.9872i −0.772780 + 0.920963i
\(472\) −19.6972 + 3.47315i −0.906638 + 0.159865i
\(473\) 57.6080 + 20.9676i 2.64882 + 0.964092i
\(474\) −13.8841 24.0479i −0.637716 1.10456i
\(475\) −0.989090 + 17.6173i −0.0453826 + 0.808337i
\(476\) 3.44682 3.69644i 0.157985 0.169426i
\(477\) 7.25132 1.27860i 0.332015 0.0585432i
\(478\) −3.37569 + 9.27462i −0.154400 + 0.424211i
\(479\) 2.41148 + 0.425209i 0.110183 + 0.0194283i 0.228468 0.973551i \(-0.426628\pi\)
−0.118285 + 0.992980i \(0.537739\pi\)
\(480\) 12.7745 10.7191i 0.583075 0.489258i
\(481\) 6.72013 + 1.18494i 0.306411 + 0.0540286i
\(482\) 2.25746 + 1.30334i 0.102824 + 0.0593657i
\(483\) 22.3863 + 20.8745i 1.01861 + 0.949824i
\(484\) 4.82576 27.3682i 0.219353 1.24401i
\(485\) −4.08268 11.2171i −0.185385 0.509341i
\(486\) 2.72792i 0.123741i
\(487\) 0.450068 0.259847i 0.0203945 0.0117748i −0.489768 0.871853i \(-0.662919\pi\)
0.510163 + 0.860078i \(0.329585\pi\)
\(488\) −0.545592 + 3.09420i −0.0246978 + 0.140068i
\(489\) −22.6611 8.24795i −1.02477 0.372985i
\(490\) 1.86787 + 4.19475i 0.0843816 + 0.189499i
\(491\) 7.38459 6.19640i 0.333262 0.279640i −0.460766 0.887522i \(-0.652425\pi\)
0.794027 + 0.607882i \(0.207981\pi\)
\(492\) −26.0022 + 21.8184i −1.17227 + 0.983650i
\(493\) 0.691510 1.19773i 0.0311440 0.0539430i
\(494\) 2.42468 + 1.03989i 0.109092 + 0.0467870i
\(495\) −26.1978 + 15.1253i −1.17750 + 0.679832i
\(496\) 1.09869 + 6.23096i 0.0493325 + 0.279778i
\(497\) 9.13312 + 5.93080i 0.409677 + 0.266033i
\(498\) 15.7823 5.74427i 0.707220 0.257407i
\(499\) 3.41390 + 19.3612i 0.152827 + 0.866726i 0.960745 + 0.277431i \(0.0894831\pi\)
−0.807918 + 0.589294i \(0.799406\pi\)
\(500\) 4.67390 + 12.8414i 0.209023 + 0.574286i
\(501\) 36.6837 + 63.5380i 1.63890 + 2.83867i
\(502\) −1.28451 + 2.22483i −0.0573303 + 0.0992991i
\(503\) 22.8333 + 4.02612i 1.01808 + 0.179516i 0.657694 0.753285i \(-0.271532\pi\)
0.360391 + 0.932801i \(0.382643\pi\)
\(504\) 21.8861 + 29.0424i 0.974884 + 1.29365i
\(505\) 9.06649 + 15.7036i 0.403454 + 0.698802i
\(506\) 14.1389i 0.628550i
\(507\) −33.9061 + 12.3408i −1.50582 + 0.548075i
\(508\) −12.5189 14.9195i −0.555437 0.661945i
\(509\) 8.53942 + 7.16542i 0.378503 + 0.317602i 0.812114 0.583498i \(-0.198316\pi\)
−0.433611 + 0.901100i \(0.642761\pi\)
\(510\) 1.54025 + 1.83560i 0.0682035 + 0.0812817i
\(511\) 0.833360 15.9089i 0.0368657 0.703766i
\(512\) 15.7350i 0.695393i
\(513\) 35.3891 4.21150i 1.56247 0.185942i
\(514\) 6.75682 + 3.90105i 0.298031 + 0.172068i
\(515\) −2.08926 + 5.74019i −0.0920637 + 0.252943i
\(516\) −49.0578 17.8556i −2.15965 0.786048i
\(517\) 13.0359 + 35.8159i 0.573319 + 1.57518i
\(518\) −7.34317 + 11.3081i −0.322640 + 0.496849i
\(519\) 16.4089 + 13.7687i 0.720269 + 0.604378i
\(520\) 2.09523 0.0918818
\(521\) −19.4173 −0.850686 −0.425343 0.905032i \(-0.639846\pi\)
−0.425343 + 0.905032i \(0.639846\pi\)
\(522\) 3.32591 + 2.79077i 0.145571 + 0.122149i
\(523\) 35.0280 12.7492i 1.53167 0.557482i 0.567640 0.823277i \(-0.307857\pi\)
0.964029 + 0.265795i \(0.0856345\pi\)
\(524\) −15.4845 + 8.93999i −0.676445 + 0.390545i
\(525\) −30.3174 + 9.26977i −1.32316 + 0.404566i
\(526\) −7.60685 + 9.06549i −0.331674 + 0.395274i
\(527\) −5.15301 + 0.908615i −0.224469 + 0.0395799i
\(528\) −4.12711 + 23.4060i −0.179609 + 1.01861i
\(529\) −1.34143 7.60761i −0.0583229 0.330765i
\(530\) 0.538813 + 0.642133i 0.0234045 + 0.0278925i
\(531\) −48.3142 −2.09666
\(532\) 12.8876 12.3536i 0.558747 0.535595i
\(533\) −6.66882 −0.288859
\(534\) −6.07146 7.23568i −0.262738 0.313119i
\(535\) −1.69428 9.60875i −0.0732502 0.415423i
\(536\) 1.25235 7.10244i 0.0540934 0.306779i
\(537\) −5.46381 + 0.963418i −0.235781 + 0.0415745i
\(538\) 8.49030 10.1183i 0.366043 0.436233i
\(539\) −33.8543 16.5098i −1.45821 0.711127i
\(540\) 10.6942 6.17432i 0.460207 0.265700i
\(541\) 10.0288 3.65017i 0.431170 0.156933i −0.117312 0.993095i \(-0.537428\pi\)
0.548483 + 0.836162i \(0.315206\pi\)
\(542\) −6.74134 5.65666i −0.289565 0.242974i
\(543\) −11.5417 −0.495303
\(544\) 7.12544 0.305501
\(545\) 5.24146 + 4.39810i 0.224519 + 0.188394i
\(546\) −0.247967 + 4.73370i −0.0106120 + 0.202584i
\(547\) 6.73115 + 18.4937i 0.287803 + 0.790733i 0.996373 + 0.0850921i \(0.0271185\pi\)
−0.708570 + 0.705641i \(0.750659\pi\)
\(548\) 7.36853 + 2.68193i 0.314768 + 0.114566i
\(549\) −2.59580 + 7.13190i −0.110786 + 0.304382i
\(550\) 12.6824 + 7.32217i 0.540778 + 0.312218i
\(551\) 2.67585 4.08704i 0.113995 0.174114i
\(552\) 27.5966i 1.17459i
\(553\) −30.9606 20.1050i −1.31658 0.854952i
\(554\) −0.191289 0.227969i −0.00812708 0.00968548i
\(555\) 16.7698 + 14.0716i 0.711840 + 0.597305i
\(556\) 4.75098 + 5.66200i 0.201487 + 0.240122i
\(557\) 6.85309 2.49432i 0.290375 0.105688i −0.192726 0.981253i \(-0.561733\pi\)
0.483101 + 0.875565i \(0.339511\pi\)
\(558\) 16.4262i 0.695378i
\(559\) −5.12845 8.88273i −0.216910 0.375699i
\(560\) 1.50500 3.54579i 0.0635978 0.149837i
\(561\) −19.3568 3.41312i −0.817244 0.144102i
\(562\) 1.14803 1.98845i 0.0484268 0.0838778i
\(563\) 15.4558 + 26.7702i 0.651384 + 1.12823i 0.982787 + 0.184741i \(0.0591445\pi\)
−0.331404 + 0.943489i \(0.607522\pi\)
\(564\) −11.1011 30.5000i −0.467441 1.28428i
\(565\) 2.03443 + 11.5378i 0.0855893 + 0.485401i
\(566\) 8.54964 3.11181i 0.359368 0.130799i
\(567\) 8.30707 + 16.3026i 0.348864 + 0.684644i
\(568\) 1.70491 + 9.66905i 0.0715366 + 0.405704i
\(569\) −25.2163 + 14.5586i −1.05712 + 0.610330i −0.924635 0.380854i \(-0.875630\pi\)
−0.132488 + 0.991185i \(0.542297\pi\)
\(570\) 5.06846 + 6.77846i 0.212295 + 0.283918i
\(571\) −19.2485 + 33.3394i −0.805525 + 1.39521i 0.110411 + 0.993886i \(0.464783\pi\)
−0.915936 + 0.401324i \(0.868550\pi\)
\(572\) −5.74417 + 4.81993i −0.240176 + 0.201531i
\(573\) 18.6035 15.6102i 0.777172 0.652124i
\(574\) 5.14834 12.1296i 0.214888 0.506278i
\(575\) −14.8670 5.41114i −0.619996 0.225660i
\(576\) −0.898152 + 5.09368i −0.0374230 + 0.212236i
\(577\) 22.8392 13.1862i 0.950807 0.548949i 0.0574755 0.998347i \(-0.481695\pi\)
0.893332 + 0.449398i \(0.148362\pi\)
\(578\) 10.4057i 0.432818i
\(579\) 2.00435 + 5.50692i 0.0832981 + 0.228860i
\(580\) 0.293926 1.66694i 0.0122046 0.0692159i
\(581\) 15.2272 16.3300i 0.631732 0.677482i
\(582\) 21.0863 + 12.1742i 0.874056 + 0.504637i
\(583\) −6.77142 1.19398i −0.280444 0.0494498i
\(584\) 11.0027 9.23236i 0.455295 0.382038i
\(585\) 4.98430 + 0.878867i 0.206075 + 0.0363367i
\(586\) −0.947120 + 2.60219i −0.0391252 + 0.107496i
\(587\) 40.8208 7.19782i 1.68486 0.297086i 0.752491 0.658603i \(-0.228852\pi\)
0.932366 + 0.361517i \(0.117741\pi\)
\(588\) 28.8296 + 14.0594i 1.18891 + 0.579799i
\(589\) −18.3527 + 2.18408i −0.756210 + 0.0899933i
\(590\) −2.75011 4.76333i −0.113220 0.196103i
\(591\) −54.0817 19.6841i −2.22462 0.809697i
\(592\) 11.1389 1.96408i 0.457804 0.0807232i
\(593\) 4.85871 5.79039i 0.199523 0.237783i −0.657000 0.753890i \(-0.728175\pi\)
0.856524 + 0.516107i \(0.172620\pi\)
\(594\) 10.1163 27.7943i 0.415077 1.14041i
\(595\) 2.93238 + 1.24464i 0.120216 + 0.0510251i
\(596\) −11.5523 + 20.0093i −0.473203 + 0.819611i
\(597\) −5.68414 3.28174i −0.232637 0.134313i
\(598\) −1.52055 + 1.81212i −0.0621800 + 0.0741032i
\(599\) 18.3175 21.8299i 0.748431 0.891945i −0.248627 0.968599i \(-0.579979\pi\)
0.997058 + 0.0766539i \(0.0244237\pi\)
\(600\) −24.7538 14.2916i −1.01057 0.583452i
\(601\) −2.96468 + 5.13498i −0.120932 + 0.209460i −0.920135 0.391600i \(-0.871922\pi\)
0.799204 + 0.601060i \(0.205255\pi\)
\(602\) 20.1155 2.47037i 0.819845 0.100685i
\(603\) 5.95840 16.3706i 0.242645 0.666661i
\(604\) 12.9715 15.4589i 0.527805 0.629013i
\(605\) 17.2500 3.04164i 0.701313 0.123660i
\(606\) −34.7561 12.6502i −1.41187 0.513879i
\(607\) −13.7334 23.7870i −0.557423 0.965485i −0.997711 0.0676280i \(-0.978457\pi\)
0.440288 0.897857i \(-0.354876\pi\)
\(608\) 25.1288 + 1.41081i 1.01911 + 0.0572160i
\(609\) 8.55216 + 1.97420i 0.346551 + 0.0799987i
\(610\) −0.850894 + 0.150036i −0.0344517 + 0.00607476i
\(611\) 2.18102 5.99231i 0.0882347 0.242423i
\(612\) 10.8400 + 1.91139i 0.438183 + 0.0772635i
\(613\) −28.0952 + 23.5747i −1.13475 + 0.952171i −0.999255 0.0386062i \(-0.987708\pi\)
−0.135499 + 0.990777i \(0.543264\pi\)
\(614\) 1.64050 + 0.289265i 0.0662053 + 0.0116738i
\(615\) −18.5280 10.6971i −0.747121 0.431351i
\(616\) −9.92942 32.4748i −0.400068 1.30845i
\(617\) −0.661579 + 3.75200i −0.0266342 + 0.151050i −0.995225 0.0976119i \(-0.968880\pi\)
0.968590 + 0.248662i \(0.0799907\pi\)
\(618\) −4.26156 11.7085i −0.171425 0.470986i
\(619\) 9.44811i 0.379752i −0.981808 0.189876i \(-0.939191\pi\)
0.981808 0.189876i \(-0.0608085\pi\)
\(620\) −5.54601 + 3.20199i −0.222733 + 0.128595i
\(621\) −5.54891 + 31.4694i −0.222670 + 1.26282i
\(622\) −8.38722 3.05270i −0.336297 0.122402i
\(623\) −11.5590 4.90618i −0.463103 0.196562i
\(624\) 3.04613 2.55600i 0.121943 0.102322i
\(625\) 8.90674 7.47364i 0.356270 0.298946i
\(626\) −0.309137 + 0.535441i −0.0123556 + 0.0214005i
\(627\) −67.5886 15.8694i −2.69923 0.633764i
\(628\) −11.8165 + 6.82228i −0.471531 + 0.272239i
\(629\) 1.62430 + 9.21185i 0.0647650 + 0.367301i
\(630\) −5.44641 + 8.38718i −0.216990 + 0.334153i
\(631\) 8.31668 3.02702i 0.331082 0.120504i −0.171130 0.985248i \(-0.554742\pi\)
0.502212 + 0.864744i \(0.332520\pi\)
\(632\) −5.77954 32.7774i −0.229898 1.30381i
\(633\) 19.1477 + 52.6078i 0.761051 + 2.09097i
\(634\) −3.73254 6.46494i −0.148238 0.256756i
\(635\) 6.13779 10.6310i 0.243571 0.421877i
\(636\) 5.76640 + 1.01677i 0.228653 + 0.0403176i
\(637\) 2.56343 + 5.75681i 0.101567 + 0.228093i
\(638\) −2.02717 3.51116i −0.0802563 0.139008i
\(639\) 23.7167i 0.938218i
\(640\) 10.0344 3.65223i 0.396645 0.144367i
\(641\) −0.208544 0.248533i −0.00823697 0.00981644i 0.761910 0.647683i \(-0.224262\pi\)
−0.770147 + 0.637866i \(0.779817\pi\)
\(642\) 15.2456 + 12.7926i 0.601697 + 0.504884i
\(643\) −29.7753 35.4849i −1.17422 1.39939i −0.898967 0.438016i \(-0.855681\pi\)
−0.275258 0.961370i \(-0.588763\pi\)
\(644\) 7.26729 + 14.2620i 0.286371 + 0.562002i
\(645\) 32.9052i 1.29564i
\(646\) −0.202723 + 3.61082i −0.00797601 + 0.142066i
\(647\) −11.0505 6.38004i −0.434442 0.250825i 0.266795 0.963753i \(-0.414035\pi\)
−0.701237 + 0.712928i \(0.747369\pi\)
\(648\) −5.64214 + 15.5016i −0.221644 + 0.608962i
\(649\) 42.3959 + 15.4308i 1.66418 + 0.605713i
\(650\) −0.837992 2.30236i −0.0328687 0.0903061i
\(651\) −15.0764 29.5874i −0.590891 1.15962i
\(652\) −9.66071 8.10630i −0.378343 0.317467i
\(653\) 28.2527 1.10561 0.552807 0.833309i \(-0.313556\pi\)
0.552807 + 0.833309i \(0.313556\pi\)
\(654\) −13.9564 −0.545739
\(655\) −8.63304 7.24398i −0.337321 0.283046i
\(656\) −10.3872 + 3.78063i −0.405552 + 0.147609i
\(657\) 30.0468 17.3475i 1.17224 0.676791i
\(658\) 9.21532 + 8.59301i 0.359251 + 0.334990i
\(659\) 8.02056 9.55853i 0.312437 0.372347i −0.586859 0.809689i \(-0.699636\pi\)
0.899295 + 0.437342i \(0.144080\pi\)
\(660\) −23.6905 + 4.17727i −0.922150 + 0.162600i
\(661\) 1.72246 9.76854i 0.0669958 0.379952i −0.932812 0.360363i \(-0.882653\pi\)
0.999808 0.0195896i \(-0.00623596\pi\)
\(662\) 3.79132 + 21.5016i 0.147354 + 0.835684i
\(663\) 2.11382 + 2.51915i 0.0820939 + 0.0978357i
\(664\) 20.1307 0.781225
\(665\) 10.0950 + 4.96998i 0.391467 + 0.192728i
\(666\) −29.3646 −1.13786
\(667\) 2.81549 + 3.35537i 0.109016 + 0.129921i
\(668\) 6.66244 + 37.7846i 0.257778 + 1.46193i
\(669\) 1.61710 9.17102i 0.0625206 0.354572i
\(670\) 1.95314 0.344392i 0.0754565 0.0133050i
\(671\) 4.55564 5.42920i 0.175869 0.209592i
\(672\) 13.2222 + 43.2440i 0.510056 + 1.66817i
\(673\) −22.9469 + 13.2484i −0.884538 + 0.510688i −0.872152 0.489235i \(-0.837276\pi\)
−0.0123858 + 0.999923i \(0.503943\pi\)
\(674\) −8.16023 + 2.97008i −0.314320 + 0.114403i
\(675\) −25.3540 21.2745i −0.975875 0.818856i
\(676\) −18.8692 −0.725737
\(677\) −8.90312 −0.342175 −0.171087 0.985256i \(-0.554728\pi\)
−0.171087 + 0.985256i \(0.554728\pi\)
\(678\) −18.3064 15.3609i −0.703054 0.589932i
\(679\) 32.3251 + 1.69330i 1.24053 + 0.0649829i
\(680\) 0.982318 + 2.69890i 0.0376702 + 0.103498i
\(681\) −27.7451 10.0984i −1.06320 0.386972i
\(682\) −5.24630 + 14.4141i −0.200891 + 0.551944i
\(683\) 21.6523 + 12.5010i 0.828504 + 0.478337i 0.853340 0.521354i \(-0.174573\pi\)
−0.0248361 + 0.999692i \(0.507906\pi\)
\(684\) 37.8505 + 8.88708i 1.44725 + 0.339806i
\(685\) 4.94240i 0.188839i
\(686\) −12.4497 + 0.218219i −0.475333 + 0.00833164i
\(687\) 48.2144 + 57.4597i 1.83949 + 2.19222i
\(688\) −13.0237 10.9281i −0.496522 0.416631i
\(689\) 0.739460 + 0.881254i 0.0281712 + 0.0335731i
\(690\) −7.13129 + 2.59558i −0.271484 + 0.0988120i
\(691\) 2.32070i 0.0882837i −0.999025 0.0441418i \(-0.985945\pi\)
0.999025 0.0441418i \(-0.0140554\pi\)
\(692\) 5.60086 + 9.70098i 0.212913 + 0.368776i
\(693\) −9.99899 81.4189i −0.379830 3.09285i
\(694\) −9.26022 1.63283i −0.351513 0.0619812i
\(695\) −2.32932 + 4.03449i −0.0883560 + 0.153037i
\(696\) 3.95668 + 6.85316i 0.149977 + 0.259769i
\(697\) −3.12658 8.59022i −0.118428 0.325378i
\(698\) −2.09474 11.8799i −0.0792872 0.449660i
\(699\) −11.5579 + 4.20673i −0.437160 + 0.159113i
\(700\) −16.5564 0.867278i −0.625771 0.0327800i
\(701\) −0.0484593 0.274826i −0.00183028 0.0103800i 0.983879 0.178836i \(-0.0572331\pi\)
−0.985709 + 0.168456i \(0.946122\pi\)
\(702\) −4.28568 + 2.47434i −0.161752 + 0.0933878i
\(703\) 3.90440 + 32.8085i 0.147257 + 1.23739i
\(704\) 2.41497 4.18286i 0.0910178 0.157647i
\(705\) 15.6715 13.1500i 0.590223 0.495256i
\(706\) 13.4727 11.3050i 0.507053 0.425468i
\(707\) −48.8045 + 5.99365i −1.83548 + 0.225414i
\(708\) −36.1034 13.1406i −1.35685 0.493853i
\(709\) 3.49448 19.8182i 0.131238 0.744287i −0.846168 0.532916i \(-0.821096\pi\)
0.977406 0.211371i \(-0.0677928\pi\)
\(710\) −2.33824 + 1.34998i −0.0877527 + 0.0506640i
\(711\) 80.3979i 3.01516i
\(712\) −3.87216 10.6387i −0.145115 0.398701i
\(713\) 2.87765 16.3200i 0.107769 0.611188i
\(714\) −6.21382 + 1.89992i −0.232546 + 0.0711027i
\(715\) −4.09304 2.36312i −0.153071 0.0883756i
\(716\) −2.85730 0.503820i −0.106782 0.0188286i
\(717\) −33.2881 + 27.9321i −1.24317 + 1.04314i
\(718\) −7.09522 1.25108i −0.264791 0.0466898i
\(719\) −11.3334 + 31.1383i −0.422664 + 1.16126i 0.527512 + 0.849548i \(0.323125\pi\)
−0.950176 + 0.311713i \(0.899097\pi\)
\(720\) 8.26166 1.45675i 0.307894 0.0542900i
\(721\) −12.1149 11.2968i −0.451182 0.420713i
\(722\) −1.42986 + 12.6939i −0.0532138 + 0.472418i
\(723\) 5.73831 + 9.93904i 0.213410 + 0.369637i
\(724\) −5.67175 2.06435i −0.210789 0.0767209i
\(725\) −4.46779 + 0.787792i −0.165930 + 0.0292579i
\(726\) −22.9658 + 27.3696i −0.852341 + 1.01578i
\(727\) −4.38166 + 12.0385i −0.162507 + 0.446484i −0.994043 0.108986i \(-0.965239\pi\)
0.831536 + 0.555470i \(0.187462\pi\)
\(728\) −2.21986 + 5.23002i −0.0822735 + 0.193837i
\(729\) 16.3786 28.3686i 0.606616 1.05069i
\(730\) 3.42060 + 1.97489i 0.126602 + 0.0730938i
\(731\) 9.03759 10.7706i 0.334267 0.398364i
\(732\) −3.87949 + 4.62339i −0.143390 + 0.170886i
\(733\) −15.5378 8.97073i −0.573900 0.331341i 0.184805 0.982775i \(-0.440835\pi\)
−0.758706 + 0.651434i \(0.774168\pi\)
\(734\) −6.90288 + 11.9561i −0.254790 + 0.441309i
\(735\) −2.11224 + 20.1060i −0.0779112 + 0.741623i
\(736\) −7.71831 + 21.2059i −0.284501 + 0.781659i
\(737\) −10.4570 + 12.4622i −0.385189 + 0.459051i
\(738\) 28.2617 4.98330i 1.04033 0.183438i
\(739\) −4.89470 1.78152i −0.180054 0.0655345i 0.250420 0.968137i \(-0.419431\pi\)
−0.430474 + 0.902603i \(0.641654\pi\)
\(740\) 5.72408 + 9.91439i 0.210421 + 0.364460i
\(741\) 6.95589 + 9.30266i 0.255531 + 0.341742i
\(742\) −2.17373 + 0.664633i −0.0798001 + 0.0243994i
\(743\) 26.0780 4.59826i 0.956711 0.168694i 0.326568 0.945174i \(-0.394108\pi\)
0.630142 + 0.776480i \(0.282997\pi\)
\(744\) 10.2398 28.1338i 0.375411 1.03143i
\(745\) −14.3415 2.52879i −0.525432 0.0926478i
\(746\) 0.327625 0.274910i 0.0119952 0.0100652i
\(747\) 47.8887 + 8.44407i 1.75216 + 0.308952i
\(748\) −8.90170 5.13940i −0.325478 0.187915i
\(749\) 25.7800 + 5.95113i 0.941982 + 0.217449i
\(750\) 3.05082 17.3021i 0.111400 0.631782i
\(751\) 7.56497 + 20.7846i 0.276050 + 0.758440i 0.997801 + 0.0662873i \(0.0211154\pi\)
−0.721751 + 0.692153i \(0.756662\pi\)
\(752\) 10.5699i 0.385445i
\(753\) −9.79540 + 5.65538i −0.356964 + 0.206093i
\(754\) −0.117790 + 0.668020i −0.00428966 + 0.0243279i
\(755\) 11.9523 + 4.35029i 0.434990 + 0.158323i
\(756\) 4.08170 + 33.2361i 0.148450 + 1.20878i
\(757\) 1.81337 1.52160i 0.0659082 0.0553036i −0.609238 0.792987i \(-0.708525\pi\)
0.675147 + 0.737684i \(0.264080\pi\)
\(758\) 11.8369 9.93237i 0.429937 0.360760i
\(759\) 31.1251 53.9102i 1.12977 1.95682i
\(760\) 2.92991 + 9.71253i 0.106279 + 0.352310i
\(761\) 42.0900 24.3006i 1.52576 0.880898i 0.526227 0.850344i \(-0.323606\pi\)
0.999533 0.0305534i \(-0.00972695\pi\)
\(762\) 4.34799 + 24.6587i 0.157511 + 0.893289i
\(763\) −16.5316 + 8.42378i −0.598484 + 0.304961i
\(764\) 11.9340 4.34363i 0.431758 0.157147i
\(765\) 1.20474 + 6.83241i 0.0435574 + 0.247026i
\(766\) 8.11930 + 22.3076i 0.293362 + 0.806006i
\(767\) −3.77421 6.53713i −0.136279 0.236042i
\(768\) −13.5477 + 23.4653i −0.488860 + 0.846730i
\(769\) 16.4109 + 2.89369i 0.591793 + 0.104349i 0.461521 0.887129i \(-0.347304\pi\)
0.130272 + 0.991478i \(0.458415\pi\)
\(770\) 7.45798 5.62028i 0.268767 0.202541i
\(771\) 17.1754 + 29.7487i 0.618557 + 1.07137i
\(772\) 3.06467i 0.110300i
\(773\) 26.7669 9.74236i 0.962739 0.350408i 0.187633 0.982239i \(-0.439918\pi\)
0.775106 + 0.631831i \(0.217696\pi\)
\(774\) 28.3714 + 33.8118i 1.01979 + 1.21534i
\(775\) 13.1485 + 11.0329i 0.472309 + 0.396314i
\(776\) 18.7592 + 22.3563i 0.673416 + 0.802546i
\(777\) −52.8922 + 26.9516i −1.89750 + 0.966882i
\(778\) 5.01444i 0.179776i
\(779\) −9.32550 30.9136i −0.334121 1.10760i
\(780\) 3.48555 + 2.01238i 0.124803 + 0.0720548i
\(781\) 7.57475 20.8115i 0.271046 0.744693i
\(782\) −3.04711 1.10906i −0.108965 0.0396599i
\(783\) 3.13396 + 8.61049i 0.111999 + 0.307714i
\(784\) 7.25634 + 7.51343i 0.259155 + 0.268337i
\(785\) −6.58804 5.52802i −0.235137 0.197303i
\(786\) 22.9872 0.819926
\(787\) 44.5314 1.58737 0.793686 0.608327i \(-0.208159\pi\)
0.793686 + 0.608327i \(0.208159\pi\)
\(788\) −23.0557 19.3461i −0.821326 0.689175i
\(789\) −48.9608 + 17.8203i −1.74305 + 0.634418i
\(790\) 7.92648 4.57635i 0.282011 0.162819i
\(791\) −30.9557 7.14590i −1.10066 0.254079i
\(792\) 47.5395 56.6554i 1.68924 2.01316i
\(793\) −1.16776 + 0.205907i −0.0414682 + 0.00731196i
\(794\) −3.15361 + 17.8850i −0.111917 + 0.634714i
\(795\) 0.640864 + 3.63452i 0.0227291 + 0.128903i
\(796\) −2.20629 2.62935i −0.0781999 0.0931950i
\(797\) −14.8427 −0.525756 −0.262878 0.964829i \(-0.584672\pi\)
−0.262878 + 0.964829i \(0.584672\pi\)
\(798\) −22.2901 + 5.47001i −0.789059 + 0.193636i
\(799\) 8.74133 0.309246
\(800\) −15.0242 17.9052i −0.531187 0.633044i
\(801\) −4.74891 26.9324i −0.167794 0.951610i
\(802\) 3.91769 22.2183i 0.138339 0.784557i
\(803\) −31.9066 + 5.62600i −1.12596 + 0.198537i
\(804\) 8.90498 10.6125i 0.314054 0.374275i
\(805\) −6.88050 + 7.37879i −0.242506 + 0.260068i
\(806\) 2.22254 1.28319i 0.0782858 0.0451983i
\(807\) 54.6470 19.8899i 1.92367 0.700158i
\(808\) −33.9607 28.4964i −1.19473 1.00250i
\(809\) 14.1393 0.497112 0.248556 0.968618i \(-0.420044\pi\)
0.248556 + 0.968618i \(0.420044\pi\)
\(810\) −4.53647 −0.159395
\(811\) −21.1869 17.7779i −0.743974 0.624268i 0.189928 0.981798i \(-0.439175\pi\)
−0.933902 + 0.357530i \(0.883619\pi\)
\(812\) 3.84953 + 2.49978i 0.135092 + 0.0877252i
\(813\) −13.2516 36.4085i −0.464755 1.27690i
\(814\) 25.7675 + 9.37861i 0.903151 + 0.328720i
\(815\) 2.71862 7.46936i 0.0952293 0.261640i
\(816\) 4.72057 + 2.72542i 0.165253 + 0.0954088i
\(817\) 34.0048 36.1945i 1.18968 1.26629i
\(818\) 7.48922i 0.261854i
\(819\) −7.47458 + 11.5105i −0.261183 + 0.402208i
\(820\) −7.19161 8.57063i −0.251142 0.299299i
\(821\) 25.4147 + 21.3255i 0.886979 + 0.744263i 0.967602 0.252481i \(-0.0812466\pi\)
−0.0806231 + 0.996745i \(0.525691\pi\)
\(822\) −6.48009 7.72268i −0.226019 0.269359i
\(823\) −11.1488 + 4.05783i −0.388622 + 0.141447i −0.528939 0.848660i \(-0.677410\pi\)
0.140317 + 0.990107i \(0.455188\pi\)
\(824\) 14.9346i 0.520271i
\(825\) 32.2378 + 55.8374i 1.12237 + 1.94401i
\(826\) 14.8037 1.81803i 0.515087 0.0632575i
\(827\) 19.4197 + 3.42421i 0.675288 + 0.119072i 0.500767 0.865582i \(-0.333051\pi\)
0.174521 + 0.984653i \(0.444162\pi\)
\(828\) −17.4304 + 30.1904i −0.605749 + 1.04919i
\(829\) 14.3635 + 24.8784i 0.498867 + 0.864062i 0.999999 0.00130833i \(-0.000416453\pi\)
−0.501133 + 0.865370i \(0.667083\pi\)
\(830\) 1.89338 + 5.20202i 0.0657202 + 0.180565i
\(831\) −0.227519 1.29032i −0.00789254 0.0447608i
\(832\) −0.759359 + 0.276384i −0.0263260 + 0.00958189i
\(833\) −6.21361 + 6.00100i −0.215289 + 0.207922i
\(834\) −1.65008 9.35807i −0.0571376 0.324043i
\(835\) −20.9429 + 12.0914i −0.724758 + 0.418439i
\(836\) −30.3755 19.8873i −1.05056 0.687817i
\(837\) 17.3338 30.0230i 0.599143 1.03775i
\(838\) −1.12364 + 0.942847i −0.0388155 + 0.0325701i
\(839\) −37.6991 + 31.6333i −1.30152 + 1.09210i −0.311638 + 0.950201i \(0.600877\pi\)
−0.989881 + 0.141902i \(0.954678\pi\)
\(840\) −14.5567 + 10.9698i −0.502253 + 0.378494i
\(841\) −26.0708 9.48901i −0.898994 0.327207i
\(842\) −2.18579 + 12.3962i −0.0753272 + 0.427202i
\(843\) 8.75468 5.05452i 0.301527 0.174087i
\(844\) 29.2769i 1.00775i
\(845\) −4.06768 11.1759i −0.139933 0.384461i
\(846\) −4.76515 + 27.0245i −0.163829 + 0.929121i
\(847\) −10.6837 + 46.2813i −0.367096 + 1.59024i
\(848\) 1.65136 + 0.953411i 0.0567078 + 0.0327403i
\(849\) 39.4492 + 6.95597i 1.35389 + 0.238728i
\(850\) 2.57283 2.15886i 0.0882474 0.0740484i
\(851\) −29.1746 5.14427i −1.00009 0.176343i
\(852\) −6.45050 + 17.7226i −0.220990 + 0.607166i
\(853\) −16.4087 + 2.89329i −0.561822 + 0.0990645i −0.447345 0.894361i \(-0.647630\pi\)
−0.114477 + 0.993426i \(0.536519\pi\)
\(854\) 0.526997 2.28293i 0.0180335 0.0781201i
\(855\) 2.89588 + 24.3340i 0.0990370 + 0.832204i
\(856\) 11.9272 + 20.6585i 0.407663 + 0.706093i
\(857\) 34.4740 + 12.5475i 1.17761 + 0.428614i 0.855357 0.518040i \(-0.173338\pi\)
0.322252 + 0.946654i \(0.395560\pi\)
\(858\) 9.49387 1.67402i 0.324115 0.0571503i
\(859\) −32.0210 + 38.1612i −1.09254 + 1.30204i −0.142544 + 0.989788i \(0.545528\pi\)
−0.949999 + 0.312253i \(0.898916\pi\)
\(860\) 5.88541 16.1700i 0.200691 0.551394i
\(861\) 46.3319 34.9154i 1.57899 1.18991i
\(862\) 1.44856 2.50898i 0.0493382 0.0854562i
\(863\) 5.13072 + 2.96222i 0.174652 + 0.100835i 0.584777 0.811194i \(-0.301182\pi\)
−0.410126 + 0.912029i \(0.634515\pi\)
\(864\) −30.3454 + 36.1642i −1.03237 + 1.23033i
\(865\) −4.53832 + 5.40856i −0.154308 + 0.183897i
\(866\) 18.0217 + 10.4048i 0.612402 + 0.353570i
\(867\) 22.9068 39.6758i 0.777956 1.34746i
\(868\) −2.11676 17.2362i −0.0718475 0.585034i
\(869\) −25.6779 + 70.5494i −0.871062 + 2.39322i
\(870\) −1.39880 + 1.66702i −0.0474236 + 0.0565173i
\(871\) 2.68047 0.472639i 0.0908242 0.0160147i
\(872\) −15.7194 5.72140i −0.532327 0.193751i
\(873\) 35.2483 + 61.0519i 1.19297 + 2.06629i
\(874\) −10.5265 4.51457i −0.356063 0.152708i
\(875\) −6.82938 22.3360i −0.230875 0.755093i
\(876\) 27.1710 4.79098i 0.918024 0.161872i
\(877\) 0.137456 0.377659i 0.00464157 0.0127526i −0.937350 0.348389i \(-0.886729\pi\)
0.941992 + 0.335636i \(0.108951\pi\)
\(878\) −12.5698 2.21640i −0.424211 0.0747998i
\(879\) −9.33969 + 7.83693i −0.315020 + 0.264333i
\(880\) −7.71490 1.36034i −0.260069 0.0458572i
\(881\) −25.7158 14.8470i −0.866387 0.500209i −0.000241052 1.00000i \(-0.500077\pi\)
−0.866146 + 0.499791i \(0.833410\pi\)
\(882\) −15.1653 22.4812i −0.510644 0.756981i
\(883\) −2.34837 + 13.3182i −0.0790288 + 0.448195i 0.919457 + 0.393190i \(0.128628\pi\)
−0.998486 + 0.0550047i \(0.982483\pi\)
\(884\) 0.588183 + 1.61602i 0.0197827 + 0.0543526i
\(885\) 24.2162i 0.814017i
\(886\) 2.83651 1.63766i 0.0952943 0.0550182i
\(887\) −8.11769 + 46.0377i −0.272565 + 1.54579i 0.474025 + 0.880511i \(0.342800\pi\)
−0.746591 + 0.665284i \(0.768311\pi\)
\(888\) −50.2937 18.3054i −1.68775 0.614289i
\(889\) 20.0337 + 26.5842i 0.671908 + 0.891607i
\(890\) 2.38497 2.00123i 0.0799443 0.0670812i
\(891\) 28.5056 23.9190i 0.954974 0.801318i
\(892\) 2.43499 4.21752i 0.0815294 0.141213i
\(893\) 30.8275 + 1.73075i 1.03160 + 0.0579174i
\(894\) 25.7247 14.8521i 0.860361 0.496730i
\(895\) −0.317554 1.80094i −0.0106147 0.0601987i
\(896\) −1.51477 + 28.9169i −0.0506048 + 0.966047i
\(897\) −9.78689 + 3.56214i −0.326775 + 0.118936i
\(898\) 1.90050 + 10.7783i 0.0634207 + 0.359676i
\(899\) −1.62527 4.46538i −0.0542057 0.148929i
\(900\) −18.0536 31.2697i −0.601785 1.04232i
\(901\) −0.788472 + 1.36567i −0.0262678 + 0.0454972i
\(902\) −26.3913 4.65350i −0.878735 0.154945i
\(903\) 82.1366 + 34.8626i 2.73333 + 1.16015i
\(904\) −14.3217 24.8060i −0.476334 0.825035i
\(905\) 3.80429i 0.126459i
\(906\) −24.3797 + 8.87349i −0.809962 + 0.294802i
\(907\) 9.75017 + 11.6198i 0.323749 + 0.385829i 0.903230 0.429157i \(-0.141189\pi\)
−0.579481 + 0.814986i \(0.696745\pi\)
\(908\) −11.8281 9.92497i −0.392530 0.329372i
\(909\) −68.8353 82.0347i −2.28312 2.72092i
\(910\) −1.56029 0.0817331i −0.0517230 0.00270942i
\(911\) 56.4353i 1.86978i −0.354933 0.934892i \(-0.615496\pi\)
0.354933 0.934892i \(-0.384504\pi\)
\(912\) 16.1081 + 10.5462i 0.533392 + 0.349220i
\(913\) −39.3256 22.7046i −1.30149 0.751413i
\(914\) −6.84628 + 18.8100i −0.226455 + 0.622180i
\(915\) −3.57466 1.30107i −0.118175 0.0430121i
\(916\) 13.4160 + 36.8600i 0.443275 + 1.21789i
\(917\) 27.2287 13.8745i 0.899170 0.458178i
\(918\) −5.19651 4.36039i −0.171511 0.143914i
\(919\) −2.38639 −0.0787196 −0.0393598 0.999225i \(-0.512532\pi\)
−0.0393598 + 0.999225i \(0.512532\pi\)
\(920\) −9.09618 −0.299892
\(921\) 5.61830 + 4.71431i 0.185129 + 0.155342i
\(922\) −15.2618 + 5.55485i −0.502622 + 0.182939i
\(923\) −3.20897 + 1.85270i −0.105625 + 0.0609824i
\(924\) 14.6725 63.5608i 0.482691 2.09100i
\(925\) 19.7231 23.5051i 0.648493 0.772843i
\(926\) 0.492150 0.0867793i 0.0161730 0.00285174i
\(927\) 6.26448 35.5276i 0.205753 1.16688i
\(928\) 1.12369 + 6.37274i 0.0368868 + 0.209196i
\(929\) −2.17142 2.58780i −0.0712421 0.0849031i 0.729246 0.684251i \(-0.239871\pi\)
−0.800488 + 0.599348i \(0.795426\pi\)
\(930\) 8.23320 0.269977
\(931\) −23.1013 + 19.9331i −0.757116 + 0.653280i
\(932\) −6.43212 −0.210691
\(933\) −25.2595 30.1031i −0.826959 0.985532i
\(934\) −1.83586 10.4117i −0.0600712 0.340680i
\(935\) 1.12501 6.38023i 0.0367917 0.208656i
\(936\) −12.1859 + 2.14870i −0.398308 + 0.0702325i
\(937\) −6.56900 + 7.82863i −0.214600 + 0.255750i −0.862596 0.505893i \(-0.831163\pi\)
0.647996 + 0.761644i \(0.275607\pi\)
\(938\) −1.20967 + 5.24023i −0.0394971 + 0.171100i
\(939\) −2.35742 + 1.36106i −0.0769315 + 0.0444164i
\(940\) 10.0532 3.65906i 0.327899 0.119345i
\(941\) 23.9823 + 20.1235i 0.781800 + 0.656008i 0.943701 0.330799i \(-0.107318\pi\)
−0.161902 + 0.986807i \(0.551763\pi\)
\(942\) 17.5420 0.571548
\(943\) 28.9519 0.942803
\(944\) −9.58458 8.04242i −0.311952 0.261759i
\(945\) −18.8052 + 9.58231i −0.611734 + 0.311713i
\(946\) −14.0970 38.7313i −0.458335 1.25926i
\(947\) 38.9801 + 14.1876i 1.26668 + 0.461035i 0.886006 0.463673i \(-0.153469\pi\)
0.380677 + 0.924708i \(0.375691\pi\)
\(948\) 21.8667 60.0783i 0.710198 1.95125i
\(949\) 4.69439 + 2.71031i 0.152386 + 0.0879802i
\(950\) 9.50089 7.10411i 0.308250 0.230488i
\(951\) 32.8669i 1.06578i
\(952\) −7.77762 0.407418i −0.252074 0.0132045i
\(953\) 12.2003 + 14.5397i 0.395206 + 0.470988i 0.926552 0.376167i \(-0.122758\pi\)
−0.531346 + 0.847155i \(0.678314\pi\)
\(954\) −3.79227 3.18209i −0.122779 0.103024i
\(955\) 5.14530 + 6.13193i 0.166498 + 0.198425i
\(956\) −21.3541 + 7.77227i −0.690642 + 0.251373i
\(957\) 17.8503i 0.577017i
\(958\) −0.823155 1.42575i −0.0265949 0.0460638i
\(959\) −12.3370 5.23639i −0.398383 0.169092i
\(960\) −2.55306 0.450174i −0.0823997 0.0145293i
\(961\) 6.51073 11.2769i 0.210024 0.363772i
\(962\) −2.29390 3.97316i −0.0739585 0.128100i
\(963\) 19.7080 + 54.1472i 0.635080 + 1.74487i
\(964\) 1.04218 + 5.91052i 0.0335665 + 0.190365i
\(965\) −1.81515 + 0.660660i −0.0584317 + 0.0212674i
\(966\) 1.07652 20.5508i 0.0346365 0.661211i
\(967\) 3.44502 + 19.5377i 0.110784 + 0.628289i 0.988751 + 0.149568i \(0.0477883\pi\)
−0.877967 + 0.478721i \(0.841101\pi\)
\(968\) −37.0870 + 21.4122i −1.19202 + 0.688213i
\(969\) −8.72174 + 13.3214i −0.280183 + 0.427946i
\(970\) −4.01276 + 6.95031i −0.128842 + 0.223161i
\(971\) −34.3665 + 28.8369i −1.10287 + 0.925420i −0.997615 0.0690247i \(-0.978011\pi\)
−0.105258 + 0.994445i \(0.533567\pi\)
\(972\) 4.81140 4.03725i 0.154326 0.129495i
\(973\) −7.60286 10.0888i −0.243736 0.323433i
\(974\) −0.328331 0.119503i −0.0105204 0.00382912i
\(975\) 1.87320 10.6234i 0.0599903 0.340222i
\(976\) −1.70214 + 0.982728i −0.0544840 + 0.0314564i
\(977\) 51.8249i 1.65803i −0.559230 0.829013i \(-0.688903\pi\)
0.559230 0.829013i \(-0.311097\pi\)
\(978\) 5.54530 + 15.2356i 0.177319 + 0.487181i
\(979\) −4.43462 + 25.1500i −0.141731 + 0.803797i
\(980\) −4.63414 + 9.50257i −0.148032 + 0.303549i
\(981\) −34.9948 20.2042i −1.11730 0.645072i
\(982\) −6.38268 1.12544i −0.203679 0.0359142i
\(983\) 18.5855 15.5951i 0.592785 0.497405i −0.296333 0.955085i \(-0.595764\pi\)
0.889117 + 0.457680i \(0.151319\pi\)
\(984\) 51.5113 + 9.08282i 1.64212 + 0.289550i
\(985\) 6.48812 17.8260i 0.206729 0.567983i
\(986\) −0.915712 + 0.161465i −0.0291622 + 0.00514209i
\(987\) 16.2207 + 53.0508i 0.516309 + 1.68862i
\(988\) 1.75434 + 5.81558i 0.0558131 + 0.185018i
\(989\) 22.2645 + 38.5633i 0.707971 + 1.22624i
\(990\) 19.1117 + 6.95609i 0.607410 + 0.221079i
\(991\) 45.6431 8.04810i 1.44990 0.255656i 0.607418 0.794382i \(-0.292205\pi\)
0.842481 + 0.538726i \(0.181094\pi\)
\(992\) 15.7371 18.7547i 0.499652 0.595462i
\(993\) −32.8773 + 90.3298i −1.04333 + 2.86653i
\(994\) −0.892444 7.26691i −0.0283066 0.230492i
\(995\) 1.08170 1.87356i 0.0342923 0.0593959i
\(996\) 33.4888 + 19.3348i 1.06113 + 0.612646i
\(997\) −9.78787 + 11.6647i −0.309985 + 0.369426i −0.898434 0.439109i \(-0.855294\pi\)
0.588449 + 0.808534i \(0.299739\pi\)
\(998\) 8.49625 10.1254i 0.268944 0.320515i
\(999\) −53.6710 30.9870i −1.69808 0.980384i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.bf.a.10.5 yes 66
7.2 even 3 931.2.bf.a.656.5 66
7.3 odd 6 931.2.be.b.48.7 66
7.4 even 3 931.2.be.a.48.7 66
7.5 odd 6 133.2.bb.a.124.5 yes 66
7.6 odd 2 931.2.bj.a.276.5 66
19.2 odd 18 133.2.bb.a.59.5 66
133.2 odd 18 931.2.bj.a.705.5 66
133.40 even 18 inner 133.2.bf.a.40.5 yes 66
133.59 even 18 931.2.be.a.97.7 66
133.97 even 18 931.2.bf.a.325.5 66
133.116 odd 18 931.2.be.b.97.7 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.bb.a.59.5 66 19.2 odd 18
133.2.bb.a.124.5 yes 66 7.5 odd 6
133.2.bf.a.10.5 yes 66 1.1 even 1 trivial
133.2.bf.a.40.5 yes 66 133.40 even 18 inner
931.2.be.a.48.7 66 7.4 even 3
931.2.be.a.97.7 66 133.59 even 18
931.2.be.b.48.7 66 7.3 odd 6
931.2.be.b.97.7 66 133.116 odd 18
931.2.bf.a.325.5 66 133.97 even 18
931.2.bf.a.656.5 66 7.2 even 3
931.2.bj.a.276.5 66 7.6 odd 2
931.2.bj.a.705.5 66 133.2 odd 18