Properties

Label 1323.4.a.bl
Level $1323$
Weight $4$
Character orbit 1323.a
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} + 887x^{4} - 4176x^{2} + 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{4} - \beta_{2} + 6) q^{4} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{5} + ( - 2 \beta_{7} + 2 \beta_{5} + \cdots + 5 \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{4} - \beta_{2} + 6) q^{4} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{5} + ( - 2 \beta_{7} + 2 \beta_{5} + \cdots + 5 \beta_1) q^{8}+ \cdots + (20 \beta_{6} + 60 \beta_{4} + \cdots - 684) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 44 q^{4} - 132 q^{10} - 336 q^{13} + 204 q^{16} + 288 q^{19} + 484 q^{22} + 152 q^{25} - 120 q^{31} - 1008 q^{34} + 592 q^{37} - 1620 q^{40} - 1872 q^{43} - 1644 q^{46} - 2400 q^{52} - 1344 q^{55} - 1200 q^{58} - 2400 q^{61} - 1388 q^{64} - 1824 q^{73} - 2844 q^{76} + 2368 q^{79} - 2436 q^{82} + 3512 q^{85} + 3780 q^{88} - 4368 q^{94} - 5712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 54x^{6} + 887x^{4} - 4176x^{2} + 3136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 38\nu^{4} - 367\nu^{2} + 680 ) / 264 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 38\nu^{5} - 367\nu^{3} + 680\nu ) / 264 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 38\nu^{4} - 103\nu^{2} - 3016 ) / 264 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{7} + 354\nu^{5} - 4945\nu^{3} + 13032\nu ) / 1056 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 6\nu^{4} - 821\nu^{2} + 2796 ) / 132 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + 278\nu^{5} - 4739\nu^{3} + 22760\nu ) / 1056 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{7} + 2\beta_{5} - \beta_{3} + 21\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{6} + 27\beta_{4} - 21\beta_{2} + 299 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -54\beta_{7} + 66\beta_{5} - 48\beta_{3} + 473\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 114\beta_{6} + 659\beta_{4} - 695\beta_{2} + 6904 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -1318\beta_{7} + 1774\beta_{5} - 1721\beta_{3} + 10947\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.00098
−4.67291
−2.49657
−0.959848
0.959848
2.49657
4.67291
5.00098
−5.00098 0 17.0098 3.98256 0 0 −45.0578 0 −19.9167
1.2 −4.67291 0 13.8361 15.5408 0 0 −27.2713 0 −72.6208
1.3 −2.49657 0 −1.76715 −14.5857 0 0 24.3844 0 36.4142
1.4 −0.959848 0 −7.07869 10.2898 0 0 14.4733 0 −9.87663
1.5 0.959848 0 −7.07869 −10.2898 0 0 −14.4733 0 −9.87663
1.6 2.49657 0 −1.76715 14.5857 0 0 −24.3844 0 36.4142
1.7 4.67291 0 13.8361 −15.5408 0 0 27.2713 0 −72.6208
1.8 5.00098 0 17.0098 −3.98256 0 0 45.0578 0 −19.9167
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.4.a.bl 8
3.b odd 2 1 inner 1323.4.a.bl 8
7.b odd 2 1 1323.4.a.bm yes 8
21.c even 2 1 1323.4.a.bm yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.4.a.bl 8 1.a even 1 1 trivial
1323.4.a.bl 8 3.b odd 2 1 inner
1323.4.a.bm yes 8 7.b odd 2 1
1323.4.a.bm yes 8 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2}^{8} - 54T_{2}^{6} + 887T_{2}^{4} - 4176T_{2}^{2} + 3136 \) Copy content Toggle raw display
\( T_{5}^{8} - 576T_{5}^{6} + 108362T_{5}^{4} - 7017984T_{5}^{2} + 86285521 \) Copy content Toggle raw display
\( T_{13}^{4} + 168T_{13}^{3} + 8328T_{13}^{2} + 100608T_{13} - 932864 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 54 T^{6} + \cdots + 3136 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 576 T^{6} + \cdots + 86285521 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} - 4864 T^{6} + \cdots + 625681 \) Copy content Toggle raw display
$13$ \( (T^{4} + 168 T^{3} + \cdots - 932864)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 47\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( (T^{4} - 144 T^{3} + \cdots - 53761631)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 12\!\cdots\!41 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 50\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( (T^{4} + 60 T^{3} + \cdots - 21279671)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 296 T^{3} + \cdots - 2024956199)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 20\!\cdots\!61 \) Copy content Toggle raw display
$43$ \( (T^{4} + 936 T^{3} + \cdots - 1639683644)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 69\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 19\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( (T^{4} + 1200 T^{3} + \cdots + 451950064)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 179656 T^{2} + \cdots - 798350336)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 67\!\cdots\!61 \) Copy content Toggle raw display
$73$ \( (T^{4} + 912 T^{3} + \cdots - 33168592604)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 1184 T^{3} + \cdots + 898048804)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 45\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 61\!\cdots\!21 \) Copy content Toggle raw display
$97$ \( (T^{4} + 2856 T^{3} + \cdots - 356770409984)^{2} \) Copy content Toggle raw display
show more
show less